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ANALYSIS OF AN INFINITE PRODUCT ALGORITHM*

J.-P. ALLOUCHE, P. HAJNAL$, AND J. O. SHALLIT

Abstract. Let w (0 + 1) be a finite nonempty string ofzeros and ones, and let aw(n) denote the number
of (possibly overlapping) occurrences of w in the binary expansion of n.

Allouche and Shallit have recently shown that there exists an effectively computable rational function
bw(n) such that

Z log2 bw(n))Xaw(")
X-1n0

for all complex X such that IX
_

and X 1. They gave an algorithm to determine bw(n).
It is shown that the algorithm to determine bw(n) is related to a certain labeled binary tree T(w). This

observation allows two identities to be proven for the rational functions bw(n).
Combinatorial methods are used to investigate the structure of the tree T(w). As the running time of the

algorithm is proportional to the total number of nodes in the tree T(w), the algorithm in this paper is shown
to run in polynomial time by proving that T(w) O( [w ’ ). The existence of infinitely many strings w
such that IT(w) - c lwl is also shown.
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1. Introduction. Let w (0 + 1)* be a finite nonempty string of zeros and ones,
and let aw( n denote the number of possibly overlapping) occurrences ofw in the binary
expansion of n.

In [AS] Allouche and Shallit have shown there exists an effectively computable
rational function bw(n) such that

(1) log2 (bw(n))XaWtn)= X-n0

for all complex X with X --< and X 1. If we set w 1, X l, and exponentiate,
we obtain the unusual infinite product of Woods and Robbins [Woo ], [Rob]:

(2n+l)-’)’")
_

][
2n+2 2n_0

justifying the title of this paper. See also [ACMS ], [Sha].
Lemmas 4 and 5 of[AS] assert that if we write w wWz’"Wm, then the function

b(n) is given by the following formula:

(2) bw( n U(ww2 Wm Wm, n

where Uw is defined as follows.
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(3)

Let z ziz2...z and be strings. Then

Uw( ZIZ2 Zr- Zrt, n

Uw( ZEZ3 Zr, n
Uw(-z2 Zr- 1, Zrt, n)

Uw(z,t,n) Uw(e,t,n)
Uw(e,rt, n)
21tln+v(t)

21tln+v(t)+

if r

_
and z is not a suffix of w,

if r >- 2 and z is a suffix of w,

if r and z is a suffix of w,

if r=0.

Here for a bit x denotes x, the complement of x; e denotes the empty string, tl
denotes the number of symbols in the string t, and v(t) denotes the value of when
interpreted as the binary expansion of a nonnegative integer.

For example,

8n+6 16n+15 16n+7 64n+54
(4) b’nj=UlllOll’O’nJ=8n+7 16n+14 16n+6 64n+55"

The reader will find a table of bw(n) for all w with _-< w =< 3 in the Appendix.
Formulas (2) and (3) suggest a recursive algorithm for computing the rational func-

tion bw(n). In this paper, we are interested in the behavior of this algorithm. More
precisely, we discuss the number oftimes formula (3) is invoked when computing bw(n).

The first observation necessary is that we can construct a binary tree out of the
first arguments z of the function Uw that reflects the structure of the computation of
Uw(z, t, n), i.e., a computation tree. We do this as follows.

DEFINITIONS. Let w and z be strings and let Tw(z) be a labeled binary tree defined
recursively as follows.

The root of Tw(z) is a node labeled z zz2. "Zm. If z is not a suffix of w, then the
root has one subtree given by Tw(zlz2"" Zm-l). If z is a suffix of w, then the root has
two subtrees: a left subtree given by Tw(zzz3" "Zm), and a fight subtree given by
Tw(Z2" "Zm- 1). Such a node, with outdegree 2, is called a branching node. The leaves
of the tree Tw(z) are the nodes labeled with empty strings, i.e., strings of length zero.

Notice that the labels of nodes that are the same distance from the root have the
same lengths. Thus we can speak of the level of a node, which is defined to be the length
of the label associated with it.

Let Lw(z) denote the number of leaves in the tree Tw(z). Let ITw(z) denote the
total number of nodes in the tree Tw(z). If w z, we will frequently omit the subscript,
so L(w) means the same thing as Lw(w), and T(w) means the same as Tw(w).

For example, Fig. illustrates the tree Tll0 10(11011). This tree has six leaves and
so L0 0(11011) 6. The total number of nodes is 14 and so T110110(11011) 14.

If w w w2" "Wm is a string and k -< m, then define

drop (w,k) ww2" Wm- k.

With this notation, we have the following theorem.
THEOREM 1.1. The degree dw of the numerator and denominator of the rational

function bw( n # bounded above by Lw(drop (w, 1)). The total number ofinvocations of
the function U that occur in the recursive computation of bw( n) by (2) and (3) is
Tw(drop (w, 1))I.

Proof. The only remark we must make is that the degree dw ofbw(n) is not necessarily
equal to Lw(drop (w, 1)), as cancellation may occur among the terms represented by
the leaves of the tree Tw(drop (w, 1)). Such cancellation actually occurs in practice; for
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(llOll,O,n)

(llOl,lO,n)

(llO,110,n)

(I0, llO,n)

/li, _(,oi
Uw(l, ii0, n) Uw (, iII0, n) Uw (, 0110, n) Uw (, i0110, n)

11 II I11 II
8n+6 16n+15 16n+7 32n+22

8n+7 16n+14 16n+6 32n+23

(01,0110, n)
-i

(0, lOllO,n)

(4, lOllO,n) Uw (, llOllO,n)

32n+23 64n+54

32n+22 64n+55

ii011

1101

110o

FIG. 1. Computation ofbw( n and Tw(drop w, 1)) for w 110110.

w 110110, we have dw 4, but as we have seen above, Lw(drop w, 1)) 6. However,
Lw(drop (w, 1)) is certainly an upper bound for the degree.

Now we state and prove two identities for the rational functions bw(n).
THEOREM 1.2.

bw(n)=bow(n)blw(n),

(6) b(n) bw(-n 1)"

Proof. To prove (5), put w wlw2"" Wm, and define k so that WlW2"’’Wk is the
longest prefix of wl w2" "Wm- that is also a suffix ofw. Define the bit x so that xwlw2. Wk
is also a suffix of w. Then we find

bw(n)= Uw(XWW2. Wm-1, Wm,n)

Uxw(XWlW2"’’Wk, Wk+ l’’’Wm,n)

Uxw W W2 wk wk + 1"" "win,n)
Uxw(.fwlw2" wk- 1, wk" win,n)

Uw( w1 w2" Wk, Wk + 1’’" Wm, n)
Uw(,w]w2" wk- , wlc" Wm,n)

Uw(wiw2" "Wm-l,Wm,n)
U.w(WIW2 Wm-1, Wm,n)

bw(n)
bw(n)

which proves the first result.
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Now let us prove (6). Since d is a suffix of ff precisely when a is a suffix of w, it
suffices to prove the second identity for Uw(e, t, n). Then we have

U(e,t,n)
21tln+v()+
21tl n + 21tl 1-v( t)

21tl(-n l)+v(t)+
21tl(-n 1)+ v(t)

Uw(e,t,-n- 1) -,
which proves the result.

The remainder of this paper is devoted to discussing the asymptotic behavior ofthe
functions Lw(z) and ITw(z) l. Since each node in the tree Tw(z) lies on some path from
the root to a leaf, it is clear that

(7) Tw(z) -<(1 + Izl)Zw(z).

Let us define

(8) R(x)= max Tw(drop (w, 1))I.

We will show

2 3_< 2xx R(x) <- ’(9)
243

In particular, the upper bounds show that the algorithm given by (2) and (3) for
computing bw(n) is actually a polynomial time algorithm.

We note that there is a relationship between our binary tree Tw(drop (w, 1)) and
the "bifix-free" strings of Nielsen [Nie]. A string w is said to be bifix-free if no proper
prefix of w is also a suffix of w. We can easily derive a recurrence for the number Bn of
bifix-free words of length n, and Nielsen has shown that

Bn
lrn- .267786. ..

Now if w is bifix-free, it is easily seen that Lw(drop w, 1)) 1. In fact, in this case

2 iwl + v(w)
bw(n)=21wl +v(w)+ 1"

It is also easily seen that T(drop (w, 1)) w I. Thus for at least 26.7 percent of all
w, the algorithm actually runs in linear time.. The ler bmt. In this section, we obtain a lower bound for the function R(x).
We do this by explicitly constructing a set of strings for which the algorithm be-
haves badly.

We start with a series of four lemmas.
LEMMA 2.1. For k >= 0 we have T(O) 1/2 k + 1)( k + 2).
Proof. Consider the tree To(0k) with root labeled O k. Its left child is labeled 0g-

and its fight child is labeled 10 g-2. No child of the node labeled 10- 2 can be a suffix
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of O k, since it begins with a one. Hence,

T(0k)I- T(0k-’)I +k+
for k >= 1. The result follows since IT(e)] 1.

COROLLARY. T(10k) (k + 1)(k + 2) + 1.

Proof. The tree T10(10k) consists of three pieces: a root labeled 10k; a left sub-
tree with root labeled ok; and a fight subtree with root labeled O k. Hence, T(10k)
2lT(0k) + 1, from which the result follows.

LEMMA 2.2. For k >= 0 we have T(OklOk) 1/2(k + 1)(5k + 6).
Proof. Consider the tree with root 0kl0 k, as portrayed in Fig. 2.
It is clear that none of the nodes on levels 2k through k + that are fight children

can themselves be branching nodes, since each of their labels contains two ones, and
thus cannot be a suffix of 0kl0 k. On level k + there are k + nodes, and the leftmost
node is labeled 10 k. None of the labels of descendents of the k rightmost nodes can be
a suffix of 0kl O k, since each such label begins with a followed by at most k- zeros.
Thus we see

2k+2

IT(OklOk) IT(10k)[ +
i=k+3

(k+ 1)(k+2)+ + 1/2(2k+2)(2k+3)- 1/2(k+2)(k+ 3),

from which the result follows. Vq

LEMMA 2.3. Let j >= k >- O. Then

T(0Yl0k)I =(j- 1)k2+(3j+2)k-k3+1/2(j+ 1)(j+6).

Proof, Consider the tree with root labeled 0Jl0 k, as in Fig. 3.
Any node that is a fight child must have a label of the form lOJ-alOk-b for a >= 1.

A prefix of this string can be a suffix of0Jl0k provided j a >= k, i.e., provided a =< j
k. Thus for each a, =< a =< j k, we see that a descendent of a fight child is of the form
10k and so

[T(0J10k)[ =(j-k)[T(10k)[+( i)+[T(0kl0k)[
i=k+l

(j-k)(1 +(k+ 1)(k+2))+(k+ 1)(5k+6)+-j(j+ 1)-k(k+ 1)

(j- 1)k2+(3j+2)k-k3+(j+ 1)(j+6),

which is the desired result.

oklo level 2k+l

k-
i0 IO

k-
i0

k-

ok-210 lok-210k-I lok-llok-2

/ \
010

i0 ii0
k-I lok-3102 lok-210 lok-i

level 2k

level 2k-i

level k+l

FiG. 2. T(OklOk).
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ok+llok

/\
oklok

oJo

oJ-llo loJ-llok-I

/\
J-210 lOJ-210k-I

lOklOk-1

i0
k

i0
k

loJ-llok-2

i0
k

i0
k

j-k

FIG. 3. The tree T(O ok).

level j+k+l

level j+k

level j+k-I

level 2k+l

level k+l

LEMMA 2.4. Let w OJlOJlO k wherej ->- k >- O. Then

Tw(drop (w, 1))1 T0o(0J10) +j.

Proof. The tree Tw(drop w, 1)) consists of a root labeled 0j10j10k- . This node,
whose label is not a suffix of 0Jl0Jl0 k, has only one child whose label is OJlOJlOk-2.
Continuing down the tree, it is easily seen that the levels 2j + k + through j + k + 2
of this tree each consist of nonbranching nodes. However, level j + k + consists of the
node labeled 0Jl0k, which is a suffix of OJlOJlOk. From this, the stated result easily
follows. [3

We are now ready for the proof of the lower bound. Recall the definition of R(x)
given in (8) at the end of 1.

THEOREM 2..5. For all integers x

_
0 we have

2X 17X2

R(x)>=- + 7-"
Proof. Let w 0Jl0Jl0 k. From Lemmas 2.3 and 2.4 we have

where
Tw(drop (w, 1))l g(j,k),

g(j,k)=(j 1)k2+(3j+2)k-k3++9-J2 +3.

We wish to maximize g(j, k) subject to wl x 2j + k + 2. We find

G(j)=g(j,x-2j-2)

12j3 + (45- 16x)j2+(7x2-21x+2-)j-x3+5x2-6x+3
and

dG 29
36j2 + (45 32x)j+ 7x2 21 x+--.

dj 2

The solutions of dG/dj 0 are given by

32x- 45 _+ /16x2 -I- 144x- 63
72
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The maximum of G(j) occurs when the negative sign is chosen; in this case we see that
j (7/18)x. Thus g(j, k) is maximized when (roughly speaking)j 7b and k 4b.

We now argue by cases, based on x (mod 18). For each of the 18 residue classes
x 18b+a, 0_a_17, we find appropriate constants p and q such that a=
2p + q + 2 and g(7b + p, 4b + q) is as large as possible. For example, for a 13
we choose p 4, q 3 and find that x 18b + 13 and

2x 17x2 179x 2623
g(7b+4,4b+3)=2--+ 72 - 162 194"

In fact, the reader can easily verify that for each a there exist choices p and q such that

2X3 17X2

g(7b+p,4b+q)=-+ 72
+d(x),

where d(x) is a linear function that satisfies d(x) > 0 for x >_- a. Thus we have shown
R(x) > (2x3/243) + (17x/72). [3

Let us define

S(x)= max Lw(drop (w, 1)).
!wl _x

The methods of this section can also be used to prove that

x2 2x 8
5.

Thus there exist computation trees with a quadratic number of leaves. This bound does
not lead to a lower bound on the worst-case of the degree dw of the rational function
bw(n), however, as it does not take into account cancellation among the terms represented
by the leaves.

In fact, we conjecture that dw - w I, except when w (10)", (01)", (10) 1, or
(01)"0, where we have dw 131 w / 2 j 2.

3. The upper bound: notation and outline of the proof. In this section and the three
which follow, we prove a polynomial upper bound for the function Lw(w), which implies
a polynomial upper bound for the function R(x).

Observe that the tree Tw(drop (w, 1)) consists of (a) a simple path starting at the
root and (b) a Tu(u) tree rooted at the first branching point of this path. Then clearly
Lw(drop (w, 1)) Lu(u), where ul < wl. Hence it suffices to give an upper bound
on the number of leaves of a tree Tu(u).

By abuse ofnotation, we will define the function L with integer arguments by setting
L(n) maxlu = Lu(u). Our goal is to give a polynomial upper bound on L(n). We
can extend this function to the real numbers by defining L(x) maxlu _x Lu(u).

We now define some symbols associated with the tree Tw(w). There is a path starting
at the root and going to the left until it reaches a leaf. At each node on this path, there
is a branching, and the right subtree starts with a simple path until another branching
occurs. Then this node is labeled with Yi =-if-fwi+ ’"Wa, which by definition is
necessarily a suffix of w. We define li ]Yi[ ai + 1. See Fig. 4.

We identify substrings of w with intervals with endpoints in U { 1, 2, ..-, n }.
Let I [k, l] be an interval. Then we call l the final point, k the initial point, and the
length of I is l k + 1. The distance between two points s and in U is Is t[. The
distance between two intervals is defined as the distance between their final points.

When we speak about the interval Ii i, a], we should not forget that there is an
underlying substring

WiWi+ 1" Wai.
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WlW

w2w3 Wn wlw2w3 n-1

w3w4 Wn w2w3w4 Wn-1 Wl2W31al/
w2w3w4 Wa2

Wn_2Wn_lWn

/\
Wn_lWn Wn-2Wn-

/\
Wn-

/\

FIG. 4. The tree T( w).

We refer to this corresponding substring as the string spanned by the interval. It will
sometimes be useful to speak about the interval I?, which omits the initial point of Ii.
The string

Wi+ iWi+2" Wai
spanned by the truncated interval I’ will be denoted by y?.

Outline ofthe proof. Choose a string w of length n such that L(w) L(n). This w
defines a tree Tw(w). Then

(10) L(n)=L(w)= + , t(yi) + L(li).
i=1 i=1

The basic idea is that our interval system { Ii } ’-
_

is not arbitrary. We know that
each truncated interval spans a suffix ofthe original string. This implies that two intervals
of similar length span almost the same string. Ifthe two intervals are close together, then
the spanned strings are almost periodic. This observation gives a lot ofinformation about
the corresponding subtree, and we will discuss this case in 4. If this is not the case, and
intervals of similar length are far apart, then we can conclude some information about
the distribution of { li } ’- ( 5 This gives a recursive inequality for L(n) The solution
of this inequality is given in 6.

We call an interval Ii [i, ai] quasiperiodic if the string

Y W + Wa

can be written as ak, where c, are strings, I1 --< le! c and/ is a suffix of c. Here c >
2 is a constant whose exact value will be specified in 6; the reader is advised to keep in
mind the case c 4. The period p I1 is chosen to be as small as possible.

We say that an interval I; is aperiodic if it is not quasiperiodic. We let . be the set
of quasiperiodic intervals, and be the set of aperiodic intervals.

According to this classification of intervals we can divide the sum in (10) into
two sums:

n

(11) L(n)=l+ L(yi) =1+ L(yi)+ , L(yj).
i= j

We will give upper bounds separately for the two cases.
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4. Quasiperiodic intervals.
LEMMA 4.1. Let Ii be a quasiperiodic interval ofperiod p, and let the associated

string be

Yi WiW + Wa

aaa+ 1’’" av a0al" "ap_

Then

L(yi) <- 2
n
L( 2p).

P

Proof. The proof has three steps, which we outline as follows:
(a) First, each of the labels on level p of the tree T(yi) is contained in the set

S= {aOal" .O/p_l,Oal .Op_ 1,110/2"" .O/p_ 10, ,p_ 10 .p_2},

and no label occurs more than 2k- times;
(b) Next, L(aa) vs L(T);
(c) Finally, we conclude from (a) and (b) that

L(y)N(2k- 1)L(aa)N2kL(2p)N2L(2p).
P

Let us beNn with pa (b). From the tree T(aa) we see that
p-1

L(aa)=L(a)+ L(aj+ l" "ap-lao" "ap-2).
j=0

Now we claim that there is a simple path with no branching nodes from

aj+ I" "ap- la0" "p- 2 to aj+ 1" "p- la0" "aj- 1.

Suppose, to the contra, that there was a branching node, which would have the label

D ii+ p- lO" "p-j.

Since this is a branching node, v must be a sux of aa. Loping only at the last p bits
of the two strings, we see that

Olp_j + l" Olp_ la0" Olp_j-- OlO" Olp_

This implies that a is of period gcd(p, j) < p, which is a contradiction. This completes
the proof of part (b).

Part (a) is proved similarly. The tree T(yi) consists of the root, labeled Yi, and two
subtrees. The left subtree is

T(a" ap_ ak)
and the fight subtree is

Tyi eotj Olp Ol.
k

olo Olp 2

Let us consider the left subtree first. A periodicity argument similar to that used in the
previous paragraph shows that the labels on level p of this tree are (a) ao’" a_ and
(b) at most k copies each of

Otoa ap_ 1, alOt2" "O/p_ laO, ap_ laO" "ap_ 2.

See Fig. 5.
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FIG. 5. The tree Tw(w), where w (ajaj+ a,_a) (w ajaj+ ap-ak).

Now let us consider the right subtree. Again, a simple periodicity argument shows
there is a simple path with no branching nodes from

1)1 a-olj. Olp_ ak- lao.., ap_ 2 to 1)2 a-aj. ap_ ak- 1.

This last node labeled 1)2 is a branching node if and only if aj_ . If it is not a
branching node, then there is a simple path from

1)2 to 1)3 aj_ laj "ap_ laoal "aj_ E-

If v2 is a branching node, then the left child of 1)2 is labeled
k-I

aj" "ap_

and the right subtree of I)2 is a simple path down to a node labeled a0a "ap_ 1. Figure
5 again shows that there are at most k copies each of the labels

aoa|" at,- , ala2" ap_ la0, ap_ la0" "ap_ 2

on level p ofthe tree T(1)4). Adding up all these possibilities gives the desired result. [3

Lemma 4.1 shows that the upper bound in the case ofquasiperiodic intervals depends
on the size ofthe period. This suggests a partition ofthe quasiperiodic intervals according
to their period size. Let us define

,p { I:I . and its period is p }.
We will prove that .t, cannot contain too many intervals, and most of these sets are
empty. This gives a good upper bound.

LEMMA 4.2. Let I and J be two arbitrary intervals, and suppose one ofthem spans
a sujfix ofthe string spanned by the other. Iftheir distance is d, then one ofthe intervals
spans a string ofperiod p with p

_
d.

Proof. The proof is clear.
LEMMA 4.3.

/,/2, L(yj)<=2-L(2p).
J
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Proof. From Lemma 4.2 we see that iftwo intervals are ofperiod p, then they must
be at least distance p apart. Hence there can be at most n/p intervals in .p. The result
follows when we apply Lemma 4.1.

To complete our upper bound on the quasiperiodic intervals, we need the follow-
ing lemma.

LEMMA 4.4. If.v and .q are nonempty andp < q, then q >- c 1)p.
Proof. Let Ii - , and Ij e ,q. Suppose p < q < (c 1)p. Then I? spans a string

y? such that

(12) Y Olk OlrOlr + 1"" Olp- laO0/l’" "Op_ lOOal’" "O/p-

and Ij.* spans a string yj* such that

(13) y ,ydi k’ disdis + diq- ldiOdil diq-1.

Now both y’ and yj.* match the label of the root, w, so the corresponding symbols in
(12) and (13) must be equal. For each dih in the last period of y.* there exists a corre-
sponding at such that dih at. The previous occurrence ofthis at has its own correspond-
ing dim. (To see that this dim actually exists, note that the construction fails only when
p + q- li. But l

_
cp by definition of quasiperiodic intervals, so p + q >= cp, and

hence q

_
(c- 1)p, contrary to assumption.) Thus we find that for 0-< h =< p we

have h dih-p, where the subscripts are taken (modq). This shows that di
di0dil""" -1 is actually periodic with period smaller than gcd (p, q) < q, which is a con-
tradiction.

We now summarize the results of this section in an inequality.
LEMMA 4.5.

(14) ] L(y) -<
0ktlog(c_l) nJ-

(2n)2C2(C--1)2k+2L
C(C--1)k

Proof. Lemma 4.4 shows that each interval of the form

( n n ]c(c- 1) k+ l’ C(C-- 1) k

k O, 1, ..., [logt_ 1)nJ contains at most one period p for which 2v is non-
empty. Thus

<-_ , 2c2(c-1)2k+2L( 2n )
O-ktlog(c-l) nJ-1 C(C-- 1) k

I--]

5. Aperiodic intervals. Recall that /is the set of aperiodic intervals. We divide
into classes depending on the lengths of the intervals. For >= define

and n
c

=</<n c



12 J.-P. ALLOUCHE, P. HAJNAL, AND J. O. SHALLIT

If an aperiodic interval I. belongs to i then we estimate L(yj) with
L(((c + 1)/c)i). To be sure that in estimating L(n) we do not use the same function
with a larger argument, we need the following lemma.

LEMMA 5.1. Iflj

_
(c/(c + 1))n, then Ij is quasiperiodic.

Proof. I spans a string y that is a suffix of the word w. The distance d between I
and the interval 1, n satisfies d =< n lj. -< n/ (c + 1) -< 1/c. From Lemma 4.5 it follows
that I. spans an interval of period p <= d <= l/c. Hence I is quasiperiodic.

The most important lemma of this section is the following, which says that the
elements of ; are far apart. In particular, this implies that Ji contains only a few
elements.

LEMMA 5.2. lflk and It are intervalsfrom >= 1), then their distance is at least

Proof. We can consider the two truncated intervals I and I’ and their associated
strings y and y’. The two truncated intervals have the same distance as the original
ones, let us say d. One of y and y? is a suffix of the other, so from Lemma 4.5 one of
them has period at most d. Because it is an aperiodic interval, the length of this period
p satisfies p > l/c. Since p =< d, we find

COROLLARY 5.3.

I;I -c (c+)

We can now summarize the results of this section in the following inequality.
LEMMA 5.4.

L n
l_j.log(c+l)/cn \ ] \ [\ ]C

lie .
Proof.

Z t(wi) <- I:IL n_
j log(c l)/c

C

Ii . _
log(c l)/c n

(C+ 1)(c--l)’L(n/(C--l)).
6. Completing the upper bound proof. To complete the proof of the upper bound

we need to summarize our results and solve the resulting inequality.
By combining the estimates of the previous two sections, we see that

L(n)<-l+2c2 , (c--1)2k+2L( 2n )
0

_
k

_
logt_ t) n

C(C- )k

L n_
j _.6 lOg(c l)lcn
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We now prove that L(n) -< 2n 0., by induction on n. We assume that L(n) <= Dna

for all n sufficiently small, and we determine D and a later. Now assume it is true for all
n < N, and we wish to prove the assertion for N.

It suffices to show that

+DNa(2a+ lc2-a(c-- 1) 2 (C-- 1) k(2- a)

0 k

_
log(c 1) n _

j

___
log(c l)/cn

C

We bound the first sum by

2 a+ 12-a(c-- 1) 2 (c- 1)kt2-a)=
k_0

2a+ lc2-a(c-- 1) 2

1-(c- 1)2-

and the second sum by

(C+ I)j ( c4r )
If we now write

2 a+ 1c2-a(c_ 1) 2
(a)

1--(C-- 1)2-a C C

then we wish to find a, D such that

+ DNac(a) <= DNa.

In other words, let us find c such that c(X) <= .999 for all x >- a, and a as small as
possible.

For c 3.788 we find that a 10.09425. To complete the induction proof, set
D 2 and observe that L(n) <= Dna for n =< 2, while for n >= 3 we have

L(n) <= + Dnac(a) <-_Dna,
since n

_
310

_
500.

Thus we have shown the following theorem.
THEOREM 6.1. L(n) <= 2n ’.
Using (7), we easily obtain Corollary 6.2.
COROLLARY 6.2. R(x) _-< 2x TM .
7. Open problems. We have shown that our algorithm for computing bw(n) has a

worst-case running time of O( [w[ ). On the other hand, the worst case we can explicitly
construct takes ft( wl 3).

We saw that for a substantial fraction of all w, the algorithm actually runs in linear
time. Thus, a natural question to ask is: What is the expected running time of our
algorithm?

Our results have also shown that the degree dw of the numerator and denominator
of the rational function bw(n) satisfies dw <- 21w[ 1’ However, the worst case we can
explicitly construct has dw I. 3 w / 2 J 2.
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Appendix. Values ofbw(n).

O0

O1

10

11

000

001

010

011

100

101

llO

111

bw(n)

2n
2n+

2n+
2n+2

2n
2n+

4n+3
4n+2

4n+
4n+2

4n+2
4n+3

2n+
2n+2

4n+2
4n+

2n
2n+

4n+3
4n+2

8n+5
8n+4

8n+
8n+2

4n+2
4n+3

8n+7
8n+6

8n+3
8n+4

8n+4
8n+5

4n+
4n+2

8n+2
8n+

8n+6
8n+7

2n+
2n+2

4n+2
4n+

8n+4
8n+3
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INTERSECTION OF TWO MATROIDS: (CONDENSED) BORDER
GRAPHS AND RANKING*

PAOLO M. CAMERINI AND HORST W. HAMACHER:I:

Abstract. Given two matroids M (E, #’) and M2 (E, 2), three algorithms for finding K best
intersections I, 12, , Ir are presented. The first version is a straightforward application ofa general procedure
due to Murty and Lawler. The complexity for finding I2, Ik is O(Km2R(R + c(m) + log m)) where m is
the number of elements in E, R min rl (E), r2(E) }, and c(m) is the complexity of an independence oracle.
By using maximum weighted border paths to compute second best intersections of modified matroids, this
bound is reduced to O(K(m + mRc(m))). Finally, a condensed version of the border graph is proposed to
further improve the bound to O(KmRc(m)). The latter idea can also be used to find the optimal intersection
I in O(mR2c(m)) time, which is competitive with recent matroid intersection algorithms by Frank J. Algorithms,
2 (1981), pp. 328-336] and Brezovec, Cornuejols, and Glover [Math. Programming, 36 (1986), pp. 39-53].

Key words, matroid intersection, ranking, efficient algorithms

AMS(MOS) subject classifications. 05B35, 90C 10

1. Introduction. Let M (E, Jl), ME (E, o2) be two matroids with the same
ground set E { el, em} of elements and with nonempty families J - 2E of
independent sets satisfying

(1.1) IeJi,J_I--J.Ji,

(1.2) I,Ji, 1I[ [J[ + 1--eI-J:J+ei
for 1, 2. (As usual, in matroid theory we use the denotation J + e as an abbreviation
for J t.J { e } .) For these and other standard matroid notation and properties we refer to
Lawler [19 ]. For 1, 2 let r(A) and sp(A) denote the rank and the span, respectively,
ofany subset A ofE in matroid Mi and denote R min { r(E), r2(E) }. In the following
we assume for computational purposes that the two matroids are given in conciseform;
i.e., the input length needed for their specifications grows no more than polynomially
with the size m of the ground set. Moreover we assume each matroid M, 1, 2, is
specified by means of an independence oracle; i.e., we assume to know a procedure that
decides in time bounded by the polynomial ci(rn), whether or not a given set A

_
E is

independent in Mi. We denote c(m) max { Cl (rn), c2(m) }. To simplify the exposition
we also assume without loss of generality that E 4: and both matroids are normal (i.e.,
each singleton { e } is independent).

For each e E let wj w(ej) denote a known integer number- the weight of
e.. Let

(1.3) w(A)=
ejA
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be the weight of any subset A
___
E with the understanding that w() 0. We use the

terminology best, and better to indicate that the weight of a set is maximum, and not
less, respectively, compared with other sets.

Let og o1 fq og2 be the family of all intersections ofthe two matroidsM and M2.
A sequence 11, IK of K

_
distinct members ofo is called a sequence of K best

intersections if W(lk) -- W(Ik / ), k 1, K 1, (when K > 1) and I/ is better than
any other member of J. Consequently, Ik is called a kth best intersection, k 1, ...,
K, ofM and M2. The matroid intersection ranking problem is the following problem.
Find K best intersections for given matroids M, M2, weights wj, j 1, ..., m, and
integer K

_
1. For K this problem includes the best intersection problem that has

been solved in 7 ], 16 ], and 18 by O(m2R2 + mR2c(m )) algorithms (see, for instance
[19, Chap. 8 ]), and with an O(mR2 + mRc(m) + mR log m) algorithm in [1].

In the next section we show that if K=> 2, then I2, "", Ir can be found in
O(K(R2m2 + Rm2c(m) + Rm2 log m)) time by a straightforward application of the
Lawler-Murty approach 17 ], 21 ], using the matroid intersection algorithm ofBrozovec
et al. [1]. This bound is improved in 3, where we prove a key property of the border
graph, allowing us to obtain 12 from a best intersection 11 in O(m + mRc(m)) time.
Using this fact and taking advantage of a binary tree version of the Lawler-Murty
procedure developed in [10] and [11], we show that I2, "", Ir can be found in
O(K(m3+ mRc(m))) time. This complexity bound is further reduced in 4 to
O(KmRc(m)) by computing all pairs shortest paths in a condensed version ofthe border
graph. This technique can also be utilized in order to compute I in O(mR2c(m))
time, thus improving the primal-dual implementation of the algorithm given in 19,
Chap. 8 ].

2. The Lawler-Murty procedure for K best intersections. In 20 Murty developed
a procedure for finding K best assignments in a given weighted bipartite graph. This
procedure has been generalized by Lawler 17 to arbitrary combinatorial optimization
problems. For applications of this procedure to a specific problem see, e.g., [3 ], [4 ],
14 ], and 20 ]. In this section we apply the Lawler-Murty procedure to obtain a straight-
forward algorithm for finding K best intersections [22].

Let X
_
E be an arbitrary subset of E and let Y e J be any intersection such that

X fq Y . Denote

(2.1) (X, Y)- I IfqX- , Y_I}.

Since Y , the contraction of Y and the deletion ofX U sp (Y) sp2(Y) in i,
1, 2, yield the following normal matroids for 1, 2:

Mi(X, Y): =(M ctr Y)del(XUsp(Y)Usp2(Y)- Y)=(E(X, Y),i(X, Y))(2.2)

where

E(X, Y) E-(XU spI(Y)U sp2(Y)),

oCt(X, Y) { I’_ E(X, Y) I’U Yc}.
Since X fq Y , it follows that

(2.3) (X, Y)= {I’U YII’(C,(X, Y)fqC2(X, Y))}.

Moreover, Jr(X, Y), the/th best member of (X, Y) (l >= 1), has the form

(2.4) /t(X, Y)= IU Y
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where I is an lth best intersection ofMt (X, Y) and M2(X, Y), since the weight of each
member ofJ(X, Y) and of its (by (2.3)) corresponding intersection ofMt (X, Y) and
ME(X, Y) differ only by the constant term w(Y). Therefore we obtain for l >- 1,

It(X, Y) is an/th best intersection in (X, Y) if and only if

(2.5) II(X, Y) I t.J Y and I is an/th best intersection of

M1 (X, Y) and ME(X, r).
II(X, Y) can therefore be found in O(mR(R + c(m) + log m)) time by using the
matroid intersection algorithm of ], since deletion and contraction operations do not
affect the complexity of the independence oracle.

The Lawler-Murty procedure, applied to matroid intersection problems, can now
be described as follows. Suppose we have found that the kth best intersection Ik is the
best intersection in J(Xk, Yk) for Xk c E, and Yk c= ,r. Then J(Xk, Yk) is further
partitioned by iteratively excluding elements e e (Ik Yk) from intersections and forcing
elements e . E- (I t.J X t.J spt(Y) t.J SpE(Y,)) into intersections. For each pair (X, Y)
the best intersection J (X, Y) is computed and added to the candidate list qo. The next
best intersection Ik +t is found by taking an intersection in &o with the largest weight.
The validity of the algorithm subsequently detailed follows from 17 ].

ALGORITHM FOR RANKING MATROID INTERSECTIONS.
input: normal matroids MI (E,Jt), ME (E,o2) in concise form,

integer weight for each e E,
positive integer K;

output: K best intersections
begin

1. find a best intersection It in
2. k *- 1; X YI - ; ’-
3. while k < K do

begin
4. U - I Yk I E (1 UX U spt Y) U sp2 (Y));
5. declare unvisited all elements of U and I;
6. for each e U do

begin
7. X -- Xk+e; Y - Y U { f U Ifhas been visited};
8. visit e; find I II (X,Y);
9. add the triple (LX, Y) to

end;
10. for each f V do

begin
11. Y -- Y+f; X -- X U {e 1/I e has been visited};
12. visitf; find I II (X, Y);
13. add the triple (LX, Y) to

end;
14. if L J then stop [I contains only k < K intersections] else

begin
1. extract fom a triple (I,X,Y) such that I has max weight;
16. k - k+l; Ik I; X, - X; Yk " Y

end
end

end
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The LM Algorithm uses (K- l) iterations in which the computation of at most m
intersections in lines 8 and 12 is the most time-consuming part. Hence the LM Algorithm
for computing I2, Ir has a complexity of O(K(mER2 At- mERc(m) + mER log m))
if the algorithm of[l] is used to find the maximum weight intersections of Step 12.

3. Using second best intersections for an improved algorithm. If we analyze the
algorithm of the previous section, we realize that for each value of k, lines 8 and 12 of
Algorithm LM generate more intersections than we need. Out of O(m) many solu-
tions it is sufficient to consider the best one, which is I2(Xk, Yk), and add it to the list.
If I2(Xk, Yk) can be found by a procedure with worst-case bound better than
O(m2R(R + c(m) + log m)), then this modified procedure will be superior to the
algorithm presented in the previous section. This idea has been used successfully in 5 ],
6 ], 10 ], 12 ], 13 ], and 11 to develop efficient algorithms for finding K best bases of

matroids, cuts in networks, perfect matchings, spanning trees, and arborescences in graphs.
In this section we will show that 12 (Xk, Yk) can be obtained by finding a maximum

weighted border path in a suitable border graph. Using (2.5) with 1 2, we can without
loss of generality restrict the discussion to the case where Xk Yk P, i.e., k 1.

Recall that the border graph BG (I) of an intersection I is a directed bipartite
graph with arcs connecting nodes representing E I and I as follows. Let ei I, ej
E- I. Then

(3.1)

(3.2)

ei, ej)eBG (1)

(e,ei)eBG(I)

if(I+ ej.)J

but ((I+ ej)- ei)eJ,

if (I+ e./)J2

but I+ ej ei + J2

The indegree and outdegree of nodes in BG (I) is the indegree and outdegree ofelement
e E (with respect to I). Elements e e (E I) with indegree (outdegree) 0 are called
sources (sinks).

A border path is one of the following five types of directed paths in BG (I) from a
node ei to a (not necessarily different) node e:

A source-sink path, i.e., ei is a source, and e is a sink;
(2) A source-I path, i.e., ei is a source, and e e 1;
(3) An 1-sink path, i.e., ei - I, and e is a sink;
(4) An (open) I-I path, i.e., ei I, ej e I, and either ei ej or ei ej is the unique

node of the path;
(5) A cycle, i.e., ei ej I.

Note that in (1) and (4), e; e is possible; i.e., the paths may contain only the single
node ei e, whereas for cycles we assume that they contain at least two different nodes.
A shortcut of a border path P (ei,, eia, ei, "’", ei) is any arc (eia, ei) in
BG (1) with a < b.

The incremental weight A(p) of a border path P is defined by

(3.3) A(p) w w.
ej (P I ej (P I1)

A shortcut (e;,, ei) is a worsening, improving, and zero shortcut for border path P if
A(P’) < A(P), A(P’) > A(P), and A(P’) A(P), respectively, for the shortcutted
border path P’= (ei,,... eia, ei,’", %).

Finally, we call a border path primitive if it has no shortcuts or if all its shortcuts
are worsening. With this definition the following lemma has been shown in [15 ].
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LEMMA 3.1. lfP is a primitive border path in BG (11), then

11 (R)P= (I UP)-(I tqP)

is an intersection. The weight ofI (R) P can be computed by using (3.3).

(3.4) w(I (R) P) w(Ii) + A(p).

The next lemma establishes that we can restrict ourselves to primitive border paths
if we are looking for a border path with maximum incremental weight A(p).

LEMMA 3.2. The maximum incremental weight of all border paths in BG (11) is
attained in a primitive border path P with A(p --< 0.

Proof. Let P such that A(PI) max { A(P) P primitive border path }, and let S
be an arbitrary border path. If S is primitive, then A(p >= A(S). Otherwise, S admits
nonworsening shortcuts. After a finite number ofthe shortcuts, S is therefore transformed
to a primitive border path S’ such that A(S) =< A(S’) and A(p) >_ A(S) follows from
the first case.

To show A(P1) =< 0, we observe that the assumption A(PI) > 0 together with
Lemma 3.1 and (3.4) contradict the fact that 11 is the maximum weighted intersection.

We are now able to prove the main result of this section.
THEOREM 3.1. IfP is a primitive borderpath in BG (11) with maximum incremental

weight A PI), then 11 (R) P is a second best intersection.
Proof. By Lemma 3.1, II (R) PI is an intersection and it remains to show that

w(I1 6) P)

_
w(J) for all intersections J 4: 11. For that purpose let J 4:11 be any

intersection. From 15 (see also 19, Chap. 8 ), we know that the nodes in Ii (R) J can
be covered by border paths $1, "", St. (Note that some of these paths may be isolated
nodes in BG (11).) Therefore

w(J) w(11 fq J) + w(11 J) + w(J- 11 w(11 J)

w(,)+ Z A(S)
j=l

_w(I)+I’A(PI)

<- w(Ii)+ A(PI)

w(11 (R) P ),

where the inequalities follow from Lemma 3.2. []

Any cycle C in BG (11) is a border path. Therefore Lemma 3.2 yields

(3.5) A(C) -< A(P) -< 0;

i.e., BG (11) contains no positive cycle. Hence the Floyd-Warshall Algorithm [8 ], [24]
can be used to find a maximum weighted border path P in BG (11). (Note that the
weights are on the nodes instead of the arcs, and minor modifications of the Floyd-
Warshall Algorithm are necessary.) The complexity of this procedure is O(m3). P does
not admit improving shortcuts. But we may have to remove shortcuts to transform P
into a maximum weighted, primitive border path PI. Since these shortcuts are found in
O(m2) time, the overall complexity offindingP is O(m3), and the complexity offinding
I2, lr is O(K(m3 + mRc(m))), where O(mRc(m)) is the time for constructing
BG (I1).

An alternative way to find P is based on the following observation. A sufficient
condition for a maximum weighted border path P to be primitive is that the number of
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nodes is minimum. Therefore we find a minimum path with respect to vector-valued
node weights (-wj, 1) and use the lexicographic version ofthe Floyd-Warshall Algorithm
[2 ], [25] to find P without having to look for shortcuts. Since the complexity of this
procedure is also O(m3), the bound for finding I2, Ir is unchanged.

We formalize the algorithm developed in this section as follows.

BINARY ALGORITHM FOR RANKING MATROID INTERSECTIONS.
input: normal matroids M (E, o), M2 (E, o2) in concise form,

integer weight wj for each e E,
integer K

_
2;

output: K best intersections I, Ir in r f3 2
begin

1. find a best intersection I in ;
2. find in BG (I) a primitive border path P ofmaximum incremental weight;
3. 12 --I (R)P;p- 1;X - Y -- J; k - 2;-’ -- j;4. while k < K do

begin
5. choose any e . Ip (R) Ik
6. if e Ip Ik then begin Yk -- Y; X - Xp + e; Yp - Y + e end;
7. else [e e Ik I] begin X - X; Yk -- Y + e; X -- X + e end;
8. for each j {p,k} do if E(X, Y) 4: b then

begin
9. construct BG (/ Y) with respect to matroids Mi(X, Y), 1,2;

10. find in BG (/ Y) a primitive border path P ofmaximum
incremental weight [e.g., by using the lexicographic Floyd-
Warshall Algorithm with vector valued weight (-wh, 1)
associated with each node eh];

11. add the quadruple (I (R) P; X, Y, j) to
[/ is I (X, Y) and/. (R) P. is I2 (Xj, Yj)]

end;
12. if .o b then stop [&o contains only k < K intersections] else

begin
13. extract from J a quadruple (LX, Y,p) such that I has maximum weight;
14. k - k+l; Ik -- I; Xk X; Yk ’- Y

end
end

end

4. Condensed border graphs and their applications. For the following we assume I
is an intersection that does not admit positive cycles in its border graph, i.e.;

(4.1) A(C)=w(C-I)-w(CNI)<-O forall cycles Cin BG(I).

The condensed border graph CB (I) ofI is in general a nonbipartite, directed graph with
node set I U { q, s, } and arc set A connecting the nodes el, e, q, s, and t as follows:

(4.2) (ei, e)A,=,ee(E-I):(e,e),(e, ej)eaG(I)

note that e, ei) A is possible, i.e., CB (I) may contain loops),

(4.3) (s, ei)-A=3 source e-(E-I):(e, ei)eBG(I),

(4.4) (q,e)a_.A VeeI,
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(4.5) (e,t)eAc3sinkee(E-1):(e,e)BG(1),

(4.6) (s,t)A3eeE-S:eisbothasourceandasink.

The main goal of this section is to establish that border paths used in computing
I, I2, Ir are in one-to-one correspondence with paths in some CB (I), and to
replace the search for a primitive, maximum weighted border path in BG (I) by a simpler
procedure to find a maximum weighted path in CB (I). For this purpose we define
weights for the arcs a e A.

For arcs (el, ej) A defined by (4.2) we call e e (E- I) an intermediate node of el,

eje/if( e, e), (e, ej) e BG (I). For each (e, ej) the set ofintermediate nodes is nonempty
by (4.2) and we denote with (e;, ej) an intermediate node with maximum weight
w(q). The weight of(e, e) in CB (I) is

(4.7) ( ei, e) w(d) w(e).

If a (s, e) A, there exists by (4.3) at least one source e e (E-I), such that
(e, ei)e BG (I). We call each of these sources a source for ei and denote with (si-"
ok(s, el) a source for ei with maximum weight. The weight of (s, el) is

(4.8) (s, el) w(4) w( ei).

For a (q, ei) defined by (4.4), we set

(4.9) tS(q, e) -w(e).

Any sink e in BG (I) connected with e e I by an arc (ei, e) is a sinkfor e and we denote
with ; (ei, t) a sink for e with maximal weight. Then

(4.10) (ei, t) w(cbit).

Finally, if (s, t) e A, we denote with (st t(S, t) a most weighted element in E I that
is both a source and a sink. Then

(4.11) (s,t)= w(cb).

For a given border graph BG (I), CB (I) and the weights i(a) can be computed in
O(mR2) time. The construction ofBG (I) itself has a complexity of O(mRc(m)). Since
in this construction the input of each independence oracle is (J + e) where J

_
I and

e E- I, we have c(m) f(R), and the overall complexity of computing BG (I),
CB (I) and the weights (a) is O(m.R.c(m) + mR2) O(mRc(m)).

Note that we can specify the ambiguous definitions of, i, i, and st by intro-
ducing any tie-breaking rule. We could, for instance, take the maximum weighted in-
termediate node (source, sink) with the smallest index.

Example 4.1. Let Mi be the graphic matroids of the graphs G, 1, 2, as shown
in Fig. 1. The weights are w(e)=w= 11-2[(j+1)/2], j= 1,...,9. I=
(e, e2, e3 } is independent in both matroids, and the border graph BG (I) is shown in
Fig. 2. The condensed border graph CB (I) is shown in Fig. 3. To find, for instance, ,
we compute max w4, w5 ) 7 yielding e, and tS(s, e ) w4 w 7 9 -2.
Similarly, 2 e6 and di(e, e2) -4.

In this example we may check that the five different types ofborder paths Pbetween
two nodes e and e in BG (I) correspond to paths Q Q(P) in the condensed
border graph:

(4.12) from s to if P is a source-sink path,

(4.13) from s to ei, if P is a source-/path,
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FG. 1. Graphs defining graphic matroids.
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FIG. 2. Border graph BG (I) with node weights wj.
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FIG. 3. CB (1) with arc weights and with 4u on the arcs.
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(4.14) from q to if P is a/-sink path,

(4.15) from q to ei if P is an open I-I path.

A fifth type of path Q(P), namely

(4.16) from ei to ei if P is a cycle

is not contained in this particular example. The weights ofcorresponding paths satisfying
A(p) w(P I) w(P N I) <= 6(Q(P)) Za,o(e) 6(a). Suppose in this example we
want to find a source-sink border path with maximum incremental weight, which is
P (eg). This path corresponds to Q(P) (s, t) in CB (I), which has the same weight.
In the same fashion the path P (e4, el, e6, e2, es) with

A(P)= w(P-1)- w(PfqI)= 15- 18 -3

corresponds to the (s, t) path Q(P) (s, el, eE, t) with 6(Q(P)) A(P) -3.
In general, let

P= %, e, e, ,%_,,%,%+,, eo_ eo, eo+ )

be an arbitrary border path in BG (I). We assume in this denotation that eij E I
and % el/ I, if P is a cycle. Then

Q(P)=(fl,fE, ei_l, eij+ ,, ,dl,d2)

is a path in CB (I) where fl, fE and dl, dE are defined according to Table depending
on the type of path we are considering. Therefore each border path P corresponds to a
path Q(P) in CB (I) and from the definition of di we get

(4.17) AP<-f(Q(P)).

Also note that Table defines a type correspondence between paths P in BG (I) and
Q(P) in CB (I). For instance a Type 3 path in BG (I) is an/-sink path whereas a Type
(3) path in CB (I) is a q-t path.

Since we are trying to replace the search for primitive, maximum incremental
weighted paths P in BG (I) by a path computation in CB (I), we must study the converse
situation, i.e., how to construct a path P P(Q) in BG (I) from a given path Q in
CB (I). To do that, we consider the following two cases.

Case 1.

(4.18) a4=bdp(a)4=4(b) Va,beQ.

In this case Q (fl, f2, ej_,, eij+,, dl, d2) implies that a path P P(Q) in
BG (I) can be found by using Table and adding the nodes 4(ei_,, ei+,) between

TABLE

f,

source source
sink el sink el el, e0+

(open I-I path) (cycle)

s s q q e
e, e % % %

eo+ eo_ eo+ eo_ e_
eit+t eo+ e+

Type (1) Type (2) Type (3) Type (4) Type (5)
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eij_ and eij/ ,. Moreover (4.17) holds in this case with equality by the definition of the
weights tS(a) in (4.7)-(4.11). Now assume Q is a maximum weighted path in CB (I).
Since we have already shown that each path P in BG (I) yields a path Q(P) in CB (I),
P(Q) is therefore a maximum weighted border path. After removing from P(Q) all zero
shortcuts, we obtain a primitive path P’ with maximum incremental weight. (Note that
P(Q) does not admit improving shortcuts, because P(Q) is a maximum weighted
border path.)

Case 2.

(4.19) :la,beQ: ab and (a)=(b).

(See Fig. 4.) If a (ei, ej) and b (eh, e,), the definition of the arc set A implies that
c (ei, e,), d (eh, ej) A. We then define the subpaths Q, Q2, and Q3 of Q as
indicated in Fig. 4, to get Q’ (Q, c, 03), a path of the same type as Q, and (Q2, d),
a cycle. If Q’ satisfies the condition ofCase we stop the procedure. Otherwise we iterate
with Q Q’. After at most al O(R) iterations we end with a path Q’ which is of
the same type as Q and with, say, cycles C, ..., Ct in CB (I) such that

(4.20) 5( a) <= ts( a’) + , 5( Ci).
i=1

For each of the cycles Ci we can also assume that condition (4.18) is satisfied. (If not,
we apply the previous procedure to Q Ci, the only consequence being gets larger.)
Hence each cycle Ci in CB (I) corresponds to a cycle P(Ci) in BG (I) and, since (4.17
holds with equality, by assumption (4.1) we get

(4.21) di(Ci) A(P(Ci)) <-O, i= 1, ,l.

Now assuming Q is a maximum weighted path in CB (I), it follows that P(Q’) is a
maximum weight border path in BG (I), because

(4.22) A P( Q’) 6( Q’)

_
6(Q >- 6( Q(P) >-_ AP

FIG. 4

9-1

9-2



26 PAOLO M. CAMERINI AND HORST W. HAMACHER

for all border paths P in BG (I). Hence (taking P P(Q’)) all inequalities in (4.21 and
(4.22) hold with equality and

(4.23) i(Q’) i(Q).

IfP(Q’) has zero shortcuts, then shortcut P(Q’) is used to obtain a primitive, maximum
weighted border path P in BG (I).

From the previous considerations we obtain the following results.
THEOREM 4.1. If Q is a maximum weighted path in CB (I), then P( Q’) is a

maximum weighted border path in BG (I).
THEOREM 4.2. For all cycles C in CB (I),/i(C) -< 0.
Proof. The proof follows from Q C and (4.21) if we continue decomposing Q in

(4.20) until Q’
By Theorem 4.2 we can use the Floyd-Warshall algorithm to compute Q. Since

the decomposition ofQ according to (4.20) and the computation ofP(Q’) are dominated
by the complexity of this algorithm, P(Q is computed in O(R3) time. Since P(Q
may have zero shortcuts and their removal would add O(m2) to the complexity offinding
P1, the resulting bound O(R + m2) can be improved by using lexicographic optimization,
as the following theorem shows.

THEOREM 4.3. IfQ is a lexicographically minimum path in CG (I) with respect
to vector-valued weights (-(a), 1), then QI satisfies (4.18) andP P(QI) is a primitive,
maximum weighted border path in BG (I).

Proof. The definition of the lexicographical minimum and of the vector-valued
weights ensure that QI is a maximum weighted path in CB (I) with a minimum number
of arcs. Hence (4.20) and (4.23) yield that Q satisfies (4.18 ). If P(Q would admit a
zero shortcut, then Q(P’) where P’ is a shortcutted path ofP(Q would have the same
weight as Q, but a smaller number of arcs. This contradicts the lexicographic optimality
of Q.

Using Theorem 4.3 we can do the computation ofP in O(R3) time if BG (I) and
CB (I) are given. Thus we obtain the following complexity results.

11 can be computed by starting with I and finding a maximum weighted bor-
derpath P in BG (I) until, for the first time, A(p --< 0. Note that each of these border
paths is necessarily a source-sink path. Therefore this procedure iterates at most R times
where each iteration includes the computation of BG (I), CB (I) and P, which can be
done in O(mRc(m) + R3) 0 (mRc(m)). Hence I1 can be computed in O(mR2c(m)).

Note that this bound is better than O(m2Rc(rn)) of [9 ]. Compared with the
O(mR2 + mRc(m) + mR log m) bound of[l], the condensed border graph algorithm
is competitive if Rc(m) 0(log rn).

Using the Binary Algorithm of 3 and the condensed border graph concept to
compute Pj in line 10, we have that each intersection Ik, k 2, "’, K, can be computed
in O( mRc(rn)) time. Hence the complexity for finding 12, "", Ir is O(KmRc(rn)).
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CODES FROM SYMMETRY GROUPS, AND A 132, 17, 81 CODE*

YING CHENGf AND N. J. A. SLOANE:

Abstract. Let G be the automorphism group of the four-dimensional cube, a group of order 24.4! 384.
The binary codes associated with the 32-dimensional permutation representation of G on the edges ofthe cube
are investigated. There are about 400 such codes, one of which is a 32, 17, 8] code, having twice as many
codewords as the 32, 16, 8 extended quadratic residue code.

Key words, codes, error-correcting codes, permutation groups, modular representations

AMS(MOS) subject classifications. 94B, 20C

1. Introduction. Since random codes are good ([1], [27, p. 558 ], [29 ]), one wishes
to identify families ofcodes large enough to have a chance ofincluding some good codes,
yet small enough to be manageable. In this paper we describe one such family: the codes
obtained from the action of the automorphism group of the n-dimensional cube on its
m-dimensional faces.

In particular, the automorphism group G ofthe four-dimensional cube, a group of
order 384, permutes the 32 edges of that cube. Regarding the edges as a basis, we have
a 32-dimensional vector space V over GF(2) on which G acts. The codes we consider
are the subspaces of V invariant under G. There are about 400 such subspaces, one of
which is a [32, 17, 8] binary code.

We find this quite astonishing, since the well-known second-order Reed-Muller and
extended quadratic-residue codes of length 32 are [32, 16, 8 codes, and are extremal
Type II self-dual codes 16 ], 17, p. 194 ], 24 ]). It is remarkable that there should be
a linear code with the same minimal distance and twice as many codewords. Of course
the new code is not self-dual. Its properties are summarized in Theorem 1.

This family of codes can be generalized in several ways. Besides varying the dimen-
sions of the cube and the faces, we could consider other regular polytopes instead of the
cube, or more generally other Weyl groups (our group G is the Weyl group of type B4).

Many other codes have been obtained from modular representations of groups in
the past. Of course classical cyclic codes arise from the regular representations of cyclic
groups, and include a large number of good examples. In the 1960s Berman [4], [5 ],
Camion 11 ], Delsarte 19 ], and MacWilliams 25 ], 26 studied other abelian groups,
but (perhaps because of the limitations of the computers available) did not find any
especially interesting codes.

In 1975 Lomonaco (see [15]) found a record [45, 13, 16] binary code obtained as
an invariant subspace of the regular representation of the group C3 X C15. In [10],
Calderbank and Wales found a 176, 22, 50 code from the Higman-Sims simple group.
Brooke 7 ]-[ 9 has studied a large number ofother simple groups, using Parker’s "meat-
axe" 28 ], without, however, finding any new record codes. Representation theory has
also been used to construct codes by Liebler [23 ], Camion [12], Rabizzoni 32 ], Ward
34 ], Zlotnik 36 ], Klemm 21 ], Charpin 13 ], 14 ], Bhattacharya 6 ], Jensen 20 ],
Wolfmann [35], and Landrock and Manz [22].

However, it seems fair to say that our 32, 17, 8 binary code is the first record code
oflength less than 100 that comes from a modular representation (where the characteristic
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of the field divides the order of the group). Furthermore, in contrast to many of the
papers mentioned, we do not use the regular representation of the group. Another dis-
tinguishing feature of our approach is the relatively large number of invariant subspaces
that occur, increasing the chance that one of them is good!

2. The new code. Let G be the automorphism group ofthe four-dimensional cube,
a group of structure 24.$4 and order 24.4! 384. This group permutes the 32 edges of
the cube, which we label as in Fig. 1. Let Fbe a 32-dimensional vector space over GF(2
with basis that is in one-to-one correspondence with the edges, so that G acts on V. A
typical vector v l/" has the form v (v,..., v32), vi 0 or 1, with coordinates
corresponding to the labels in Fig. 1. We write these vectors in hexadecimal notation,
with 0 0000, 9 1001, 1010, F 1111. We may also identify v with
the corresponding set of edges.

Any set of vectors u, v, Fgenerates a binary linear code of length 32, denoted
by (u, v, .), namely the modulo-2 span of the union of the orbits of u, v, under
G. These codes are the G-invariant subspaces of F. A code or subspace (u) with a single
generator is called cyclic, following [18, p. 52]. (This is the appropriate generalization
of the standard term from coding theory.)

We denote the G-invariant codes ofdimension k by Ck C) -(
,Ck ,’-’,andwhen

they are cyclic we denote corresponding generating vectors by Uk U TheUk
labels are chosen so that, for k 4: 16, Ci) and ci2)_k are dual codes. Also --16 and

l)
16 are duals (0

_
-< 2). We shall make use ofthe particular generators u (ki) shown

in Table 1. Some generators that represent geometrically interesting configurations in
the cube are displayed in Fig. 2.

The code C7 is the most interesting, and we summarize its properties in the following
theorem.

THEOREM 1. The code Cl7 ( u3, u4 > is a 32, 17, 8 binary code, with generator
matrix as shown in Fig. 3(a). (An alternation definition is given in 3.) This code has
thefollowing weight distribution:

0 8 10 12 14 16

Ai 908 3328 14784 27392 38246

22 18

FIG. 1. Four-dimensional cube with the 32 edges labeled.
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TABLE
(i> for selected code Ctki> (in hexadecimal).Generating vectors Uk

u FFFFFFFF
u 3 00FF00FF

u4 FF000000
u 5 FOFOFOF0

uI) CC99CC99
u 6 55AA5555

uI) 00665533

u 006655CC
u 7 0F695A3C

uI) 3C693C69

u 000F00F0
u 33663C69

u 1E2D4B78

u 00335566

u 1E2D4B87
u 11224477
u 88112244

uI0) 0F3C3C5A

uII) 0F3C3CA5
u 9 0FOF3C69

uI) 0F3C5A69

u 003C5569

u 33693369

u IEIEIEIE
u 1E1E1EE1
u 11111111

u 111111EE
U10) 0FOF5A5A

U11) 0FOF5AA5

Ull 00335A69

ull oo c3c5 

utl 11224B78
ut > oo0o5  c
u13 AAA50000

0 0e4  7

u 11111EIE
o 0e0 0e

ut 03770605

0 090cc 

u16 03091242
03  e050

utf 00 74  4

u27 88840000
u28 00008200

u29 80808040

u31 08100000

with A32-i Ai, and G is its.full automorphism group. The covering radius ofC7 is 6,
a typical deep hole being 0 0 0 0 7 (in hexadecimal). The dual code is Cl5 (u5,
a [32, 15, 8] code with generator matrix as shown in Fig. 3(b), and has thefollowing
weight distribution:

0 8 10 12 14 16

Ai 124 1152 3584 6016 11014

with A32-i Ai. All G-invariant subcodes OfCl7 and C5 are as shown in Figs. 4 and 5;
in particular C17 and CI5 intersect in the 32, 9, 8 code Ct9) The double circles in Figs.
4 and 5 show all the cyclic modules in these diagrams; C7 itself is not cyclic.

Remarks. (i) The dual lattice to Fig. 5 gives all the codes containing C7.
(ii) The best way to remember these codes is to notice that the generator u5 for

the dual C5 resembles two umbrellas, one of which has lost its fabric (see Fig. 2). This
vector is stabilized by a subgroup of G of order six.

(iii) In Table we give more than enough generators to enable any ofthe codes in
Figs. 4 and 5 or their duals to be reconstructed. (The Bensen and Conway 3 notion of
reduced lattice of submodules was helpful in preparing Table 1.) For completeness we
note that G itself is generated by the following permutations:

(1, 15, 17,8,9,22)(2, 16, 19,7, 10,24)(3, 14,20,6, 12,23)

(4, 13, 18,5, 11,21)(26,27,28)(30,31,32)
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u u4

u; u6 u14 u15

U28

FIG. 2. Subsets ofedges corresponding to selected generating vectors.

(a)

10101010101001010000000000000000
01101010111000010000011010100000
001100(0)0(0100010000011000000101
0001000100000110(0)00010100110000
000010100110010101000100(0)000110
00000110001000010010010000001100
00000011000100010110111110100000
00000000101010101010010100000000
0000000(O10101011010010100000000
00000000001111000101101001100110
000101110001010000100001
0011110110011000110011
000000000001111111100000000
000(0K)0000000(K101010101011010
00000000000000000011001101100110
0000000000IIl100001111
0000000(0)00000000000000011111111

(b)

11101000000110110010111001000100
01000100111010000001101100101110
00100010010000101101011100101110
00010001101100101110010010001011
00001001000011000110111100111111
00000110101010010011010111001111
00000011000010010011111101010011
00000(00100110011010101000110011
0000(0)00011001101010101011001100
00(0X00(llll001001011000110011
11110101010100001111
0000001111111100000000
IIC000000000101101000111100
0flO0600ll001101100110
00000000000000000000000011111111

IOG. 3. Generator matricesfor codes (a) C17 and (b) Cs.
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FIG. 4. Complete lattice of G-invariant subcodes ofCi7o The code C is abbreviated k in Figs. 4 and 5.
Cyclic modules (with one generator) are indicated by double circles.

and
(1,9, 17,25)(2, 10, 18,26)(3, 11, 19,27)(4, 12,20,28)

(5, 13,21,29)(6, 14,22,30)(7, 15,23,31)(8, 16,24,32).

(iv) The following list identifies, from the set of codes mentioned in Figs. 4 and 5
and their duals, all those that have minimal distance d => 6:

d 6: C6 C163) -(1) /-,,(2)
C’17 C18, I.-,18



CODES FROM SYMMETRY GROUPS AND A [32, 17, 8] CODE 33

,5

FIG. 5. Complete lattice ofG-invariant subcodes ofC,5.

d=8: C4,C,Ci)(i=0,...,3,6,9),C(i=0,...,6),Ct9(i=0,..’,11),
(i) ,..,(i)CI))(i=O, ,S),Cl’,)(i=O, ,6),c,2 (i=0, 1,2),t.-,3 (i=0, ,5),

--(I)
14 (i=0, ,3),C5,C,5 ,Cl)(i=0, ,5),C,7;

d 12:C6l) "-’2 -0
,c6 ,C7 (i=4,5,7,8,10,11);

d= 16: C3, C1)"

d- 32: C.
(v) A dense 32-dimensional lattice sphere packing may be obtained from C7 by

applying Construction D of 2 ]. This packing (see 17, p. 235 ]) has center density
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2 and each sphere touches 249,280 others, and is the second densest packing known in
this dimension. (Quebbemann’s 32-dimensional lattice 30 ], 31 ], 17, p. 220 has
i 2.566 and each sphere touches 261,120 others.)

The group G 24. $4, like $4, has just two conjugacy classes of elements of odd
order, and so, again like $4, has just two absolutely irreducible representations over
GF(2) (cf. [18, p. 58 ]). These are the trivial one-dimensional representation and the
two-dimensional representation by the following matrices of GL2(2):

0 0I(0 1/,(1
THEOREM 2. (a) Every composition series of V begins and ends:

{0} =Co=C="" C3C3 V,

where C { 0 32, 132} and C3 consists of all even-weight vectors. In particular, every
nontrivial G-invariant code is even, contains 132, and its weight distribution satisfies
Ai A32 -i.

(b) One composition seriesfor V is

{0} C0 C C3 C4 C6 C7 C9 C0
(3) /-,(2) (5)cC12cCI3cC14cC16cC17c.18 c-20 cC22

=t_,23 cC24=C26cC28c. C29c. C31cC32 V.

c The composition factors for V are 1122 0.
Before proving these theorems we describe what we think is the full list of invariant

subspaces.
CONJECTURE. (a) The complete list of G-invariant subcodes of V consists of 373

codes, whose dimensions k are as follows:

k 2 3 4 5 6 7 8
# 0 2 3 14 16

k 9 10 11 12 13 14 15 16
# 20 16 19 16 17 22 22 31

(The number of dimension 32 k is equal to the number of dimension k.)
(b) The code C7 is the unique G-invariant code of minimal distance d >- 8 and

dimension k

_
17. The largest G-invariant codes of minimal distances 4, 6, 12, 16 have

dimensions 25, 18, 8, 5, respectively (and are not especially good; cf. Verhoeff [33 ]).
(c) There are nine self-dual codes, all with minimal distance d 2 or 4 (e.g., the

vectors 0 0 0 0 0 0 1 1, 0 0 0 0 0 0 0 r generate self-dual codes with d 2, 4, respectively).
The nontrivial Reed-Muller, extended Hamming, and extended quadratic-residue codes
of length 32 are not G-invariant codes.

Remark. The 373 codes described in (a) (and in Figs. 4 and 5) are only claimed
to be distinct, not necessarily inequivalent. But usually distinct G-invariant codes are
inequivalent. More precisely, if C and C’ are equivalent codes (implying that there is a
permutation r e $32 with C C’) such that Aut (C) Aut (C’) G, then C C’. For
Aut (C’) r Aut (C)r- Aut (C) G, implying that ,r is in the normalizer of G in
$32. But G is equal to its normalizer, so r e G, and C C’.

Proofof Theorem 1. The assertions about the dimension, weight distribution, cov-
eting radius, and dual code are routine computer verifications.

By definition, Aut (C7)
_

G. To prove equality, we first examined (by computer)
the weight distributions ofthe nonlinear subcode formed by the 908 codewords ofweight
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8. There are exactly four weight 8 codewords with weight distribution A0 1, A8 180,
A7 544, A 16 183, namely the vectors r r 000000, 00 r r 0000, 0000 r r 00,
000000 r r (These are supported on the four classes ofeight parallel edges ofthe cube,
see Fig. 1.) Thus the division of the 32 coordinates into these four blocks of eight is
canonical. The group G induces all 4! permutations of the four blocks.

There are exactly 28 codewords meeting the blocks 4 + 4 + 0 + 0, and these have
the form u, u, 0, 0) and u, if, 0, 0), where u is a weight 4 word in an 8, 4, 4 Hamming
code It8. The automorphism group of /8 has structure 23.L2(7) [2, p. 399 ], and the
permutations induced by G on the first block yield exactly the 23 part of this group. G
also contains the permutation (9, 10)(11, 12) (31, 32), fixing the blocks and fixing
every point of the first block. Any permutation of C7 not in G can then be assumed to
fix the blocks, and to act as an element of L2(7) inside each block. We verified by
computer that all such permutations are already in G. Thus Aut (C7) G.

The assertion that Figs. 4 and 5 show all G-invariant subcodes of C7 and C5 was
proved as follows. We first established what we believe is a complete list ofall G-invariant
subcodes of V. There are 373 codes, as described above. (This list was constructed by a
variety of techniques: repeatedly taking joins, intersections, and duals; constructing a
generator matrix for each code and finding the cyclic module generated by each row;
finding the cyclic modules generated by all vectors of selected codes; and other ad hoc
methods.) The list was checked to be closed under the operations of taking joins, inter-
sections, and duals. We examined the cyclic codes generated by every vector of C7 and
C5, and verified that these are on the list. This proves the assertion.

Proofof Theorem 2. (a) From the remarks preceding the theorem we know that
the composition factors are all or 2. Suppose a composition series begins Co C.., where C2 is a two-dimensional code generated by vectors u, v and affording the
two-dimensional representation (1). Then every g e G sends u to u, v or u + v, and all
three occur. Since G is transitive, [u f3 1 + [u f3 v[ + [ff f’) v 32. Since u can be
mapped to v, u N 1 [ff f’) v I, and similarly u fq [ [u f’) v I, so the three sets are
equal in size and 31u v 32, which is impossible. The assertion C3 c C3_ follows
by duality.

1000
0100
0010
0001
aaO0
bbO0
ccO0
aOaO
bObO
cOcO
aOOa
bOOb
cOOc
Owww
xOxx
yyOy
zzzO

FIG. 6. Alternative generator matrixfor C7 (0 00000000, 11111111).
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(b), (c) The computer was used to verify that all the composition factors of 2 in
the given series are irreducible.

3. An alternative construction. The [32, 17, 8 code C17 described in Theorem
was in fact first found by the following construction. This provides an alternative de-
scription, and may be of independent interest.

Let a’ct8 and /[ be two versions ofthe [8, 4, 4] Hamming code that intersect only
in { 08, 18 }. (For example, take the point-code and line-code shown in 17, Fig. 11.27 .)
Choose independent vectors a, b, c e aW8 that span /8/{ 08, 18 }, and vectors w, x, y,
z / that span a//{ 08, 18} and satisfy w + x + y + z 0. (For example, a
10101001, b 10011100, c 10000111, w 11001100, x 10101010, y 11110000,
z 10010110.) Then Fig. 6 generates a code equivalent to C7. (It is not difficult to find
an isomorphism onto the earlier version. The first four rows of Fig. 6 are the four special
codewords mentioned in the proof of Theorem 1.)

Acknowledgments. We are grateful to John Conway and Walter Feit for some very
helpful suggestions.

Note added in proof. Gerhard J. A. Schneider ofthe University ofEssen has verified
that Conjecture (a) is correct, using the CAYLEY computer system. There are indeed
exactly 373 G-invariant subcodes. (Personal communication, June 10, 1988.)
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GRAPH BIPARTIZATION AND VIA MINIMIZATION*

HYEONG-AH CHOIr, KAZUO NAKAJIMA:I:, AND CHONG S. RIM

Abstract. The vertex- (respectively, edge-) deletion graph bipartization problem is the problem ofdeleting
a set of vertices (respectively, edges) from a graph so as to make the remaining graph bipartite. This paper first
shows that the vertex-deletion graph bipartization problem has a solution of size k or less ifand only ifthe edge-
deletion graph bipartization problem has a solution ofsize k or less, when the maximum vertex degree is limited
to three. This immediately implies that (l) the vertex-deletion graph bipartization problem is NP-complete for
cubic graphs, and (2) the minimum vertex-deletion graph bipartization problem is solvable in polynomial time
for planar graphs when the maximum vertex degree is limited to three. It is then proved that the vertex-deletion
graph bipartization problem is NP-complete for planar graphs when the maximum vertex degree exceeds three.
Using this result, it is finally shown that the via minimization problem, which arises in the design of integrated
circuits and printed circuit boards, is NP-complete even when the maximum "junction" degree is limited
to four.

Key words, computational complexity, maximum bipartite subgraphs, NP-completeness, via minimization

AMS(MOS) subject classifications. 68C25, 68E 10

1. Introduction. Let G (V, E) be a graph. We denote by da(v) the degree of
vertex v Vin G and let A(G) maxv v{ da(v) }. G is called a bipartite graph if Vcan
be partitioned into two nonempty subsets VI and V2 such that V (3 V2 b and no two
vertices in the same subset are adjacent. V and V2 are called a bipartition of G. It is
well known [4 that the graph G is bipartite if and only if there is no cycle of odd
length in G.

For a subset V’ c Vof G (V, E), the graph obtained by deleting from G all vertices
in V’ and all the edges incident upon them is called a vertex-deleted subgraph of G
and is denoted by Gv(V V’); that is, G(V V’)= (V- V’, E(V- V’)) where
E(V- V’) { (u, v) E[ u, v V- V’}. Similarly, for a subset E’ c E of G (V, E),
an edge-deleted subgraph of G, denoted by Ge(E- E’), is obtained by deleting all edges
in E’ from G; that is, Ge(E E’) (V, E E’).

Given a graph G (V, E) and an integer k >_- 0, the vertex- (respectively, edge-)
deletion graph bipartization problem, (VDB) (respectively, EDB), is the problem of
finding a set of k or fewer vertices V’ c V (respectively, edges E’ c E) in G such that the
subgraph G(V V’) (respectively, Ge(E- E’)) is bipartite, or equivalently, free ofodd
length cycles. The minimum vertex- (respectively, edge-) deletion graph bipartization
problem, (MVDB) (respectively, MEDB), is the problem of finding such a vertex (re-
spectively, edge) set of minimum cardinality.

Garey, Johnson, and Stockmeyer 7] and Yannakakis [17] proved that the EDB
problem is NP-complete even if G (V, E) is a cubic graph, i.e., d(v) 3 for every
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v e V. On the other hand, Hadlock 8 ], showed that the MEDB problem is solvable
in O( V 3) time if the graph is planar. As for the VDB problem, the combined results
ofGarey and Johnson 6 and Krishnamoorthy and Deo 11 imply that it is NP-complete
even if G is planar and A(G) 6. Given a graph G (V, E), the line graph, denoted
by Gt (Vt, Et), ofG is defined as follows: There is a one-to-one correspondence between
Vt and E. If two edges in E are incident upon the same vertex in G, then there is an edge
in Et which connects the two corresponding vertices in Vt. We can easily show by con-
strutting the line graph of a cubic graph that the VDB problem is NP-complete for a
general graph G with A(G) 4.

The first goal of this paper is to present complete complexity results for the VDB
problem. We arrive at this by first establishing a relationship between the VDB and EDB
problems for a graph G (V, E) with A(G) -< 3. Namely, we prove that the VDB
problem has a solution V’ c V with IV’[ --< k if and only if the EDB problem has a
solution E’ c E with E’I -< k. Since the EDB problem is NP-complete for cubic graphs
[7 ], [17], this immediately implies that the VDB problem is NP-complete for cubic
graphs. Furthermore, since the MEDB problem is solvable in O([V[ 3) time if G
(V, E) is planar 8 ], ], this relationship also implies that the MVDB problem is solvable
in O( V 13) time for the case when G is planar and A(G) =< 3. It should be noted further
that if A(G) -< 2, the graph G is always planar and hence the VDB problem is solvable
in polynomial time, and in fact, in O( V I) time. Finally, we prove that the VDB problem
becomes NP-complete for a planar graph G if A(G) 4. We give a polynomial trans-
formation from the Planar 3-Satisfiability problem [12 to this problem. The complete
complexity results for the VDB problem are summarized in Table 1.

The second goal ofthis paper is to show the NP-completeness ofthe via minimization
problem which arises in the design of integrated circuits and printed circuit boards. A
via is a contact cut or hole which is needed to electrically connect wire segments of the
same signal net when they are assigned to different layers. Given a set of wire segments
and two layers for routing, the problem is to assign the segments to one of the layers so
as to minimize the number of vias required.

In 1971, Hashimoto and Stevens 9] first considered this problem for the case of
grid-based layouts with the maximum "junction" degree being limited to two, where a
grid-based layout is a layout in which all wire segments are placed in parallel to one of
the two perpendicular axes, and "junction" degree is defined to be the number of wire
segments which meet at a single point and which are to be electrically connected. In
1980, Kajitani [10] showed that the problem is solvable in polynomial time for this
particular case. Later, Chen, Kajitani, and Chan [2] and Pinter [16] extended its poly-
nomial solvability for grid-based layouts to the case of the maximum junction degree
three. Quite recently, Molitor [13] and Naclerio, Masuda, and Nakajima [14] showed
that the via minimization problem is solvable in polynomial time even for general layouts
if the maximum junction degree is limited to three.

General
Planar

TABLE
Complexity resultsfor the VDB problem.

A(G)

o(IVl)
o(IVl)

=3 >_-4

NPC
NPC
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On the other hand, Naclerio, Masuda, and Nakajima 15 showed that the via
minimization decision problem is NP-complete ifthe maximum junction degree exceeds
five. Thus, the cases of the maximum junction degrees four and five have been left as
open problems. In this paper, using the NP-completeness result for the VDB problem
for planar graphs, we prove that the via minimization decision problem is NP-complete
even when the maximum junction degree is limited to four.

In 2, we first show that the MVDB problem for a general graph G (V, E) is
easily solvable in O( V I) time if A(G) _-< 2. We then prove that if A(G) 3, the VDB
problem has a solution of size k or less if and only if the EDB problem has a solution of
size k or less. As corollaries of this result, we show that (1) the VDB problem is NP-
complete even for cubic graphs, and (2) the MVDB problem is solvable in O([V[ 3)
time when G is planar and A(G) 3. Finally, using a transformation from the Planar
3-Satisfiability problem 12 ], we prove that the VDB problem becomes NP-complete for
a planar graph G if A(G) 4. In 3, we consider the via minimization problem for two
layers. We show how the VDB problem for planar graphs can be transformed to this
problem. This leads us to prove that the via minimization decision problem is NP-
complete even when the maximum junction degree is limited to four. Section 4 concludes
the paper with some further comments on the via minimization problem.

2. Graph bipartization. In this section, we investigate the computational complexity
of the VDB problem from the point of view of vertex degree constraints. We first show
that there is a close relationship between the VDB and EDB problems for a graph G
(1’, E) with A(G) -< 3. If A(G) _-< 2, each connected component of the graph G is either
a single vertex, a path, or a cycle. Therefore, the MVDB and MEDB problems can be
solved by first finding all cycles of odd length and then selecting an arbitrary vertex and
edge, respectively, from each such cycle. This can easily be done in O(IE[ time, which
is in fact O(ll/l) time, since G is planar in this case. We now consider the case of
A(G) 3 and establish a close relationship between the VDB and EDB problems.

THEOREM 1. For any graph G (V, E) with A(G) 3, there exists a subset E’ c
E such that E’I <- k and Ge(E- E’) is bipartite if and only if there exists a subset
V’ V such that V’l - k and G(V- V’) is bipartite.

Proof Suppose that there exists a subset E’ E with E’[ <- k such that
Ge(E E’) is bipartite. Let V’ { v eV[ for each edge (u, w) E’, v is either u or w }.
It is clear that V’I -< E’I --< k and G(V V’) is bipartite.

Conversely, suppose that there exists a subset V’ V with V’I--< k such that
G(V- V’) is bipartite. Let V" be a minimal subset of V’ such that G(V V") is still
bipartite. Let X and Y be a bipartition of G(V- V"). The minimality of V" implies
that in G, every vertex in V" is adjacent to at least one vertex in Xand at least one vertex
in Y. This is because if vertex v V" is not adjacent to any vertices in X or Y or both,
G((V- V") t3 { v } is bipartite, which contradicts the minimality of V". Note that
since A(G) 3, G(V") is a collection of isolated edges and vertices.

We now construct a set of edges E’ E such that Ge(E E’) is bipartite. If v V"
is an isolated vertex in G("), it is adjacent to exactly two vertices in X or Y, say X,
and exactly one vertex, say y in Y. Place v in Y, remove the edge (v, y) and put it into
E’. If (v, w) is an isolated edge in G(V"), each of the vertices v and w is adjacent to
exactly one vertex in X and exactly one vertex in Y. Let x, x2 be the vertices in X and
Yl, Y2 be the vertices in Y such that (v, xl ), (v, y ), (w, x2), (w, Y2) - E. Place v into X
and w into Y, remove the edges (v, Xl and (w, y2) and put them into E’. Obviously,
Ge(E- E’) is bipartite and E’I V"l --< V’l -< k. This completes the proof of the
theorem. [2]
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Garey et al. 7 and Yannakakis 17 showed that the EDB problem is NP-complete
even if a graph G (V, E) is a cubic graph, i.e., dG(V) 3 for every v e V. Thus, we
can derive the following result from Theorem 1.

COROLLARY 1. The VDB problem is NP-complete even for a cubic graph.
On the other hand, if the graph G (V, E) is planar, Hadlock 8 ], showed that

the MEDB problem can be solved in O( V 3) time. Therefore, we obtain the following
result from Theorem 1.

COROLLARY 2. For a planar graph G (V, E) with A(G) 3, the MVDB problem
is solvable in O(IVI 3) time.

Remark 1. The above discussion suggests a way to solve the MVDB problem for a
planar graph G with A(G) 3. That is, we first solve the MEDB problem using Hadlock’s
approach [8 ], and then convert its solution to a solution to the MVDB problem. We
present a more direct approach to the MVDB problem. This approach can also be used
to obtain an approximate solution for the case of 4(G) >= 4.

Let G (V, E) be a given planar graph. Without loss of generality, we can assume
that G is 2-connected, that is, for every pair of vertices u and v in V, there are at least
two vertex disjoint paths from u to v.

Let ( be a planar embedding of G. Since G is 2-connected, ( partitions the rest of
the plane into a number of connected regions. The closures of those regions are called
the faces of G. Let F be a set of such faces. F includes a special face called an exterior

face which represents the infinite region outside the embedding (. Note that each face
in F corresponds to a cycle in G, which is called afundamental cycle. We create a new
graph G" (V’, E’), where V" VkA F and E" { (v,f) Iv V is on thefundamental
cycle corresponding to f F}. Then we follow Hadlock 8 and find a pairing of odd
degree vertices or faces) in F such that the total sum oflengths ofshortest paths between
such pairs is a minimum.

We now consider the case in which G (V, E) is planar and A(G) 4. We prove
that the VDB problem becomes NP-complete in this case.

THEOREM 2. The VDB problem is NP-complete for a planar graph even if
A(G) 4.

Proof Since the VDB problem belongs to the class NP, it suffices to show that a
known NP-complete problem is transformable in polynomial time to this problem. We
start with the following problem which was shown to be NP-complete by Lichten-
stein 12 ].

Planar 3-Satisfiability (P3SAT)
Instance: A set U={vill-<i_n } of n Boolean variables and a set C=

{ GI1 =< j -< m } of m clauses over U such that each clause cj contains exactly three
variables or their complements. Furthermore, the following graph is planar:

Gc Vc, Ec) where

Vc={cjll <=j<=m}U{vill _i<=n} and

Ec { (cj, vi) Ivcorcj } tO { (v, 1)i+ )11 --< <n } LJ { (vn, vi) }.

Question: Is C satisfiable? Namely, is there a truth assignment for U such that each
clause in C is true?

Given U { vii =<
_
n } and C { cjl =< j =< m } together with a planar embedding

of Gc (Vc, Ec), we construct a planar graph G (V, E) in the following way. The
graph contains two kinds of components: clause components and variable components.
And each of them is placed in the region in which the corresponding vertex c Vc or
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vi Vc is drawn. For each clause cj e C we create a clause component of four vertices
w), wj2. w, w and one edge (wJ, w) as shown in Fig. l(a). As will be explained later,
each pair of vertices wjt. and w+ for 1, 2, 3, will be connected to a pair of vertices
of an appropriate variable component. For each variable vie U we construct a variable
component of 8ni vertices and 12n edges, where n is the number of times variable v
or its complement appears in C. As illustrated in Fig. (b), each variable component
is made up of 4ni triangles whose bottom edges form a cycle of length 4n i. The vertices
on this cycle correspond to v and i, alternately. Namely, b/ and b/k3 correspond to v
and b2 and b4 correspond to ; for k 1, 2, ..., n. Note that a group of four con-
secutive triangles, more precisely, eight vertices a/kz and b/kz for I 1, 2, 3, 4 correspond
to variable v. If )i Cj (respectively, v; e cj), then the two top vertices a and a2

(respectively, a/2 and a/k3) for some k e ( 1, 2, n } are connected to a pair of vertices
wj/. and w+ for some e { 1, 2, 3 } of the clause component corresponding to c. For
example, see Fig. 2. It is easy to see that V 4m + E "i=1 8ni 28m and El 7m +
] n__l 12n 43m. Therefore, this transformation is done in polynomial time. Further-
more, it is clear that G is planar and A(G) 4.

We now prove that there is a truth assignment for U such that each clause c e C is
true if and only if there is a subset V’ c V of G (V, E) such that V’l 6m and
G (V V’) is bipartite.

Suppose that there is a subset V’ c V such that IV’[ 6m and G"(V- V’) is
bipartite. Since each variable component contains 4n triangles, which are odd length
cycles, we must delete at least 2n; vertices to break these triangles. This can be done only
if every other vertex on the cycle of length 4n is so chosen. More precisely, we must
delete n/pairs of vertices either b and b/3 or b/2 and b/k4 for k 1, 2, n, for each

1, 2, n. Since ’-_ 2n 6m, no other vertices are deleted. Therefore, we can
make a consistent assignment of value true or false to each variable v in the following
manner: If vertex b} (respectively, b3) is deleted from the variable component corre-
sponding to v, assign false (respectively, true) to v, for l, 2, n.

Note that all four vertices in each clause component belong to a cycle of length 13
which connects those four vertices and three vertices, one from each of the three corre-

a. a,.

/ 814
U hnl4 -i -i b [ 2

a23

b4

’"’"., .................................... ’""..............................................
FIG. 1. Clause and variable components. (a) Clause component. (b) Variable component.
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FIG. 2. Example. C c,, c2, c3 c, ,, v2, 3 }, c , v3, v4 }, c3 ,, , 1)4 }.

sponding variable components. We call such a cycle a clause cycle. For example, a cycle
[w, a43, b a4:z, w22, a222, b2, a w23, a3, b3, a2, w42, w] is a clause cycle for clause
c2 in Fig. 2. Since, by assumption, each such cycle is broken, at least one vertex labeled
b in the three variable components must be deleted. Since the variable or its complement
corresponding to such a vertex is assigned true, the clause corresponding to this cycle of
length 13 is true. Therefore, there is a truth assignment for U such that each clause in C
is true.

On the other hand, suppose that there is a truth assignment for U such that each
clause cj in C is true. If vi is assigned true (respectively, false), then delete n pairs of
vertices b/k2 and b/k4 (respectively, bk and b/k3) for k 1, 2, n, for each 1,
2, , n. As mentioned before, the removal ofthese vertices breaks all 4n triangles and
leaves 2n paths oflength 2 in the variable component corresponding to v. It also breaks
all clause cycles. Furthermore, it is clear that all the other (possibly odd length) cycles
are eliminated because each variable component is chopped into 2ni paths of length 2.
Therefore, the remaining graph does not contain any odd length cycles and hence it is
bipartite. This completes the proof.

3. Via minimization. In this section, using Theorem 2, we prove that the via min-
imization decision problem for two layers is NP-complete even ifthe maximum junction
degree is limited to four. We start with some definitions.

A circuit is specified by a set of modules M, a set of terminals T, and a set of nets
N. The terminals in T are located on the boundary of the modules in M, and each net
specifies which terminals are to be electrically connected. Such connections are made by
patterning conductive paths on one of two layers. Such paths are made up of straight
line segments, called wire segments. We assume that the terminals are available on both
layers and each wire segment can be assigned to either layer. Note that the vertical
projection of each wire segment is fixed in the plane but its layer assignment is not
specified. A point other than a terminal at which two or more wire segments meet and
are electrically connected is called ajunction. A wire segment is said to be incident upon
a junction at which it meets. Wire segments which are incident upon the same junction
are said to be adjacent to each other, and the number of such segments is called the
junction degree. Ifwire segments incident upon the same junction are assigned to different
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layers, a via is placed at the junction to electrically connect them. Ifthe vertical projections
of two wire segments that are not electrically connected intersect, they are said to cross
each other. A layer assignment is said to be valid if no two wire segments that cross each
other are assigned to the same layer and no two adjacent wire segments are assigned to
different layers without a via.

The via minimization decision problem (VM) for two layers is defined as follows:

Via Minimization (VM).
Instance: A set M (m;ll

_
-< p} of modules, a set T {till =< =< q} of

terminals, a set W (will - =< r } of wire segments whose vertical projections are
fixed in the plane, and an integer k

_
0.

Question: Is there a valid layer assignment for W which requires k or fewer vias
using two layers?

In order to show a transformation from the VDB problem for planar graphs to the
VM problem, we will use the sublayout L shown in Fig. 3. L has a single module m,
two terminals and t’ on its boundary, and wire segments w and w’ which connect
terminals and t’ to junctionsj andj’, respectively. Note that the terminals t and t’ belong
to different nets and thus the wires w and w’ must be assigned to different layers.

Let G (V, E) be a planar graph. A straight line planar embedding ofG is a planar
embedding of G in which every edge in G is represented by a straight line segment. It is
known 3 ], 5 that such an embedding of G can be obtained in polynomial time, and
we will denote it by G. For simplicity, we call a straight line segment in G which represents
an edge (x, y) in G, a segment (x, y), and the endpoints of the line segment which
represent vertices x and y, points x and y, respectively.

We first create a small region surrounding each segment (x, y) in G so that no two
such regions overlap. We then replace each segment (x, y) by a sublayout L in such a
manner that L is completely within the region surrounding (x, y) and junctionsj and j’
coincide with points x and y, respectively.

We denote the resultant layout by L(G). Figure 4 shows an example graph G1 and
its corresponding layout L(G). Note that for each cycle in G, there is a cycle ofsublayouts
or modules in L(G). We call such a cycle of modules an m-cycle. If the number of
modules in an m-cycle is odd (respectively, even), it is called an odd (respectively, even)
m-cycle. Consider the m-cycle consisting ofmodules m, m2, and m3 shown in Fig. 4(b).
Suppose that wire segment Wl is assigned to layer 1. Then w’ must be assigned to layer
2. To avoid a via at junction j2, w2 should be assigned to layer 2. Consequently, w must
be assigned to layer and hence w should be assigned to layer 1. This implies that w3
must be assigned to layer 2. In order to electrically connect the wire segments w3 and
w, a via needs to be placed at junction j. It is not difficult to see that a via is always
required to have a valid layer assignment if there is an odd m-cycle in L(G).

FIG. 3. Sublayout L.
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FG. 4. An example graph GI and its corresponding layout L(GI). (a) GI. (b) L(GO.

On the other hand, suppose that there is no odd m-cycle in L(G). Then a valid
layer assignment for L(G) which requires no via will be obtained in the following manner.
Assign an aribitrary wire segment and all of its adjacent wire segments to layer 1. Find
wire segments that cross the wire segmentsjust assigned to layer 1. Assign those segments
to layer 2. Then find unassigned wire segments that cross the segments just assigned to
layer 2 and assign them to layer 1. Repeat this process until all segments are assigned to
one of the layers. Since there is no odd m-cycle, no conflict on layer assignment would
occur. Therefore, we have the following lemma.

LEMMA 1. There exists a valid layer assignmentfor layout L(G) which requires no
via ifand only ifit isfree ofodd m-cycles.

We are now ready to show the NP-completeness ofthe VM problem even when the
maximum junction degree is limited to four.

THEOREM 3. The VM problem is NP-complete even when the maximum junction
degree is limited tofour.

Proof It is easy to see that the VM problem belongs to the class NP. Thus, it suffices
to show that the VDB problem for a planar graph G with A(G) 4 is transformable in
polynomial time to the VM problem.

Let G (V, E) be a planar graph such that A(G) 4 and k be a nonnegative
integer. We construct a layout L(G) in the manner described above.

Suppose that there is a set of vertices V’ c V such that V’l --< k and G(V- V’)
is bipartite. Let J be a set ofjunctions in L(G) which correspond to the vertices in V’.
We first delete from L(G) all junctions in J and the wire segments incident upon them.
Let Ld(G) denote the resultant layout. Figure 5 (a) depicts such a layout which is obtained
by deleting junction j from L(G) of Fig. 4(b). Note that there are two types of"de-
generated" sublayouts in Ld(G). Sublayouts of Type (respectively, 0) are those that
consist of a module and one (respectively, no) wire segment. In Fig. 5(a), sublayouts
containing modules m, m3, m6, and m8 are of Type 1. Ifjunction j2 were also deleted,
the sublayout containing module rn would be ofType 0. We then delete those degenerated
sublayouts from Ld(G). Let L’(G) be the resultant layout. Since L’(G) does not contain
any odd m-cycle, by Lemma 1, there exists a valid layer assignment for L’(G) which
requires no via. Figure 5(b) illustrates such a layer assignment for L’(G). Then, based
on this layer assignment, we can obtain a valid layer assignment for Ld(G) as follows:
For each degenerated sublayout ofType l, assign its only wire segment to the same layer
as all ofits adjacent wire segments in L’(G). Such a layer assignment for L’(G) is shown
in Fig. 5(c).

We now find layer assignments for those wire segments which are incident upon
thejunctions in J. For each wire segment that is missing from some degenerated sublayout
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J5

FIG. 5. Illustrations for the proofof Theorem 3. (a) L(Gf). (b) A valid layer assignment for L(G’ ). (c)
A valid layer assignmentfor L(Ga). (d) A valid layer assignmentfor L( GI ).

of Type 1, if the remaining wire segment is assigned to layer 1, we assign the missing
segment to layer 2 and vice versa, We assign a pair ofwire segments in each degenerated
sublayout ofType 0 to different layers arbitrarily. Because vias are placed at thosejunctions
in J, necessary electrical connections will be made. Therefore, a valid layer assignment
exists for L(G) which requires k or fewer vias, since JI --< k. A final valid layer assignment
for L(G) is shown in Fig. 5 (d).

Conversely, suppose that there is a set of k or fewer vias for which a valid layer
assignment for L(G) exists. Let J be the set ofjunctions at which the vias are placed.
Let V’ be the set of vertices that corresponds to the junctions in J.

Consider the vertex-deleted subgraph G(V- V’) and its corresponding layout
L(G(V- V’)). It is not difficult to see that L(G(V- V’)) is obtained by deleting all
such sublayouts that contain at least one wire segment that is incident upon some junction
in J. Since the layer assignment for L(G(V- V’)) is valid and requires no via, by
Lemma there is no odd m-cycle in L(G(V- V’)). This implies that there is no odd
length cycle in Gv(v V’) and hance G(V V’) is bipartite. Therefore, there exists a
set of vertices V’ such that V’l J[ -< k and G(V- V’) is bipartite.

We have proved that there is a set of vertices V’ c V such that V’I --< k and
G(V- V’) is bipartite if and only if a valid layer assignment exists for L(G) which
requires k or fewer vias. Since the construction of L(G) only requires replacing each
segment in G with a sublayout L, it can easily be accomplished in polynomial time.
Furthermore, the number ofwire segments incident upon ajunction in L(G) is the same
as the number of segments incident upon the corresponding point in G. Since A(G)
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4, the maximum junction degree in L(G) is limited to four. This completes the proof of
the theorem. [3

Remark 2. Using the same arguments as in Naclerio, Masuda, and Nakajima 15 ],
we can establish the NP-completeness of the VM problem for two layers under any
combination of the following two constraints as long as the maximum junction degree
is limited to four or more:

(1) The layout is restricted to be grid-based.
(2) Vias are placed only at the junctions that existed in the input layout.

4. Conclusion. We have presented complexity results for the vertex-deletion .graph
bipartization (VDB) problem. These results completely close the gap between the poly-
nomially solvable cases and NP-complete cases for general and planar graphs as shown
in Table 1. We have also shown that the via minimization decision problem is NP-
complete for two layers when the maximum junction degree is limited to four. Quite
recently, Molitor [13 showed that the problem of assigning wire segments to three or
more layers without using vias is NP-complete when the maximum junction degree is
limited to four. Since the via minimization problem for two layers is solvable in polynomial
time when the maximum junction degree is limited to three [2], [! 3], [14 ], [16], our
result has completely settled the complexity issues on via minimization.

Acknowledgment. The authors would like to thank the referee for providing a simple
proof of Theorem 1.
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IMPOSSIBILITY OF DECOMPOSING THE COMPLETE GRAPH ON n
POINTS INTO n I ISOMORPHIC COMPLETE BIPARTITE GRAPHS*

D. DE CAEN AND D. G. HOFFMAN

Abstract. It is proved that K2rs cannot be edge-partitioned into copies of Kr if r and s are greater than
one. This answers a question raised in a recent paper of Granville, Moisiadis, and Rees. [Congr. Numer., 61
(1988), pp. 241-248 ].

A theorem of Graham and Pollak 3, p. 105 asserts that the complete graph Kn
can be edge-partitioned into no fewer than n complete bipartite graphs (bicliques).
It is easy to see that there are many ways to decompose Kn into n bicliques. Zaks
[9] discusses a connection between inequivalent minimal biclique partitions and in-
equivalent arrangements of neighborly cubes in Euclidean space. Recently, Granville,
Moisiadis, and Rees [4] considered the problem of decomposing into n isomorphic
bicliques, say copies of Kr, for given integers r and s. It is clear that n 2rs in this case.

By examining the edges incident to any point ofK, it follows that r and s must be
relatively prime. Hence we may take <- r < s with greatest common divisor (GCD)
equal to one. In [4], it is shown that K2s can be decomposed into copies ofKI,, but K4
cannot be decomposed into copies of K2.. We complete the solution of this problem by
proving the following result.

THEOREM. Let 2 <= r < s. Then K2rs cannot be edge-partitioned into copies ofKr,.
We begin by giving the main idea of the proof, before getting to details. Let n 2rs

and suppose that K is partitioned into n bicliques ni (Ri, Si), where Ril r
and Sil s for to n 1. Orient the edges of Bi from Ri to Si. This gives us an
associated tournament T on n vertices. The adjacency matrix M(T) of T satisfies

(1) M(T)=M(B)+... +M(B_)

where each M(Bi) is a "rectangle," i.e., its ’s form an r s submatrix. Thus M(Bi) has
rank one, and so by (1) M(T) has rank at most n 1; in particular M(T) is singular.
On the other hand, various counting arguments will tell us a lot about the structure of
M( T)" it is a subdirect sum oftwo nontrivial regular tournament matrices. It is a simple
matter to show that such a matrix is nonsingular, a contradiction that will complete the
proof of our theorem.

We recall some calculations made in 4 ]. In what follows r and s are given integers
with -< r < s and GCD (r, s) 1. We fix a decomposition of K2rs into copies of Kr,s,
say Bi (Ri, Si) for to 2rs 1. Given a point x, let dr(x) be the number of sets
R; incident to x and d(x) the number of sets Si incident to x. Clearly,

(2) for all x, sdr(x) + rds(x)= 2rs- 1.

Note that d(x) is not zero, otherwise we see by (2) that s divides (- 1), contradicting
s > 1. Similarly, dr(x) > 0 as long as r > 1.

Since r and s are relatively prime, there is a unique m e { 0, 1, 2, , r } such
that ms is congruent to (- 1) modulo r. Denote this m by a(r, s). It follows easily from
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(2) that for each x, dr(x) a(r, s) or a(r, s) + r. Symmetrically, ds(x) a(s, r)
(whenever dr(x) a(r, s) + r) or ds(x) a(s, r) + s (whenever dr(x) a(r, s)). Let
A be the set of points x such that dr(x) a(r, s) and B the remaining set of points.
We have

(3) al + nl 2rs,

(4) IAla(r,s)+ Inl(a(r,s)+r)=r(2rs-1),

(5) IAl(a(s,r)+s)+ Inla(s,r)=s(2rs-1).

From these equations, we find that

(6) al 2sa(r,s) + 1,

(7) B[ 2ra( s, r) + 1.

We remark that if r 1, then a(1, s)= 0 and a(s, 1)= s- 1, so [A[ and
IBI 2rs- 1. Ifr_ 2, then both a(r,s)and a(s, r)are nonzero, andso IAI and IBI
are odd integers greater than one.

We now define a tournament T as follows: orient the rs edges of each biclique
Bi (Ri, Si) from R; to Si. let p/(x) denote the out-degree ofx in T, i.e., the number
of arcs of the form x -- y. Let p-(x) denote the in-degree of x. It follows easily from
(6), (7), and the definition of T that

(i) Ifx e A, then p/(x) sa(r, s) and p-(x) ra(s, r) + rs;
(ii) Ifx e B, then p/(x) ra(r, s) + rs and p-(x) ra(s, r).
We claim that all arcs of T between A and B are directed from B to A. To see this,

note that

(8) p+(x)>=( ’A’)
because each pair in A is oriented one way, and so the outgoing arcs from the points in
A will cover all these pairs. Furthermore, this observation tells us that if there is equality
in (8), then all arcs leaving a point in A go to a point in A, so all arcs between A and B
go from B to A. Using(6) and (i) above, we see that equality does indeed hold in (8),
proving our claim.

Let TA be the subtournament of T induced on the point-set A. By the preceding
remarks, we find that for each x A, the in-degree of x within TA is p-(x) BI
ra(s, r) + rs 2ra(s, r) sa(r, s), which equals the out-degree ofx within TA.
Thus Ta is a regular tournament on 2sa(r, s) + points. Similarly, Tn is regular. In
summary, the adjacency matrix of T has the following form:

), 0
M(T) M(TB)

where J is the B X AI all-ones matrix. Also, if r > 1, then, as noted earlier, AI and
BI are odd integers greater then one. It is an easy matter to show that a regular tour-

nament on more than one point has a nonsingular adjacency matrix. (This was proved
by Brauer and Gentry [1 ]; another very short proof is given in [2 .) Thus M(TA) and
M(TB) are nonsingular, and hence so is M(T).

As noted in the introduction, we have the contradiction that M(T) is also singular,
since it is the sum of n rank-one matrices M(B). This completes the proof of our
theorem. We add that in the case r 1, the argument based on inequality (8) leads to
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a complete determination of all decompositions ofK2s into copies ofK,s. Indeed, by the
argument of 8 the associated tournament has a sink (the singleton" set A ); deleting the
sink leaves us with a regular tournament on 2s points. Conversely, given such a
tournament T, we can obtain a partition ofK2 into Kl,’s as follows: add an extra point
o for each point x of T take the (s 1) arcs leaving x and add the edge xo to make
a K,; this evidently gives the required decomposition. Thus there is a bijective corre-
spondence between regular tournaments on 2s points and edge-partitions ofK2s into
copies ofK.. Ofcourse, it remains to "determine" or enumerate all regular tournaments,
a very difficult problem.

See Huang and Rosa 5 for a general study ofedge-partitions ofthe complete graph
into isomorphic bicliques. In particular, Rosa 7 showed that Kn can always be decom-
posed into n copies ofKr, (where now, ofcourse, rs 1/2 (n 1)). Thus our nonexistence
theorem only applies to the extremal decompositions into (n 1) bicliques.

We conclude by mentioning that an arbitrary n n tournament matrix Mhas rank
at least n 1, over a field of characteristic zero. This is a slightly stronger statement than
the Graham-Pollak theorem. Indeed, suppose that Kn is decomposed into k bicliques
Bi (Xi, Yi). Form a tournament T by orienting each Bi from Xi to Yi. Then M(T)
M(B + + M(Bk) where each B; has rank one, so M(T) has rank at most k. Since
the tournament matrix M(T) has rank at least n 1, then k >= n 1, as desired. Proofs
that M has rank at least n can be patterned after the known proofs of the Graham-
Pollak theorem. For example, here is Gregory’s proof, inspired by Peck’s proof [6]. By
definition, the tournament matrix M satisfies M + M J- I, whereM is the transpose
of M, J is the n n all-ones matrix, and I the identity matrix. Note that M M is
skew-symmetric, so all its eigenvalues lie on the imaginary axis. Hence A I + M-M
is nonsingular. Also, J I + M + M has rank one. Hence A J -2M has rank at
least n 1. (In general, we have the easy inequality rank (X + Y) -< rank (X) +
rank (). Hence rank (A J)

_
rank (A) rank (J) n 1.) Thus M has rank at

least n 1, as desired. Another proof (in the spirit of Tverberg’s proof [8 ]) is given
in [2], which also discusses the ranks of tournament matrices over modular fields.
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LOW RANK MATRICES WITH A GIVEN SIGN PATI’ERN*

P. DELSARTE AND Y. KAMP

Abstract. Given an m n sign matrix S, an m n real matrix A is said to be a realization ofS if the sign
of the (i, j)-entry of A equals the (i, j)-entry of S. This paper deals with the problem of finding low rank
realization matrices A. It is motivated by a minimization problem in multilayer perceptrons. The subject is
approached by means of the Farkas lemma, which allows characterization of the sign matrices realizable with
a given rank. Based on this result and on some other standard techniques of matrix algebra such as the cyclic
Fourier transform, low rank realizations are obtained for sign matrices having certain nice combinatorial structures.
Furthermore, the paper includes an elementary lower bound on the rank and a counting of realizable sign
vectors.

Key words, sign matrices, low rank matrices, neural networks, multilayer perceptrons, Farkas lemma
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1. Introduction. This paper is devoted to the general question of constructing real
m n matrices of low rank under the constraint that each entry is nonzero and has a
given sign. The problem arises from an interesting topic in neural networks or, more
specifically, in multilayer perceptrons 4 ], 6 ]. In this application, the rank ofa realization
matrix can be interpreted as the number of elements in a hidden layer, which motivates
a search for low rank solutions.

A realization matrix A of rank k can be factorized in the form A XrYfor suitable
k m and k n matrices X and Y. The sign m-vectors realizable by means of a given
k m matrix X (which are the sign vectors of the columns of all possible matrices A
XrY) can be characterized in explicit terms with the help of Gordan’s transposition
theorem 8 ]. This result, which belongs to the classical duality principle of linear pro-
gramming, is one of the main tools used in the paper. It is given in 2, after some
preliminary definitions, further details concerning the motivation, and a simple lower
bound for the rank of a realization.

It proves quite interesting to consider the special case where all elements ofthe first
row ofXare positive or, equivalently, are equal to unity. In the neural network application,
this corresponds to the "bias assumption" 6 ]. In this case, the sign vectors realizable
by means ofX can be characterized, in simple geometric terms, in the framework of a
(k 1)-dimensional affine space. The result is given in 3, together with some illustrative
examples for small values of k. In particular, an explicit rank 3 realization is indicated
for the square matrix having plus signs on the main diagonal and minus signs elsewhere,
which is especially significant in the neural network application.

Section 4 contains a detailed investigation of certain structured sign matrices for
which low rank realizations can be obtained by simple algebraic methods. It is first shown
that a circulant sign matrix admits a circulant realization whose rank does not exceed
one plus the number of sign discontinuities. Next, the question of the "direct sum" of
sign matrices is examined. The general result obtained for this question implies, in par-
ticular, that any sign matrix having at most two plus signs in each row and each column
admits a realization of rank 4.

Finally, 5 is devoted to the problem of determining the number of distinct sign
vectors realizable by means of a given k m matrix X. This number is shown to be a
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constant, depending only on k and m, for the class of matrices X, all k k submatrices
ofwhich are nonsingular. A closed form expression is derived for that constant. It coincides
with the Cameron-Winder upper bound on the number of threshold functions ofk-
variables defined on m points 1], which corresponds to a different setting of the same
combinatorial problem.

2. Definitions, motivations, and preliminary results. For positive integers m and n,
consider an m n matrix S [si,j: -< -< m, -< j -< n] consisting of signs, i.e.,
elements si,j of the two-set (+, -). In the sequel, the signs + and are sometimes
interpreted as the real numbers and -1. An m n matrix A ai,/: <= <- m, <=
j

_
n of nonzero real numbers ai, is said to realize S if it satisfies

(2.1) sgn (A) S,

in the sense that the (i, j)-entry a,j. of A has sign &,s for all and j. This paper is
concerned with the problem of finding low rank matrices A that realize a given sign
matrix S.

Let us make a first elementary observation. Assume that, for each sign vector
s e { +, } m, either s or -s (or both) occurs as a column of S. (Of course, this implies
n

_
2 m-I .) Then any matrix A realizing S has full row rank (i.e., has rank m). To see

this, suppose there exists a nonzero real m-tuple (?,1, "’", ’m) satisfying Xlal,j + +
Xmam,j 0 for

_
j

_
n. This is impossible since, for a certain value ofj (depending

on the signs of the coefficients ,i), all nonzero numbers Xa,j have the same sign. Con-
versely, if, for some s, neither s nor -s occurs as a column of S, then there exists a
realization matrix A of rank less than m. Without loss of generality, consider the case
s +, , +) r. It is easily seen that some real values can be assigned to the elements
a,j, under the constraint (2.1), in such a way that the sum of the rows ofA vanishes,
which proves the claim. (Note that this property cannot be used recursively, in general,
because the required value assignments can become inconsistent.)

The former result leads immediately to a lower bound for the rank of a realization
matrix. Indeed, if S contains an r n submatrix S’ whose column .set intersects each
two-set ( s’, -s’), with s’ ( +, } r, then the rank of any realization A of S is bounded
from below by

(2.2) rank (A) >- r.

Ofcourse, there is a similar result for the transpose matrix. The lower bound on rank (A)
resulting from this argument is very small with respect to the sizes m and n; it is at most
logarithmic in min (m, n). In general, this bound is not achievable.

Assume A to have rank k, for a certain integer k with =< k =< min (m, n). Then
it can be factorized in the following form:

(2.3) A =XrY,
where X is a k m matrix and Y is a k n matrix, both of rank k. Denote by xl,

x2, "", Xm and by y, y2, "’", Yn the vectors in Rk, which are the successive columns
of the matrices X and Y. The constraint (2.1) can be written as

(2.4) Tsgn (xi yj) si, for all and j.

Let us now provide a motivation for that problem, leading to further specific
questions. Neural networks is a generic name for highly distributed architectures ofcom-
puting elements that can be used for a wide class of applications, among which classifi-
cation and associative memory are especially important 3 ], [4 ], 7 ]. Multilayer per-
ceptrons form a subclass of neural networks in which the nonlinear computing elements,



LOW RANK MATRICES WITH A GIVEN SIGN PATTERN 53

called units, are arranged in a feed-forward structure of successive layers 4 ], [6 ]. The
values of the units in the input layer (1 0) are externally dictated. For each of the
following layers (1 1, 2, , L), each unit computes a weighted sum ofthe unit values
in the preceding layer and passes this result through an approximation al of the sign
function. Formally, we can write

(2.5) Zl O’l(W/Zl- ), l 1,2, L,

where zt is the vector formed by the values of the ml units in layer I and Wt is a suitable
mt mr-1 real matrix. Here l denotes a well-defined nonlinear function; it is applied
componentwise to the vector Wtzt-1.

When the multilayer perceptron is used as a classifier, the nonlinear function a. at
the output layer is the sign function itself. For this operation mode, a real input vector
Zo propagates through the structure according to (2.5) and produces an output vector
z., which is the binary code assigned to z0. Now considering a collection of n input
vectors, let us denote by Z the mt n matrix whose columns are the unit values zt in
layer for each ofthe n input patterns Zo. In particular, the set ofequations for the output
layer reads

(2.6) Z sgn (WZ_).

The input matrix Z0 is determined by the set of vectors to be classified. Usually, the
output matrix ZL results from the particular classification problem at hand.

It is customary to introduce a bias that corresponds to adding a constant offset to
the weighted sum computed by each unit. This is reflected in (2.6) by increasing the
respective column and row sizes of WL and Zz_ 1, and by imposing that all elements in
a column of Wz (or in a row of Z._ 1) be equal to one.

In many practical applications, the number of intermediate layers (0 < 1 < L), also
called hidden layers in the neural network literature, can in principle be reduced to one
or two [4 ]. The number of units to be put in the hidden layers, however, is not rigidly
fixed by the specifications of the classification problem. It is therefore meaningful to
examine what the theoretical minimum number of units is, especially in the last hidden
layer (l L 1, immediately before the output). This corresponds to the algebraic
question mentioned above, with S Zz, X Wr, Y Z._ 1, m m, and k m_ 1.

Thus it is seen that part of the problem of the minimum number of hidden units can be
viewed as a problem of minimum rank realization for a prescribed sign matrix.

An important example is the case where the classes are in one-to-one correspondence
with the output units. For each input vector z0 belonging to class i, the corresponding
output vector zz should have a plus sign in position and a minus sign elsewhere. The
basic matrix Zz for such a situation has the form

(2.7) ZL

In fact, any matrix Zz occurring in that example can be obtained from (2.7) by per-
mutation and repetition of the columns. This concludes our incursion into neural
networks.

Going back to the initial algebraic setting (2.3), (2.4), we now examine the question
from a different point of view. Let there be given a k m matrix

(2.8) X-- [xi,x2, ,Xm] with xiRk.
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We assume rank (X) k. In addition, without real loss of generality, we assume that
the columns xi ofXare distinct. We are interested in characterizing the set ff’(X) ofsign
vectors s { +, } m that are realizable by means ofX. The formal definition is

(2.9) 6a(X) {sgn (Xry)’yeRk, xfyqO for <=i<=m}.
This is clearly relevant to the initial problem. Indeed, there exists a realization A XrY
of the sign matrix S (for the given X) if and only if all columns of S belong to the set
re(X). Note that the computation of a k n matrix Y associated with X resorts to
classical linear programming.

By using a modified version of the Farkas duality lemma, known as the Gordan
transposition theorem (see [8, p. 95 ]), we immediately obtain the following character-
ization.

THEOREM 1. The sign vector s (s, s2, Sm) T with S - { -’, }, is realizable
by means ofthe k m matrixX [Xl, x2, Xm] ifand only ifthe convex hull ofthe
points sx, s2x2, SmX, (in the Euclidean space Rk) does not contain the origin O.

Proof. The property s re(X) can be written as SiXfy > 0, for 1, 2, m,
for a suitable y e Rk. By Gordan’s theorem, there exists such a vector y if and only if
there exists no nonzero m-tuple (1, hm) of nonnegative real numbers )k satisfying
Z isixi 0. This result is exactly equivalent to the statement of the theorem. [2

Remarks. (i) When S admits a realization of rank k, then it clearly admits a re-
alization of rank k’ for all k’ with k

_
k’

_
min (m, n). Therefore, realizable with rank

k has the same meaning as realizable with rank not exceeding k.
(ii) The set 6a(X) remains exactly the same when the matrixXis replaced by RXD

where R is any k k nonsingular matrix and D is any m m diagonal matrix with
positive diagonal entries.

(iii) It is sometimes useful to consider the case where all k k submatrices ofX
are nonsingular. This will be referred to as the nondegenerate case.

3. Afline type realizations. Let us now put a restrictive condition on the matrix X;
it is not only interesting from a theoretical viewpoint but also relevant from the application
viewpoint. It is required that the sign m-vector So (+, +, "", +)r be realizable by
means ofX. In other words, all points xi have to belong to the same half-space x ry0 >
0 for a certain Y0 R. In view of Theorem 1, this means exactly that the convex hull
ofx, x2, , Xm does not contain the origin. Without loss ofgenerality we can assume,
in this case, that all points xi belong to the same affine hyperplane ofthe space Rk; see
Remark (ii) in 2.

As a consequence, the geometric dimension of the problem is reduced from k to
k 1. More specifically, we can assume that the first component of xi equals 1, for all
i. This corresponds precisely to the "bias assumption" mentioned in 2. Thus it is now
assumed that X can be written as

(1 1"" 1] with/Rk-’(3.1) X=
1 2 m

A realization A XrYofa given sign matrix will be referred to as an affine type realization
when X has the form (3.1). Note that the sign matrix S admits an affine type realization
of rank k if and only if the extended matrix [S, So is realizable with the same rank k.

Two k m matrices are said to be equivalent if they allow one to realize the same
sets ofsign vectors, within signed permutations ofthe components. Formally, X’ is equiv-
alent to X if 6e(X’) equals QS’(X) for a certain m m matrix Q having a unique
element + or in each row and column, and zero elsewhere. It is clear that any nonzero
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k m matrix X is equivalent to a matrix of the form (3.1). Note that this concept of
equivalence is analogous to "switching equivalence" in graph theory 9 ].

Our main objective is to characterize the sign vectors s (s, s2, "", Sm) T realizable
by means of the matrix (3.1), in terms of the m-subset of Rk- defined by

(3.2) { 1, 2, m }.
It will be convenient to specify a given sign vector s by its two complementary supports

(3.3) I+={i’l<=i<=m,s=+}, I-={i’l<=i<--m,s,=-}.
This induces a one-to-one correspondence between sign m-vectors s and subsets I/ of
( 1, 2, m }. From (3.3) let us construct the pair of complementary subsets / and- of given by

(3.4) + { i " ieI/ ), - { i : ieI- }.
Conversely, any subset / of yields a sign vector s e { +, } m, defined by si + for
/i + and si for/i - \+. In the sequel, s will be referred to as the
characteristic vector of / (with respect to a given set of cardinality m).

To any m-subset ofR- there corresponds a well-defined set of sign m-vectors,
namely the set 6’(X) given by (2.9), via (3.1) and (3.2). We are now in a position to
state the following useful version of Theorem 1.

THEOREM 2. Let + and - be two complementary subsets ofa given set
( 1, 2, m } consisting ofm distinct points lii Rk- Then the characteristic vector
s of+ with respect to belongs to the set ff’(X) corresponding to ifand only ifthe
convex hulls of / and of- are disjoint (in R- ).

Proof. Assume first that the sign vector s does not belong to 6e (X). By Theorem
there exists a linear relation of the form

(3.5) , kiXi kiXi,
i6I il-

with , _
0 for all 1, 2, ..., m }, and k > 0 for at least one index i. By equating

the first coordinates in both sides of (3.5), and by using (3.1), it is seen that the sums
of the k over the complementary supports I+ and I- have the same value. Then the
remaining part of (3.5) shows exactly that the convex hull of 2+ and the convex hull
of- have a point in common. Conversely, ifsuch is the case, it appears that the convex
hull of the m points six of R contains the origin. According to Theorem 1, this means
that s does not belong to the set 6f’ (X), which completes the proof. [3

Remark. In the nondegenerate case, none of the k-subsets of is included in an
affine hyperplane of Rk-

The rest of this section contains an application of Theorem 2 for the small values
ofthe dimension k (assumption 3.1 holds throughout). The case k is quite obvious;
the only realizable sign vectors are s (+, ..., +)r and s (-, -)r. For k 2,
consider an m-subset ofthe real line R. The /subsets ’ of satisfying the condition
ofTheorem 2 are those enjoying the property I/ < I- or I- < I/ (elementwise). Hence,
6a(X) consists of 2m vectors s, given by s r (+_)a(-T-)b, with a + b m; the realizable
vectors s are those for which the patterns of plus signs and of minus signs are linearly
contiguous.

Consider now the case k 3. For a given size m, there exist several nonequivalent
configurations { ,/i2, m } of m distinct points i in the Euclidean plane R2.
(The relevant concept of equivalence has been defined in the beginning of this section.)
The simplest equivalence class contains the convex configurations (among others),
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characterized by the fact that each point/j; is outside the convex hull of the remaining
rn points /i of . An illustration is provided by Fig. 1. The subsets I/ of I
(1, 2, ..., m } satisfying the condition of Theorem 2 are the m2 rn + 2 "circularly
contiguous" sets, of the form I/ { io, io + 1, ..., i0 + }, with 0 -< t =< m. (An
element i0 + p of I/ is interpreted as the integer e I such that io + p modulo m.)
As a result, the realizable vectors s are those for which the patterns of plus signs and
of minus signs are circularly contiguous; they are given by s r )a( _T_ )b( )c, with
a + b + c m. We shall not go into detail about the nonconvex configurations (however,
see the final example in this section).

As mentioned in 2, the m m sign matrix S whose entries are

(3.6) si, +, si,j for

deserves special attention. It follows from the preceding discussion that Sadmits an affine
type realization matrix A of rank k 3. Let us give an explicit solution for this special
problem in terms ofthe vectors x; and Yi that constitute 3 rn matricesXand Ysatisfying
sgn (XrY) S. With a normalization slightly different from that of (3.1), we have
the solution

( 7r 2i7r 2r)rxi cos --, cos, sin
m m

(3.7)

( 7r 2iTr 2iTr)
r

Yi= -cos,coS,m sinm
for 1, 2, ..., m. Thus the points xi and Yi are regularly distributed on two parallel
circles in R3. Elementary computation shows that the sign condition (2.4) is actually
fulfilled. It appears that the rank k 3 is the smallest possible in this case (when m >_-
4); this follows from the bound (2.2). Note that the matrix A XrY is circulant; a
generalization is provided by Theorem 3 in the next section.

Ofcourse, the problem becomes more complicated when the dimension k increases.
In the case k 4, m 8, let us briefly consider the example where consists of the

FIG. 1. Convex configuration.

(.1
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eight vertices of a cube in the Euclidean space R3. It can be verified that there are exactly
128 subsets / of satisfying the condition of Theorem 2. They consist of the empty
set, the eight vertices, the 12 edges, the 24 paths of length two, the three faces containing
a given vertex, the four trihedra containing a vertex, the 12 paths oflength three starting
from a vertex, and the complements of these 64 sets.

As an illustration of the concept of equivalence introduced above, let us finally
examine the problem of finding a complete set of nonequivalent k rn matrices X, in
the simple case k 3, m 6. It can be seen that there exist four equivalence classes of
the nondegenerate type (see the remark after Theorem 2). Besides the class containing
the convex configuration (hexagonal, in this example), there are three other classes,
which are depicted in Fig. 2. The points/Ji with

_
-_< 5 constitute a convex pentagon;

the sixth point, 6, is denoted by t, B, and , for the three distinct configurations. Let us
now indicate half of the subsets I+ of I { 1, 2, ..., 6 } that satisfy the condition of
Theorem 2; they are given by

I+ 5, {1}, {2}, {3}, {4}, {5}, {1,2}, {2,3},

{3,4},{4,5},{5,1},{1,2,3},{1,2,5},{1,4,5},
(3.8) and {1,2,6},{1,5,6} in case /j6 a,

or {3,6}, {1,2,6} in case/16 B,

or { 3, 6 }, { 4, 6 } in case 6 ’.

The second half consists of the complements of the subsets in (3.8) with respect to the
set I. Note that the number of realizable sign vectors is 32 in all cases (see Theorem 6
and Corollary 7 in 5).

4. Circulants and direct sums. It seems very difficult to find a general algebraic
method to construct a minimum rank realization A ofan arbitrary sign matrix S. In this
section it is explained how some low rank realizations can be explicitly obtained for sign
matrices S with interesting special structures.

First assume S is an n n circulant matrix. (The simplest nontrivial example is
provided by (3.6).) It is then natural to examine circulant realization matrices A. The

FIG. 2. Pentagonal configuration.
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problem can be discussed quite easily by means of the cyclic Fourier transform 2 ].
Define the integer as the number of discontinuities in S. This means that there
are exactly t minus signs among the products SOS1,’", sn-2sn-l, sn-lSo, where
(So, sl, sn-1) is the first row of S. (Thus, si,j sj-i where j- is reduced modulo
n.) Of course, must be even. The following result is interesting at least when tn is
small.

THEOREM 3. A circulant sign matrix S with t discontinuities admits an affine type
circulant realization matrix A ofrank not exceeding t + 1.

Proof. Let (a0, al, an-1) denote the first row of a real circulant n n matrix
A, and let (h0, kl, "", hn_ 1) be its Fourier transform, i.e., the spectrum of A. Recall
the classical identities

(4.1) hi a(oi), na= k(o-),

for 0 =< i, j =< n 1, where o is a fixed primitive nth root of unity. Here, a(z) and h(z)
denote the polynomials (of formal degree n 1) having ai and h as the coefficients of
z;. Note that hn-i equals ,i, since A is real.

Setting p t2, consider a real trigonometric polynomial h(z) of the form

p

(4.2) h(z) hiz i,
i=-p

with h_; h. After reduction modulo z 1, this can be interpreted, via (4.1), as the
Fourier transform of a well-defined real n-tuple (a0, al, "", an-1). By construction,
the rank of the corresponding circulant matrix A is less than or equal to 2p + 1.

Let us now examine the sign condition (2.1), expressed by sgn (h(o-j)) sj for
j 0, 1, n in view of (4.1). This requirement will be fulfilled by any real
trigonometric polynomial (4.2) having one zero on each of the t arcs of the unit circle
where a sign discontinuity occurs, and satisfying sgn (h(1)) So. Thus, h(z) can be
written as

(4.3) h(z) cz-p iI-l
z- i

with sgn (c) So, for an appropriate choice of complex numbers ’i of unit modulus.
Further details concerning the sign property (2.1) are omitted.

Finally, it can easily be verified that A is an affine type realization (provided the
zeros ’; are chosen properly). To see this, consider the spectral decomposition

(4.4) A UAUr,
where U is a well-defined n (1 + 2p) submatrix ofthe real version ofthe n n Fourier
transform matrix. (It satisfies UrU I.) By construction, the matrix 3_ in (4.4) is block-
diagonal; it has one diagonal element equal to the real eigenvalue , and p real diagonal
blocks of order 2 admitting the pairs of complex conjugate eigenvalues (hi, h-i) for
1, 2, p. In view of (2.3), the result (4.4) provides the solution X UT, Y 3_Ur.
The eigenvector of A corresponding to the "principal eigenvalue" X0 a(1) is the all-
one vector. Therefore, the first row of X is a multiple of (1, 1, .-., 1) provided the
coefficient h0 of h(z) does not vanish. This requirement can be fulfilled by a suitable
choice of the zeros g’i. fq

As a second theme, we now consider a kind of "direct sum construction." For an
integer q

_
2, let there be given any q-tuple of sign matrices $1, $2, , Sq, ofrespective
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sizes m nl, m2 X n2, mq nq. Construct the m n sign matrix

(4.5) S
L L...

with m m + + m and n n + + n,. This simply means that each entry of
S outside the diagonal blocks Si is a minus sign. By abuse of terminology, S will be
referred to as the direct sum of Sl, $2, "", S,. With the help of Theorem 2 we can
establish the following remarkable result.

THEOREM 4. If all sign matrices Sl, $2, S, admit affine type realizations of
rank not exceeding k, for a given integer k

_
2, then their direct sum S admits an affine

type realization ofrank not exceeding k + 1.
Proof. Let ft { y e Rk: y ry } denote the (k 1)-dimensional unit sphere in

the Euclidean space Rk. Choose q distinct points w 1, w2, , wq on ft. For 1, 2, ,
q, define Hi to be the tangent hyperplane to the sphere ft at the point w i. In the (k 1)-
dimensional affine space Hi, construct a configuration i of mi points,

(4.6) i ( i,1, i,2, i,mi cHi,

that allows us to realize each of the n columns of the sign matrix Si. According to
Theorem 2, this means that the convex hulls of two complementary subsets and
,7 of ; are disjoint (in Hi), for each whose characteristic vector is a column
of Si.

Next, let C; denote the convex hull of the union of the q sets j with j 4: i,
and define ; to be the pointed convex cone of vertex w based on Ci. More precisely, ti
consists ofthe points w + p(y w;), with y e Ci and p e R/. An illustration is provided
by Fig. 3. In the sequel it is assumed that all points/Ji.t of i are sufficiently close to the

FIG. 3. Direct sum construction.
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contact point wi, so as to ensure the property

(4.7)

To prove the theorem it suffices to show that the direct sum matrix S is realizable
by means of the m-subset of Rk defined as the union configuration

(4.8) t [,3 2 [,3"’’ J lq.

For given integers and l, with

_
_-< q and -< l _-< hi, let I/ and I- denote the

complementary supports ofthe/th column ofSi. According to Theorem 2, we have only
to verify that the convex hull of the subset / (i,t" I/ ) of is disjoint
from the convex hull of the complementary subset #- \ / (for all choices of
and l).

Suppose this is not true. Then there exists a linear relation
mj

(4.9) Z )ki,ti,t )ki,ti,t+ E )kj,tj,t,
t.l t.l- jq it

where the coefficients , are nonnegative and add up to unity on both sides. By subtracting
w we obtain

(4.10) X Xi,,(/i,t-wi)- Z Xi,t(i,t-wi) X X Xj,t(li,t-wi).
t.l t.l- jq it

The left-hand side belongs to the hyperplane Hi w while the right-hand side belongs
to the convex cone ti- wi (with vertex 0). In view of(4.7), the only possibility for the
common point in (4.10) is the origin. This forces X,t 0 for all j q: and _-< t _-< m.
As a consequence, we deduce the relation

(4.11) , i,ti,t
tl+ tl-

where the coefficients add up to unity on both sides. This contradicts the fact that the
convex hulls of + and of ’? are disjoint. Hence the theorem is proved.

Remark. In fact, the method described in the proof allows us to construct an m
n realization matrix A of rank

_
k + whose diagonal blocks coincide with any given

realization matrices A 1, A2, Aq, of rank _-< k, of the sign blocks Sl, $2, Sq.
Applying Theorem 4 to the elementary case mi ni for all i, with k 2, shows

(once again) that the sign matrix S in (3.6) admits an affine type realization of rank 3.
Let us now mention an interesting more general application of Theorem 4. Consider a
sign matrix S having at most two plus signs in each row and each column. Such a matrix
will be said to have degree 2. Within permutations of rows and columns, S can be
represented as a direct sum of matrices S, $2, -’-, S, where each Si is a contiguous
submatrix of a circulant having (/, -, ..., -) as its first row. (This representation
is obtained by constructing the set ofrow-column paths of plus signs in S.) As explained
in 3 (about "convex configurations"), and as shown by Theorem 3, the matrices Si of
that type admit affine type realizations of rank -< 3. Hence Theorem 4 contains the
following result as a special case.

COROLLARY 5. Any sign matrix of degree 2 admits an affine type realization of
rank not exceeding 4.

5. Counting realizable sign vectors. This section is devoted to an analysis ofthe set
5e(X) of the sign vectors s { +, -)m realizable by means of a given k m matrix
X [x, x2, xm], with xi Rk (see (2.9)). Two questions arise naturally in that
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context. First, what is the cardinality of 6e(X)? The answer will give the maximum
number of distinct sign patterns among the columns of an m n matrix of rank k.
Second, given positive integers k and m, in how many equivalence classes does the whole
set ofk m matrices Xpartition? The relevant concept ofequivalence has been introduced
and illustrated in 3.

We shall only examine the former problem, also treated implicitly in ]; of course
the latter problem is considerably more difficult. In the sequel we assume that the matrix
X is nondegenerate, in the sense that any p-tuple of columns ofX is a basis of the space
Rp when p

_
k. (For a technical reason it is sometimes useful to consider the "defective

case" where m is less than k.) As shown below, under this assumption the cardinality of
6(X) depends only on the parameters k and m, not on the entries of the matrix X.
(Degenerate matrices X yield smaller sets S/’ (X).)

From a given nondegenerate k rn matrixX [x, ..., Xm] we construct a spherical
polytope P, on the (k 1)-dimensional unit sphere fl { y e Rk" y ry }, by taking
the m hyperplanes xry 0, for 1, 2, ..., m, as boundaries. It possesses spherical
faces ofdimension 0, 1, .., k 1, defined in essentially the same way as in the classical
theory of convex polytopes [10]. A (k t)-dimensional face ofP is a subpolytope on a
sphere defined by the equations

(5.1) yy- 1, Txy xiry xi,_y=0,

for a given choice of t distinct integers i, i2, it- among 1, 2, -.., m.
The zero-dimensional faces are the vertices of P. Each vertex is an isolated point y

obtained as the solution ofa system ofequations (5.1), with t k. Note that P is antipodal,
in the sense that the vertices occur in opposite pairs (y, -y). (Of course, there exist
vertices only in the case m

_
k 1.) The (k 1)-dimensional faces are referred to as

thefacets ofP; they are the connected regions off separated by the boundary hyperplanes
xfy 0. It is easily seen that the facets are in one-to-one correspondence with the
elements s of the set 6(X). More precisely, the interior of a given facet is nothing but
a region of f yielding a fixed sign vector s sgn (Xry). An illustration is provided by
Fig. 4 in the very simple case k 2, rn 4. The plus and minus signs indicate the regions
of the plane where the inner products xfy are positive and negative (for 1, 2, 3, 4).
The correspondence between the facets, which are circular arcs, and the sign vectors is
obvious.

FIG. 4. Example with k 2, m 4.
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Our problem is now to count the facets of P. It proves useful to extend this to
the question of determining the number of faces of each possible dimension (between
max (0, k-m- 1) and k- 1). Indeed, as shown below, the extended problem can
be solved explicitly with the help of a simple recurrence relation. Let us denote by
f.(k, m) the number of j-dimensional faces of the spherical polytope P, for a given
k m nondegenerate matrix X. We shall see that this number depends only on j, k and
m; we shall obtain the explicit formula

(5.2) f_t(k,m)=2( m )t(m-t)t-1 =o

for 1, 2, ..., k, in terms of binomial coefficients.
Note that (5.2) is obvious in the case t k. Indeed, the number of vertices ofP is

given by

(5.3) fo(k,m) =2
k-

as it follows from definition (5.1) with t k. The other extreme case, 1, yields the
solution to our main problem; the number of facets ofP is given by

(5.4) _l(k,m)=2
i=o

Before proving the general result (5.2) let us explain why formula (5.4) seems rather
plausible a priori. A simple argument yields the identity

(5.5) j_ (k,m)= 2m when m= 1,2, ,k.

(This is the "defective case," for which the problem is elementary.) Furthermore, it is a
plausible conjecture that f.(k, m) can be expressed as a polynomial of degree k in
the variable m (as suggested by ( 5.3 ), in particular). Formula ( 5.4 follows immediately
from this conjecture, since its right-hand side is the unique polynomial of degree k-
satisfying the interpolation constraint (5.5).

To establish (5.2) we shall make use of two simple identities. The first one is the
Euler-Poincarformula

k

(5.6) , (-1)’f_t(k,m)=(-1)k- 1.
t=l

This is a well-known result in the theory ofconvex polytopes (see 10, p. 78 ]). It expresses
the fact that the Mtibius function of the face lattice assumes alternatively the values
and -1 (see [5 ]), which is true for spherical polytopes as well as for classical convex
polytopes. The second key identity is the recurrence relation

(5.7) (t- 1)fk_t(k,m)= mf_,(k- 1,m- 1),

for 2, 3, k. A proof will be given below.
We can deduce (5.2) from (5.6) and (5.7) in a very economical manner as follows.

All numbers (k, m) are computable by use of(5.6) and (5.7) from the initial condition
f0(1, m) 2. This method produces Jj(k, rn) as a polynomial of degree k in m. As
explained above, the defective case identity (5.5) forces the result (5.4), whence the
general formula (5.2) by iterative application of (5.7). Note that, in this argument, the
identity 5.6 is used only to ensure the desired degree property of3- (k, rn); substituting
the values (5.2) thus obtained, we can check that the Euler-Poincar6 formula (5.6) is
actually satisfied.
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We still must prove the recurrence relation (5.7). The argument uses an induction
over the dimension k; it is assumed that the number Jj(k 1, m 1) is independent of
the underlying (k 1) (rn 1) matrix X’, for j 0, 1, k 2. Let us compute,
in two different manners, the number N counting the pairs (F, H) where F is a (k t)-
dimensional face of P, for a fixed with 2 -< -< k, and H is a boundary hyperplane of
P that contains F. A given face F spans a (k + t)-dimensional subspace of Rk,
defined as the intersection of hyperplanes xfy 0; this yields the expression N
(t 1)j_/(k, m). Next, for a given hyperplane H (defined by xfy 0 for a certain i),
we can interpret the intersection P’ P f’) H as a spherical polytope, on the (k 2)-
dimensional unit sphere ’ f fq H, corresponding to a well-defined nondegenerate
(k 1) (rn l) matrix X’. As a consequence, by use of the induction assumption,
we obtain the formula N mj_t(k- 1, m 1). By equating both expressions ofNwe
get the desired result (5.7). When combined with (5.6), this shows that Jj(k, m) is
actually independent of the matrix X, for j 0, l, ..., k- 1.

Let us now state the main conclusion of our analysis; an equivalent result, with a
different proof, can be found in a recent paper by Abu-Mostafa and St. Jacques [1].

THEOREM 6. For a nondegenerate k rn matrix X, the cardinality ofthe set 6e X
ofsign vectors realizable by means ofX is given by

(5.8) (x) =J-l(k,m) 2
i=0

The examples given in 3 agree with this result. Note the consistency of (5.8) with
the lower bound (2.2) on the realizable rank. Indeed, if if’ (X) is the whole set { +, } m,
i.e., if ff’(X) equals 2 m, then (5.8) implies k

_
m. Let us finally emphasize the inter-

pretation of Theorem 6 in the context of 3 (see Theorem 2).
COROLLARY 7. Let by any m-subset of the Euclidean space Rk- having the

property that no k-subset of is included in an affine hyperplane. Define g to be the
number ofsubsets / of for which the convex hull of / is disjointfrom the convex
hull ofthe complementary subset - \ /. This number g depends only on k and
m (not on itself); it is given by g fk- (k, m).
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A NOTE ON THE VERTEX ARBORICITY OF A GRAPH*
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Abstract. The vertex arboricity a(G) of a graph G is the minimum number of subsets into which the
vertices ofG can be partitioned so that each subset induces an acyclic graph. A characterization ofplanar graphs
G is given for which a(G) 2, thereby answering a question of Griinbaum [Israel J. Math., 14 (1973), pp.
390-408 ]. The characterization is in terms of the dual graph G*. As a corollary, a theorem of Stein that
characterizes maximal planar graphs G with a(G) 2 is obtained. This latter result implies that determining
whether a(G)

_
2 is NP-complete for maximal planar graphs G.

Key words, vertex arboricity, NP-completeness, Hamiltonian graph, dual graph, edge arboricity
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1. Introduction. Our terminology and notation will be standard except as indicated.
Good references for any undefined terms are [1] and [2].

The vertex arboricity of an undirected graph G, denoted a(G), is the minimum
number of subsets into which V(G) can be partitioned so that each subset induces an
acyclic graph. Our purpose here is to give a characterization ofplanar graphs G for which
a(G) 2, thereby answering a question ofGriinbaum 6, p. 404 ]. The characterization
is in terms of the dual graph G*. Stein [1 l] previously characterized maximal planar
graphs G satisfying a(G) 2. Stein’s characterization follows easily from ours, and our
approach, which is completely different from Stein’s, appears to be more elementary.

These characterizations have a number of interesting applications. It was known
previously 4, p. 193 that determining the vertex arboricity of a graph is NP-hard. We
will show that determining whether a(G) -< 2 is NP-complete for maximal planar graphs
G. These characterizations also imply a classic theorem of Tait 12 ], and provide an
interesting reformulation ofa well-known conjecture ofBarnette 2, p. 248 ]. In addition,
we give an upper bound for a(G) analogous to the upper bound of Welsh and Powell
[14 for the chromatic number of G. We conclude by briefly discussing the related pa-
rameter of edge arboricity.

2. Main results. It is easy to show by induction that a(G) _-< 3 for any planar graph
G. We begin by characterizing planar graphs G with a(G) 2 in terms of their dual
graph G*.

THEOREM 1. Let G be a planar graph. Then a G) 2 ifand only ifG* contains
a connected Eulerian spanning subgraph.

Proof. Suppose that a(G) 2. Let { VI, V2 } be an acyclic partition of V(G) (i.e.,
the graph induced by V,. is acyclic, for l, 2). Let E(VI, V2) denote the edges in G
joining a vertex in Vl to one in V2, and consider the corresponding set of edges E’ in
G*. Let H denote the subgraph of G* induced by E’; we will show that H is a connected
Eulerian (i.e., every vertex has even degree) spanning subgraph of G*.

Since E(VI, V2) is an edge cut in G, the graph H is Eulerian. Since every cycle of
G contains an edge of E(V, V2), every facial cycle of G contains one or more edges of
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E(V, V2), and hence H is spanning in G*. If H were disconnected, then G* contains
an edge cut E’ containing none of the edges of E’. But then the corresponding set of
edges El in G would induce a Eulerian subgraph G in G containing none of the edges
in E(V, V2). Thus G contains a cycle including none of the edges in E(V, V2), con-
tradicting the assumption that { V, V2 } is an acyclic partition in G.

Conversely, suppose G* contains a connected Eulerian spanning subgraph H’. Let
H denote the subgraph induced by the corresponding set of edges in G. Since H’ is
Eulerian, the edges of H form an edge cut E(V, V2) in G. Since every edge cut in G*
contains at least one edge of H’, every cycle in G contains one or more edges of
E(V, V2). Thus the graph induced by V,. is acyclic for 1, 2, and so a(G) 2.

We now easily obtain the following result of Stein 11, Thm. 2.2 ].
THEOREM 2. Let G be a maximal planar graph on four or more vertices. Then

a(G) 2 ifand only ifG * is Hamiltonian.
Proof. Since G is maximal planar, the dual graph G* is cubic. Simply note that a

connected Eulerian spanning subgraph in a cubic graph is a Hamiltonian cycle.
Now consider the following problem.

VERTEX PARTITION INTO TWO FORESTS

Input: An undirected graph G (V, E)
Question: Does V have a partition { V, V2 } such that the graph induced by V is

acyclic for 1, 2?

The authors showed previously 7 that VERTEX PARTITION INTO TWO FOR-
ESTS is NP-complete for general graphs G (reduction from NOT-ALL-EQUAL 3-SAT
[4, p. 259 ]). Using Theorem 2, we obtain the following stronger result.

THEOREM 3. VERTEX PARTITION INTO TWO FORESTS is NP-completefor
maximal planar graphs.

Proof. Reduction from HAMILTONIAN CIRCUIT for planar cubic 3-connected
graphs 5 ]. Simply note that the dual ofany such graph is a 3-connected maximal planar
graph, and use Theorem 2.

By standard arguments [4, pp. 141-142 ], Theorem 3 implies that there does not
exist a polynomial time approximation algorithm for vertex arboricity that always par-
titions V into fewer than a(G) subsets, each inducing an acyclic graph, unless P NP.

Theorem 2 also yields the following classic result 12].
TAIT’S THEOREM. Let G be a maximal planar graph. IfG* is Hamiltonian, then

G is 4-colorable.
Proof. If a(G) 2, then G is 4-colorable.
The dual of a maximal planar graph on four or more vertices is a planar cubic 3-

connected graph. Tait conjectured that every planar cubic 3-connected graph is Hamil-
tonian. If Tait’s conjecture were true, the above theorem would have settled the famous
Four Color Conjecture. But Tutte [13 showed that not every planar cubic 3-connected
graph is Hamiltonian. However, the following weaker conjecture of Barnette 2, p. 248
remains open.

BARNETTE’S CONJECTURE. Every bipartite planar cubic 3-connected graph is
Hamiltonian

Using Theorem 2, we can reformulate Bamette’s conjecture in dual form as follows.
BARNETTE’S CONJECTURE (Dual Form). lfG is an Eulerian maximalplanar graph

(equivalently 2, p. 159 ], ifG is a 3-colorable, maximal planar graph), then a( G) 2.
The authors are not aware of any 3-colorable planar graph G with a(G) > 2. The

nonexistence ofsuch a graph would, ofcourse, be a generalization ofBarnette’s Conjecture.
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We next establish an upper bound on a(G) in terms ofthe vertex degrees ofG. The
result is analogous to an upper bound for the chromatic number of G due to Welsh and
Powell 14 ].

THEOREM 4. Let G (V, E) be a graph with vertices { vl, vg_, vn}. Let di
denote the degree ofvi in G, and assume that dl >= d2 >= >= dn. Then

a(G) =< max min
2l_i_n

Proof. The result is trivial for small n, and we proceed by induction. Let Vl be any
maximal set of vertices containing vl and v2 and such that the graph induced by Vl is
acyclic. The maximality of VI implies that any vertex u e V- V must be adjacent to at
least two vertices in V.

Let G’ G- V contain the vertices { w, w2, "", wn,}, where n’ =< n- 2. Let
Di denote the degree of w; in G’, and suppose that Dl >- D2 >= >= D,. By the induc-
tion hypothesis,

(,) a(G’) max man{[/] (D/+I]}_i_, 2

Suppose a maximum for the right side of (.) occurs at io. Then di0 / 2 -> Di0 + 2, and
so we have

a(G)_ a(G’) + -<min Dio+ io+2 (Di+ 2) +
2’ + min 2 2

_<min {[ i0 + 2] [ di0+ 2 +11}2=< __,max min {[i] [ di+]},2

as desired.
In conclusion, let us briefly mention the edge arboricity of a graph G, denoted

ae(G), which is the minimum number of subsets into which the edges of G can be
partitioned so that each subset is an acyclic graph. We mention first that there is an
elegant formula for ae(G)due to Nash-Williams [10]; no analogous formula for a(G)
is known.

THEOREM. For any graph G, ae(G) max L E(H) /( V(H) 1)J, where the
maximum is taken over all nontrivial induced subgraphs H ofG.

We also mention that ae(G) (in contrast to a(G)) can be determined in polynomial
time using the matroid partitioning algorithm of Edmonds [3 ]. (See also [8 and [9,
p. 320].)
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SDR, WITH AN APPLICATION TO THE WORST-CASE RATIO

OF HEURISTICS FOR PACKING PROBLEMS*
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Abstract. Let E, , Em be subsets of a set V of size n, such that each element of V is in at most k of
the Ei and such that each collection of sets from E, , Em has a system of distinct representatives (SDR).
It is shown that m/n

_
(k(k 1) k)/(2(k 1) k) if 2r 1, and m/n

_
(k(k 1)" 2)/

(2(k 1)’ 2 if 2r. Moreover it is shown that these upper bounds are the best possible. From these results
the "worst-case ratio" of certain heuristics for the problem of finding a maximum collection ofpairwise disjoint
sets among a given collection of sets of size k is derived.

Key words, packing, system of distinct representatives, worst-case ratio, heuristics
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1. Introduction. We prove the following theorem, where m, n, k, and are positive
integers, with k

_
3.

THEOREM 1. Let El, ,Em be subsets ofthe set V ofsize n, such that we have
thefollowing:

(1) (i) Each element of V is contained in at most k ofthe sets El, Em;
(ii) Any collection of at most sets among El, "’, Em has a system of distinct

representatives.

Then, we have thefollowing:

(2) (i) tn_ k(k- 1).-k
n 2(k- 1)r-k ift 2r- l;

(ii) __m
_
k(k-1)r-2

ift 2r.
n 2(k- 1)r-2

Note that by the K6nig-Hall Theorem, condition (1)(ii) can be replaced by
the following"

(3) For any s

_
t, any s of the sets among El, Em cover at least s elements of V.

We give a proof of Theorem in 2. We also show that the bounds given in (2)
are best possible in the following sense.

THEOREM 2. For anyxed k, (with k

_
3), there ex&t m, n and El, ,Em

V (with IV n) satisfyin (1) and havin equality in the appropriate line of (2).
The proof of Theorem 2 is based on a construction using regular graphs of large

girth (see 3).
Finally, in 4 we apply these results to derive the worst-case ratio ofcertain heuristic

algorithms for the problem of finding a largest family of pairwise disjoint sets among a
given family of sets of size k (this problem is NP-complete for any k 3).
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2. Proof of Theorem 1. To show Theorem 1, we first give a lemma. Let El,
Em be a collection of finite nonempty sets, which we order so that [Eli, Eh >- 2
and Eh+ 11 ]Em] 1, for some h =< m. We define a new collection as
follows. Let

(4) W:= Eh + U... UEm.
Let for each 1, ..., h, X be a set of size [E[ 2, disjoint from E U U Em and
so that if q= j then X f’l X . Let X U U Xh =: { y, .-., y, }. Then the derived
collection of sets is formed by the following sets:

(5) (E,\W)UX,, ,(Eh\W)UXh, {y,), "", {ya).

Furthermore, we define a collection El, , Em to have the t-SDR-property if any
sets among E, ..., Em have a system of distinct representatives.

LEMMA. For

_
3, ifE ..., Em has the t-SDR-property, then the derived collection

5 has the (t 2)-SDR-property.
Proof. Suppose (5) does not have the (t 2)-SDR-property. Then there exists a

collection II ofp sets among (5) coveting at most p elements, for some p _-< t 2.
Assume we have chosen p minimal. This immediately implies the following"

(6) (i) [UII[ =p- 1;
(ii) Each element in U II is covered by at least two sets in II.

From (6)(ii) we directly have for any 1, h and x Xi:

(7) { x} II E\W)UXi II.

Without loss of generality, all sets (El \W) tO X, ..., (Eh\W) U Xh belong to II
(as we can delete all sets E. from E, Eh for which (E\W) UX H), and without
loss of generality, (El U U Eh M W Eh + U U Era.

Note the following"

h

(8) q= IXU...UXh[= Z([E]-2), p=h+q,
i=1

h

U (E\W) IUnl-q=(p- 1)-q=h- 1.
i=l

So,

(9)
h

Moreover, by (6)(ii), /h= IE\WI 2. IU/h-_ (Ei\W) I, and hence

(10)

m=h+
h

i--I

h

=<h+Z IEgl-2.
i=1

h h h

h+ Z IEnWl=h+ Z lEvi-2 IE\Wl
i=1 i=1 i=1

h

i=1

h

=h+2h+ Z(I ei I-2)-2(h- 1)
i=1

=h+2h+q-2(h- 1)=h+q+2=p+2_t.

Inequalities (9) and (10) contradict the fact that El, "", E, has the t-SDR-prop-
erty.
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Proofof Theorem 1. We prove Theorem by induction on t.
Case 1. 1. Then we have that each of El, "’, Em is nonempty, and hence

m=< xim--l IE;I <= kn, by(1)(i).
Case 2. 2. Then we have that each of El, "’, Em is nonempty, and that no

two of the singletons among El, "", Em are the same. Without loss of generality, let
Eh /l, Em be the singletons among El, E,. Then m h <= n, and

h

(11) m+h=2h+(m-h)<= , [Eel + , lEvi-- IEil <=kn
i=1 i=h+l i=1

(by (1)(i)). Hence 2m (m h) + (m + h) -< (k + 1)n, and (2) follows.
Case 3.

_
3. Then consider the derived collection E’l, -", E,, on V"=

m’t3i_-1 E; as in (5). Note that m h + q and n’ V’l n wI / q. Denote the
fight-hand side term in (2) by 9(k, t).

As by the lemma above, E’, ..., E,, has the (t 2)-SDR-property, and as trivially
each element of V’ is in at most k of the sets E’I, "", E,, we have by induction that
m’ -< 9(k, t- 2)n’. That is,

(12) h+q<=(k,t-2)(n Wl +q).

Writing the terms in different order, we have

(13) (k,t- 2) W + h-(p(k,t- 2)- 1)q<=(k,t- 2)n.

Moreover, as El, "", Em cover any element at most k times:
h h

(14) IWl +2h+q IWl +2h+ (IE;I-2)= IWl / IE;I Z IEil <=in.
i=1 i=1 i=1

Hence,

(15)

m=h+lWI

2(k, t- 2)-
((k,t- 2 W + h-(p(k,t- 2)- 1)q)

p(k, t- 2)-
/ (IWl +2h+q)
2(k, t- 2)-

(k, t- 2)-
2(k, t- 2)-

< p(k,t-2)n+
2(k,t- 2)-

kn

(k+ 1)p(k,t-2)-k
n=p(k,t)n.

2tp(k, t- 2)-

The last equality follows directly by substituting the corresponding right-hand side
of(2).

3. Proof of Theorem 2. To prove Theorem 2 we use a result of Erdfs and
Sachs ]"

(16) For every k and , there exists a k-regular graph of girth

As a consequence of (16) we have the following"

(17) For every k, s, and , there exists a bipartite graph ofgirth at least 7, with color
classes U and W, say, such that each vertex in U has degree k, and each vertex
in W has degree s.
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(To see that (17 follows from (16), let H be a 2ks-regular graph of girth 3’. Consider
any Eulerian orientation ofthe edges ofH (i.e., one for which all indegrees and outdegrees
equal ks). Split each vertex v into k + s vertices vl, ", Vk, Wl, , Ws and divide the
arcs entering v equally over vl, , Vk and divide the arcs leaving v equally over wl, ,
ws. Forgetting the orientations, we obtain a bipartite graph with the required properties.)

Now choose k, t. Let r := /1/2tJ. Consider the tree T, with vertices 1, 2, ..., +
(k 1) + (k 1)2 + + (k- 1)r-1, SO that for < j, vertices and j are connected
by an edge, if and only if (k 1) -< j -< (k 1) + (k 2). So each vertex has degree
k, except for vertex 1, which has degree k 1, and for the vertices + (k 1) + +
(k- 1)r-2+ 1,..., +(k- 1)+... +(k- 1)r-l, which have degree one.

First let be even. Let G be a (k 1)-regular graph of girth t + (cf. (16)). Let G
have p vertices: vl, Vp. Consider p copies TI, "", Tp of T (denoting the copy of
vertex in Tj by j). For each j 1, ..., p, partition the set of (k- 1)r edges of G
incident to v (arbitrarily) into (k 1)- classes of size k 1, and connect them to the
(k 1)-1 vertices i in T of degree one. So the final graph H (W, F) has all degrees
equal to k, except for the vertices 11,-", lp, which have degree k 1. Let El,
Em be the collection F tA { { 11 }, { }1p }. This collection clearly satisfies (1)(i), and
direct counting shows equality in (2)(ii). To see that the collection satisfies (1)(ii), let
El, "", E form a subcollection with EI t.J LI EI < s and s as small as possible.
Suppose s

_
t. As El, ,E must form a connected hypergraph, it contains at most one

singleton (since any path between and in Hcontains at least edges). So assume
E2, "", E are edges of H. Then they do not contain any circuit (as each Ti is a tree
and as G has girth + > s). So E2 LI tA Esl - s, a contradiction.

Next let be odd. Let G be a bipartite graph, of girth at least + 1, so that in one
color class U each vertex has degree (k 1)r and in the other color class Weach vertex
has degree k. Let U =: { ul, Up}. Consider again p copies TI, Tp of T, as
above. Forj 1, p partition the set of(k 1) edges ofG incident to uj (arbitrarily)
into (k 1)r- classes of size k 1, and connect them to the (k 1)r- vertices i in T.
of degree one. Again, the final graph H (W, F) has all degrees equal to k, except
for the vertices 11, "’, p that have degree k- 1. Let El, "", Em be the collection
F t.J { { 11 }, { p } }. Similarly, as above, we show that this collection satisfies (1) and
has equality in (2)(i).

4. Application to the worst-case ratio of heuristics. The problem offinding a largest
collection of pairwise disjoint sets among a given collection XI, Xq of k-sets is NP-
complete, for any k

_
3. Call any collection of pairwise disjoint sets a packing.

For any fixed s, we can apply the following heuristic algorithm H. Start with the
empty packing. If we have found a packing YI, Yn from XI, Xq, we could
select p

_
s sets among YI, "’", Yn, and replace them by p + sets from X, .--, X,

so that the arising collection is a packing with n + sets. Repeating this, the algorithm
terminates with a collection Y, ..., Y so that

(18) For each p =< s, the union of any p + pairwise disjoint sets among X,
X intersects at least p + sets among Y, ..., Y.

This defines heuristic H, which is, for any fixed s, a polynomial-time algorithm--
however it clearly need not lead to a largest packing. We might ask how far the packing
found with H is from the largest packing.

To this end, consider a largest packing Z l, "", Zm from XI, "’", Xq. We claim
that m/n satisfies the bounds given in (2), taking := s + 1, and that these bounds are
best possible. That is, the "worst-case ratio" of the heuristic is given in (2).
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Indeed, let

(19) V:= {YI, ,Y} and El: {YIYjfqZi:/:O} fori= 1, ,m.

Then by (18), El, Em satisfy (1), and hence we obtain the bounds given in (2).
In turn, it is not difficult to see that for any collection El, "", Em of sets of size at

most k, containing any point at most k times, we can assume they are of form (19)
for certain packings Y, ..., Yn and Z, ..., Zm of k-sets. Thus starting with El, "",

Em as described in 3 above, making these Y,..., Y,,, Z,..., Zm, and taking
{Xl, Xq } "."- { Yl, Yn, Z l, Zm }, we obtain a system of sets attaining the
worst-case ratio. (That is because we may assume that Hs selects the sets Y, ..., Y
in the first n iterations.)

Note that we may assume even that the sets Y, ..., Y,,, Z, ..., Zm form the
collection of all cliques of size k in a graph. Hence, we cannot obtain a better worst-case
ratio by restricting the collections of sets to collections of k-cliques.
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Abstract. In this paper some extensions of the Farey fraction method as presented in [Methods and Ap-
plications ofError-Free Computation, Springer-Verlag, Berlin, New York, 1984 are discussed for determining
solutions of systems of the form x ay mod m in unknown integers x, y where x, y are restricted by 0

_
x

_
N,

_
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_
N, gcd (y, m) 1. Since x ay rood m can be used as definition ofx/y a mod m such a system

is spoken of as a "rational congruence" with bounded variables x, y. Interval conditions are analyzed for x/y
to enlarge the set ofrational congruences that can be handled by procedures ofEuclidean type (gcd computations).
Several approaches are proposed for solving rational congruences with one or more moduli.
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0. Introduction. One important alternative for error-free computations with rational
numbers (i.e., without using floating point numbers for intermediate calculations) is
modular arithmetic where residue number systems are used for addition, subtraction,
and multiplication of rational numbers.

Residue number systems allow arithmetic on large integers [Kn81 and especially
long integer multiplication can be based efficiently on modular methods Sc66 ], SS71].
They can also be applied to ill-conditioned systems of linear equations where the coef-
ficients are rationals with relatively small denominators [GK84 ].

The main idea of modular arithmetic is to work with "small" integers (as represen-
tatives of residue classes) instead of working with rational numbers or "large" integers.
Therefore, each modular calculation requires the solution of three subproblems: (1) for-
ward mapping (from rational numbers to residues); (2) computing residual results; and
(3) backward mapping (from residues to rational numbers).

In the case ofinteger input and output data the principal problems have been solved
(by use of the Chinese Remainder Theorem and, e.g., Mixed Radix Representation of
Integers), but in the case ofrational input and output data only the first two ofthe above-
mentioned subproblems are solved in a satisfactory way. The third step of a modular
computation with rational numbers is crucial and further research is needed. So we are
motivated to present some new results on the solution of rational congruences in this
note that go beyond the basic results contained in the book Methods and Applications
ofError-Free Computation by Gregory and Krishnamurthy [GK84 ].

It should be pointed out that solving systems of linear equations with rational coef-
ficients leads to rational congruences when the coefficients are directly modular coded
and not transformed into integers by multiplications. This can be seen as follows.

Let A be a n by n matrix and let X, b be column vectors. Assume further that

where

AX= b

A= aij X= xj b=

and a, b, c, d, x, y are integers with b, y, d O.
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Now if ml, mr are pairwise relatively prime moduli and gcd (bij, mk)
gcd (di, ink) for all i, j, k, then from the system ofequations we obtain the following
fori= 1,...,nandk= 1,...,r:

(k)_ k) mod mk. Olij Zj
J

where

ak)=-aijb mod mk, k)=_cidT mod mk, Zj
Xj gcd (yj, rag)

(k)hUnder the assumption that for each k the matrix (a ij is invertible mod mk the above
system of congruences is equivalent to the system

(k)
zj=--’yj modmk, j=l,’-’,n, k =l,-..,r

with certain integers 3’ (.k) in [0, mk- 1] or equivalent to (by Chinese remain-
der conversion)

zj =- 6j mod I mk
k=l

for j 1, n, with 0 _-< j H C= mk 1. For each j the last relationship is a
"rational congruence" in our sense, which has a unique solution when r is large enough.

In we briefly discuss the solution method of Gregory and Krishnamurthy, then
try to apply smaller moduli and present a new method for solving two-modulus systems
(of rational congruences). In 2 we analyze interval conditions to enlarge the range of
rational congruences that can be solved, using smaller moduli than in Gregory and Krish-
namurthy’s method. Here we present a basic theorem, an algorithm, and two application
methods for solving such interval conditioned rational congruences. In addition, a pro-
cedure is presented for solving multimodulus congruences with interval conditions. Fi-
nally, in 3 some remarks are made with respect to the distribution of so-called m-
bounded fractions in generalized residue classes.

0.1. Notational remarks.
gcd (a, b) greatest common divisor of a and b,
[x] integer part of the real number x,
7/= set of integers,
q set of positive integers,
m product of the moduli m, ..., mr,
Q set of rational numbers with denominator relatively prime to m,
Qk generalized residue class mod m, for k in the range 0 _-< k _-< m 1,
FN set of order-N Farey fractions (defined in 1),
Lm set of m-bounded fractions (defined in 3),
Ldm m-bounded residue class d mod m (defined in 3).

1. Solution of rational congruences. For each positive integer m we define as in
[GK84] so-called "generalized residue classes" mod m" o, Om- if we put

with as defined in O. 1. The main difference between the usual residue classes Q
(equal to a set of all integers k rood m) and the generalized residue classes ( is that
for k not equal to zero there exists exactly one element ofQ between two multiples of
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m but in the same interval there are infinitely many rational numbers belonging to 0k.
For example, the rational numbers in the interval [0, m] belonging to Ok for =< k < m
include the infinitely many numbers

m
k--. beN, gcd(b,m)=l.

This situation requires the choice of convenient subsets F of such that each
Fn fq 0k contains at most one element that can be identified by an efficient algorithm if
Fn fq 0k is not empty. So, in [GK84] Fn is taken to be the set of order-N "Farey
fractions," that is,

F= 0Agcd (a,b) 1A0< lal, Ibl-<N

Now, in [GK84] it is shown that given a positive integer m and integer d with
0 < d < m there exists at most one irreducible fraction a/b such that

a
(1.1) -dmod m,

b

(1.3)

(1.4)

(1.2) lal, Ibl =< V(m-1)/2
hold. If there is a fraction ab for which (1.1), (1.2) are satisfied, then this fraction is
obtainable by a Euclidean process as follows.

Define a sequence of pairs (ai, bi) by putting

a-l m, b_ 0,

a0 d, b0 1,

ai ai 2 ai 1"
ai-

(1.6) bi bi- 2 bi- 1" ai-2]ai-

Here

(a_ b-l)ao bo

is called the "seed matrix" of the process. The index runs from through n + as long
as ai- is unequal zero.

Assume that a, b exist satisfying (1.1), (1.2). Then, by a theorem of Kornerup (see
[GK84, Thm. 6.39]), there exists an index such that

lai lal, Ibi Ibl
where a;, b; are defined as above. This means that the above-introduced order-N Farey
fractions can always be recovered ifN is chosen such that in (1.1) m is greater than 2. N2.
Conversely, if we know that a and b are integers between 0 and N we should use a
modulus m greater than 2. N2.

Example. Let us assume that 0 =< a, b -< 20 and ab =- 76 mod 829. Find a and
b. We have the following schema:
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10

9

829 0
76

69 -10
7 11
6 -109

120

from which we derive a /b 7 / 11. The left-hand side integers 10, 1, 9, are the quotients
[ai-2/ai-] for 1, 4.

Remark. All quotients ai/bi belong to Od.
The solution of the rational congruence (1.1) by the Farey fraction method requires

a modulus m greater than + 2. (max { al, bl})2. The question arises whether there
exist smaller moduli m such that a/b can be recovered by Euclidean processes. To analyze
this question we introduce two useful sets Vdm and Rab as follows.

Define a Euclidean process as in (1.3)-(1.6), and let

(1.7) Vdm {(ai, bi) ll <-i<=n},

(.8) Rb { tit> max { lal, Ibl}/x (a,b)e V(a/b) modt,t}
where gcd (a, b) 1. This means that Vdm is the set of all pairs ai, bi occurring in a row
of the Euclidean schema produced by the seed matrix

m

and that Rab is the set of moduli for which a given pair (a, b) occurs in a row of the
Euclidean schema corresponding to the seed matrix

where a bd mod t.
Example. From the Euclidean schema given above we derive

V76,829={(69,-10),(7,11),(6,-109),(1,120)} and 829eR7,1.-.

From GK84 we have the result that Rab for all >= + 2. max { a, b } 2 where
a, b e gq are given and gcd (t, b) 1. But it is easy to see that Rab contains smaller
elements t. So we prove the following theorem.

THEOREM 1. For 0 < a < b and gcd (a, b) we have a + k. b Rab for all k >=
a+l.

Proof. Since a/b -= -k mod (a + kb) the Euclidean schema is as follows:

b-1

a+kb 0
a+kb-k

k -1
a b

(since [(a + kb k)/k] b because of k >= a + 1).
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COROLLARY. Under the same assumptions as in Theorem we have ab / a /

Rab
THEOREM 2. a + k. b Rabfor all k <= a < b.
Proof. The Euclidean schema under consideration here is

a+kb 0
a+kb-k

k -1

If k < a then all ai < a, so that a does not occur in the first column. If k a then we
have by view ofb -1 the result b :/: b but a a, so that the pair (a, b)cannot occur
in any row of the above schema, ff]

As consequence of Theorems and 2 we find that ab + a + b is the smallest
element in Rab of the form a + k.b. We conjecture that ab + a + b is the minimum
element of Rab at all but this is unsettled up to now. Also, no counterexample has
been found.

CONJECTURE 1. ab + a + b min Rab.
Our next (more important) concern with respect to Rab is to determine the smallest

P - Rab with the property that all >= o with gcd (t, b) belong to Rab. So we define

(1.9) 0,, min {tl(Vx)(x>=t/gcd (x,b) "x-Rab)}
and find Theorem 3.

THEOREM 3. Pab -- 2ab a + 1.
Proof. For 2ab a we have the following schema:

2ab- a 0
2a

a 1-b

hence a, b) V2a,t and 2ab a Rab.
Remark. The inequality in Theorem 3 cannot be strengthened since, for example,

when a 10 and b 13 then we have e R10,13 for all > 250 with 0 mod 13.
From the proof of Theorem 6.39 in [GK84] we can see that for a/bt < 1/2b2 we

have Rab from which it follows that Oab 2ab + 1. Together with Theorem 3 we
therefore have

(1.1 O) 2ab a + <= Oab 2ab + 1.

As we will show (1.10) suffices for our applications, and in no case did we find Oab >
2ab a + 1. So we have Conjecture 2.

CONJECTURE 2. Pab 2ab a + 1.
This could not be proved up until now.
The previous results suggest the following solution method (called "intersection

method") for solving two-modulus systems without using the Chinese Remainder Theo-
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rem. When we must solve the system

a a
(1.11) -dmod mAemod n

with + 2.max al, bl) -< ran, and coprime m, n, then principally we could apply
Chinese remainder conversion, which yields only one congruence:

a
(1.12) f mod mn

and recover a/b as the Farey fraction ofthis system. Instead ofusing the product modulus
m, n to solve (1.12), we apply the Farey fraction method to the two congruences in
(1.11) separately and determine a common row ofthe obtained Euclidean schemata. For
this purpose we must choose the moduli m, n appropriately in order to guarantee the
existence of such a common row. Now let us assume that we know ab </3. Then we
choose two primes m, n > 2/3 and determine d (a/b) mod m, e (a/b) mod n. From
1.10 it follows that m, n - Rab and therefore (a, b) can be recovered as the only element
of Vdm f’)Ven. But Vdm and Ve,, are obtained by Euclidean processes in the sense
of [GK84].

Example 1. Let ab<40 and a/b =- 36 mod 83 and a/b-3mod89. Then
V36,83 V3,89 { 1, 30 } hence a/ b / 30.

Example 2. Assume that we know b < 200 and a/b =- 0 mod 4 and 0.55 < a/b <
0.56. Since 4/7 is a continued fraction convergent of 0.56, we put u/v 7a/4b.
Then we have 0 < u/v < 1/25 and v < 200; hence u < 8 and uv < 1600. So we try
m 1609 and n 1601 as moduli and compute (a/b) mod mn. Let us obtain

This implies

aa-=259 mod 1609/k-=996 mod 1601
b

u
1559 mod 1609/X

u
---= 1460 mod 1601.

We find 4/193 V1460,1601 N V1559,1609; hence, u/v 4/193 and

a/b=4/7.(1-u/v)= 108/193.

Remark. To guarantee that uv can be recovered we should take m, n > 3200; but
in many cases smaller moduli are sufficient.

2. Rational congruences with interval conditions. The range of fractions that are
recoverable can be enlarged considerably by prescribing certain interval conditions that
the fraction must satisfy. Thus, condition (1.2) can be weakened to

(2.1) O<a,b<m.

The additional interval requirement is

h a h+l
(2.2) < <

m m

for an integer h.
Then we prove the following:
(1) There exists at most one irreducible fraction a/b that satisfies (1.1), (2.1),

and (2.2).
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(2) If such a fraction exists, then it can be rediscovered by two Euclidean processes
as a common continued fraction convergent of two rational numbers depending on d,
h,m.

We begin with Theorem 4.
THEOREM 4. Let I be an interval of length less than 1/m and let d be an integer

with <= d < m. Then there is at most one rational number a/b I with <- a, b <
m/X gcd (a, b) 1/x a/b --- d mod m. Ifa rational number a/b satisfies these conditions,
then ab <= d.

Proof. Let

_
a, b, a’, b’ < m with a/b, a’/b’ I, and a/b =- a’/b’ mod m and

gcd (a, b) gcd (a’, b’) 1. Without loss of generality we assume a/b <= a’/b’; hence
0 <- a’/b’ a/b < 1/m and therefore 0 -< a’b ab’ < bb’/m < m.

On the other hand, m divides a’b ab’; hence a’b ab’ 0 and a/b a’/b’. From
gcd (a, b) gcd (a’, b’) we even conclude a a’ and b b’. To prove the second
part of the assertion let e 7/such that a bd + Xm. Then from a < m and bd > 0 it
follows that cannot be positive and so we have a/b -< d.

In the following we can restrict ourselves to the case h < m since otherwise we have
h/m k

_
and the inequality h /m < a/b < (h + 1) /m is equivalent to h’/m <

a’/b < (h’ + 1)/m where h’ h km and a’ a kb.
THEOREM 5. Under the conditions ab d mod m and 0 < a, b < m the inequalities

h a h+l
(2.3)

m m

and

a g a +
f,r some inte,,er(2.4) --5< < m2 g

are equivalent, where

_
g, b, h < m/x gcd (b, g) /x a dm h 1.

Proof. 0 < a < m and a/b -= d mod m imply a bd m. bd/m ]. Hence, (2.3)
is equivalent to

<bd-m. <,
m m

and therefore to

(2.5) -<" < m2
with a =dm h 1. This proves (2.3) -- (2.4). Conversely, if (2.4) holds, then
we obtain

bh bd b(h+ 1)
-<---g<m m2

hence, by the assumptions of the theorem 0 < bd/m g < and g [bd/m ]. But this
gives (2.5); hence we have (2.3).

Remark. In (2.4) g, b are determined uniquely since if also a/m2< g’/b’<
(c + 1)/m 2 with g’, b’ < m, then we have Ig/b g’/b’l < 1/m2 contradicting

g g’_->- for4: b-;"

Finally, we turn over to the solution of inequality (2.4) in integers b, g between
and m 1. We generate successively irreducible fractions ai/bi and ci/di with decreasing
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denominators such that

as well as

ao Co_a+
b---o=m 2 and -m2

ai+ lbi-aibi+ 1, cidi+ -ci+ di 1.

The first sequence is increasing; the second one is decreasing. Then if ai/bi cj/dj for
a pair i, j, then g ai, b bi is the desired solution. It remains to show that there always
exists such a pair i, j. To demonstrate this we need the following simple lemma.

LEMMA. If a/ b < x/y < c/ d, bc ad and a, b, c, d, x, y > O, then y >=
b+d.

Proof. Since a, b, c, d, x, y are supposed to be integers, we conclude from the
assumption bx ay

_
and cy dx >= the inequalities x/y a/b >- and

cd- x/y

_
1/dy. By adding these inequalities we obtain

d b-y

which gives bc ad

_
(b + d)/y; hence y >_- b + d. E]

Because of the uniqueness in (2.4) every fraction between gb and a/m2, on the
one hand, and between g/b and (a + 1)/m 2, on the other hand, has a denominator
greater than m, hence greater than b, from which we conclude by Theorem 21 of Pc58
that gb is a continued fraction convergent (main or not main) of am as well as of
(a + 1)/m2 But the above-generated sequences contain, by means of the lemma and
Theorem 20 of [Pc58], all continued fraction convergents of a/m2 greater than
am2, and of (a + 1) /m 2 smaller than (a + 1) /m2; thus the desired pair i, j with
ai/b c/d g/b exists.

Remark. The numerator of a/b can be obtained from a bd mod m.
Example. Solve a/b 17 mod 97/X 42/97 < a/b < 43/97. We find as in inequality

(2.3) that

Ascendingfractions.
1606 1323

1606 g 1607
940-----<<

9409

1040 757
< < < <
9409 7751 6093 4435

Descendingfractions.

474 191 99 7
277 < i19 < 5--<"<’’’"

1607 469 269 69 7
9409

>
2746

>
1574

> 4-- >]>

So we have g 7, b 41, and a --- 17.41 mod 97 18; this means a/b 18/41 is the
desired fraction.

It is clear that the restriction (2.2) is a very strong one since the inclusion in the
interval h / m, (h + 1) /m requires a very good estimation of the solution a/ b.

Therefore, we present in the following several classes ofproblems that can be solved
by transforming them to the basic case of this section.

2.1. Reciprocal approach. We showed above that the system

(2.6) O<a,b<m,
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a
(2.7) b-d mod m gcd (d,m)=

a
(2.8) a <-</3, o>0,

(2.9)
m

can be solved by two Euclidean processes. Now, we demonstrate Theorem 6.
THEOREM 6. When we replace the condition (2.9) by

(2.10) <.

then the system (2.6), (2.7), (2.8), (2.10) can also be solved by the basic method de-
scribed above.

Proof. The system (2.6), (2.7), (2.8) is equivalent to the system

(2.11) O<b,a<m,

b
(2.12) --=d- mod m, gcd (d,m) 1,

a

b
(2.13) -<-<-.

Example. Let the system to be solved be

(EX I) 0 < a, b < 4200013,

a
(EX2) ---3355579 mod 4200013,

b

a
(EX3) 7215 < .- < 7216.

b

Since / 7215 / 7216 / 7215.7216 < /4200013 we can transform the system by
interchanging a and b:

(EX4) 0 < b, a < 4200013,

b
(EX5) 610942 mod 4200013,

a

b
(EX6)

7216
< <
a 7215

By rewriting (EX6) such that it takes the form of condition (2.2), we have

582 b 583
(EX7) 420001"-- < <

a 4200013

We solve the system (EX4), (EX5), (EX7) by the basic method and obtain b/a
577/4163103 and therefore a/b 7215(48/577).

It should be noted that this "reciprocal approach" needs an extra Euclidean process
since the multiplicative inverse of d mod m in a/b - d mod m must be computed.
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2.2. Prime square approach. The so-called prime square method for solving rational
congruences is based on the following theorem.

THEOREM 7. Let p, q be primes. Then thefollowing system can be transformed to
standardform (2.6)-(2.9) and thus can be solved by two Euclidean processes:

(2.14) O<a,b<c,

a a p2 a
(2.15) -0modp, -emod -=dmodq,

a
(2.16) a<<,

2p
(2.17) /3-a<-

a
/9

2(2.18) p+0mod ,q.

Proof. We apply the transformation x ---f(x) p/(p + x) to the system (2.14)-
(2.18 to obtain a solvable system of standard type (see (2.6)-(2.9)). By (2.15 the
integer a is divisible by p. Let a pX; then we have

(2.19) b-7=f 1+

Ife’ e/p from (2.15) we obtain X/b e’ mod p; hence, by (2.19)

(2.20) =(1 + e’)- mod p.
b’

We put m pq and solve the linear congruence system

d’--0 mod p A d’=-d mod q.

For d" d’/p we have ,/ b E d" mod q; hence

a
(2.21) b,=(1 +d")- mod q.

The inverses in (2.20), 2.21 exist by (2.18 ). Formulae (2.20) and (2.21 yield

a
(2.22) ,,= m’ mod m

if m’ is the solution of the system

m’--(1 + e’)- mod p, m’---(1 + d")- mod q

with m pq. Since a’/b’ b/(b + ) and b + b + a/p < 3c/2 we have 0 < a’,
b’ < c’ with c’ 3c/2.

Formula (2.17) yields c’ < m; hence

(2.23) O<a’,b’<m.

Because of the monotonicity of the function f, (2.16) is transformed into

a’
t’ a’ P ’ P(2.24) a’ < < with

p+3’ p+a
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It remains to show that/’ a’ < /m. But from/ a < /q it follows that

/3-a<-. +

So we have

/-a
and /’- a’=p. <m=_.

(p + a)(p + fl) pq m

(2.25) /3’- a’ <--
m

and the system (2.20)-(2.23) is solvable by Euclidean processes. This completes our
proof. [:3

While the range of applicability of the prime square method is much greater than
that of our basic method, it requires some amount of additional time to find the appro-
priate moduli p, q. But the problem of determining appropriate moduli arises in any
case where rational output is expected when modular methods are applied. We shall give
an example ofapplication ofthe prime square method after having proposed an algorithm
for this purpose; then we shall exhibit some difficulties of the method, and finally, the
method will be extended for the case where the second condition of the theorem does
not hold for small p.

A disadvantage ofthe prime square method is that we cannot recognize in advance
whether or not it applies to a specific problem. Theorem 7 suggests the following procedure
for solving the system:

(2.26) O<a,b<c,

(2.27) a<<,
2

(2.28) fl- a<3c
where a/b mod n is computable for all n (c is an integer > 1).

ALGORITHM.

Step 1. Calculate a prime p with a/b 0 mod p.
Step 2. Compute e ab mod p2.
Step 3. Choose prime q such that 3c/2p < q < 1/([3 a).

(This is possible since 1/(/ a) > 3c/2 and 3c/4

_
3c/2p,

and by the well-known Bertrand’s postulate there always exists
a prime between 3c/4 and 3c/2 for c >- 2.)

Step 4. Determine d (a/ b) mod q.
Step 5. Calculate a’, ’, m, m’ according to the proof of Theorem 7.
Step 6. Solve the transformed system (2.22)-(2.25) by the basic algorithm.
Step 7. Recalculate a/b from a’/b’ as follows: a/b p.(b’/a’- 1).

Remark 1. It should be pointed out that this algorithm is applicable only if the
conditions ofTheorem 7 are satisfied for some primesp and q. See below for the discussion
of difficulties.

Remark 2. The global condition (p independent) (2.28) should be replaced by
(2.17 in Theorem 7 after p has been determined.

Example. Assume that Steps 1-4 of the above algorithm have already been per-
formed and we want to solve the following system:

(2.29) 0<a,b<800,
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a a a
(2.30) --0 mod 31, --713 mod 961, --- 18 mod47,

a
(2.31) 0.16 <<0.17.
Then Theorem 7 is applicable with e 713, d= 18, p 31, q 47; hence e’=
713/31 23, (1 + e’) -l -= 22 mod 31. d’ 0 mod 31 and d’ 18 mod 47 yield d’
1240; hence d" 40 and (1 + d")- 39 mod 47. The solution of m’ --- 22 mod 31
m’--- 39 mod 47 yields m’-- 1355 mod 1457 (=m). Further we have/3’ 31/31.16
0.994865 and a’ 31 /31.17 0.994546. Thus, we solve the following system:

b’(2.32) 0<a’, <1457,

a’
(2.33) m_= 1355 mod 1457,

b’

1449 a’ 1450
(2.34) 145- < <

1457

We obtain a’/b’ 577/580; hence a/b 93/577.
Difficulties. (1) No prime p is available such that a/b 0 mod p. Then apply the

transformation x -- x to the system. See the example below.
(2) There is a p available with a/b =- 0 mod p but either/ c >- 2p/3 c or/3

a < 2p/3c and there is no prime between/3 c and 2p/3c. Here, we must search for
a larger p, or the interval length a must be made smaller.

Example. Let us try to solve the following system:

(S 0 < a, b < 800000,

a
($2) 0 mod p for all p < 100000,

b

(S3)
a

0.7835<<0.7836.

We put a"/b a/b and find for instance a"/b -= 0 mod 499. We take p 499. Since
c 800000 we should have 10 -4 < 1/q < 998/2400000, for instance, q 3061. Let
us find

(2.35)
a"
b
= 111277 mod 4992,

a
(2.36) ---= 1729 mod 3061.

b

By applying the prime square method we obtain the following system:

b’(T1) 0<a’, < 1527439,

a
(T2) 1290639 mod 1527439,

b’

1526776 a’ 1526777
(T3) 152743- < < 152743"----
Solving this system we have a’/b’ 350377 / 350529; hence a"/b 75848 / 350377, and
hence ab 274529 / 350377.
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2.3. Modulus elimination method. For solving interval conditioned rational con-
gruences with two or more moduli, we outline another method due to a suggestion of a
referee of this paper. Since here the number of moduli is stepwise reduced until a one-
modulus system remains, we call it the "modulus elimination method." The system to
be solved may be the following one:

a
(2.37) e mod m

b

a
(2.38) -f mod n,

a
(2.39) c <- < d,

(2.40) 0<b<q.

Assume gcd (m, n) 1, and start by putting

Then we have gl =< c and g2 > c. Terminate if g2 < d. Otherwise, let

j max I l=< and ffz c and ki max 11l<= and =>
Assume that the fractions gt/ht have already been interval determined for 1, i,
and that none of them satisfy the interval condition (2.39). Then we put

gi + gi + gJi, hi + hi + hj if gi/hi d, or

gi + gi-t- gki, hi + hi q- h, if gi/ hi <- c.

We stop when gi + / hi + satisfies the interval condition (2.39). Then we put g gi +
and h hi + i. Further u gj and v hj when h < hk, and u gk and v hk, otherwise.
Finally, we introduce a new fraction x/y by putting

a gx+ uy, b hx+ vy.

This leads to x/y (av bu)/(bg- ah) and we obtain the reduced congruence system
with only modulus:

(2.41) x= vf-u mod n,
y g-hf

x
d’(2.42) c’ <- <

Y

with transformed interval bounds c’, d’.

(2.43) O < hx+ vy< q.

Example. The following system has a unique solution:

0<b< 120,

a
0.15 <<0.16,
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a
20 mod 23,

b
a-- 22 mod 29.
b

According to the above described procedure, we obtain the following sequence offractions:

-3 20 17 14 11 8 5 2-1 3 5 8
’2’ 3’ 4’5’6’7’ 8 ’15’22’29’51’

where 8/51 is the first fraction satisfying the interval conditions. The neighbor with the
smaller denominator is 3/22 and so we put

a=3x+8y and b=22x+51y,

which leads to the new system

0 <22x+ 51y< 120,

-4 x 7

X
mod 29.

Y
Since this system has the unique solution x y we finally have

a 11
b 73

3. Distribution of m-bounded fractions. The conditions (1.1), (2.1), and (2.2) can
be satisfied for at most one irreducible fraction a/b according to Theorem 4, 2. Therefore,
the distance of successive fractions (in natural ordering) of the above type is at least
1/m, and we are interested in the average distance of all such fractions in the unit
interval. To define our problem more precisely we introduce the set L,, of m-bounded
fractions, and the set Ldm of m-bounded fractions being congruent d mod m. Let

G - O<a,b<mAgcd (a,b)--

Lm GmAgcd (b,m)=

The additional condition gcd (b, m) is necessary because a/b mod m is only defined if
b has a multiplicative inverse mod m. By a theorem of Dirichlet [D49 we have

(3.1) lim - .
m-- m r

By view of the definitions we obviously have Zm am’, hence

(3.2) li-- IZml <= 6
m 2

71.
2

Since for primes m p we have Lp Gp, we obtain lim (I L I/p2) 6/r 2, which implies
equality in (3.2):

(3.3) li- zm L
m2

7r
2"
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The upper limit in (3.3) cannot be replaced by lim because there are sequences ofintegers
al, such that La,[/a2, converges to other values than 6/r2. For instance, we can
prove that

Zz.I 4
(3.4) lim

2 2n 71-2
Sketch ofproofof(3.4). Let Amb denote the number ofprime residues mod b being

less than m. Then we find
m-I

(3.5) Zm m- + Amb.
b=2

gcd b,m

Since Amb is approximately m/b.(b) (where is Euler’s function) with Rmb Amb
m/b" (b) we obtain

m-I m-I i(b)
(3.6) Lm m- + , Rmb + m. ,

bb=2 b=2
gcd b,m gcd b,m

By view of (3.1), / m. Yb Rmb converges to zero; hence for m 2

b-- 1(2)

It remains to show that

,I,(b) 4
(3.7) lim . 2.

n-o b 2 b r
b-- 1(2)

But this follows from (3. l) and the equality

(3.8) Bn-An=’" Bn- +" An-

where

(b)
(3.9) A,, - b<2. b

b-,, 1(2)

(3.10) B,, n" Z ’I’(b_)
b<2 b

As m-bounded residue classes Lam we define Zdm Lm I") O_d, i.e.,

Ldm --Lm / a bd mod m

Here we will restrict ourselves to prime moduli m p and we will show that all Ldm for
d 2, ..., m 2 have nearly the same cardinality. More precisely, we prove

(3.11) lim lim
Ldpl 6

dmp P --"
Proofof (3.11). The fractions in La have the fo

(3.12) = d--. with N d,x<.
X
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For g gcd (x, dx/p we have g , gcd (a, b) 1. Therefore we count the integers
x with Xp/d

_
x < ( + 1)p/d and gcd (x, X) 1. By the above Amb-notation we

then have
d-I

(3.13) Ldp[ (A(p(x+ 1)/d),X--aXp/d,X).
,=I

By view of

where g denotes Moebius’ function, we find from (3.13 that

Since for all real numbers x, y we have x y < Ix] [y] < x y + we deduce
from (3.14) that

(3.15) td =hZ=I t "(t)" +nd,p,h,t

with [nd,p,X,t[ < 1. This yields

(3.16) Ldpl
p dl ((k)

"[-
Xdp d2’h=l X Y’( + 3d)

with Idpl < 1, since [t/x #(t)"d,p,x,t[ -< + /2. Now, for p -- oo we obtain

(3.17) lim IZdl _L, (X)
p-* p d x=l X

from which our assertion (3.11) follows.
Example. Let d 17, p 97. While 97.6/71-2 58.97 the exact value for L7,97

is 57. It turns out that 58 is the most frequent number of Za,97 ’s. For 22 d-values out
of 96 we have Ld,97[ 58.

The fractions in Ldm are not equally distributed as can be seen in the above example.
All 57 fractions a/b L17,97 lie in the interval (0, 17]. Out of these 24 are smaller than
one, and for 19 of them we have a/b] 1; the remaining 14 fractions are greater than
two. In fact, when we put

then we can prove

3
(3.19) IKdl =-.p+o(p) (d4: 1,p- 1),

which says that for greater p half of the fractions of Lap are contained in the inter-
val [0, 1].

Remark. Equation (3.19) follows from the statements

d-I

Kdp Z (Apx/td- l),x--Apx/d,X)
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and

lim lim Kdp lim
d- 3

a--, p-* P a--, d’(d- 1) X]l(X)=-5__ (see D49 ).

3.1. Expectation values. Define for each X 0, 1, ..-, p the set

(3.20) D.X= ( r re Kdp A
X <= r<= X + k}p P

Then we have
p-k

X0

k,X I.

Since E, is approximately 3/r by (3.19 it can be seen by view of
X+k-I

for k + X -< p that

3k
(3.22) lim lim Ek -5.d--. p-.-

In Table below it is shown that for greater p (3.22) is a very good approximation for
the desired expectation values.

Empirically we obtain the following distribution function for p-bounded fractions.
Let F(x) be the probability that a/b <- x under the condition a/b Lap with d, p
fixed. If

Rdpx { a a}
then we have

(3.23) Rdpx Ld-,,-- Rd-,,p,/

where d- means the multiplicative inverse ofd mod p. By view of (3.23) F satisfies the
functional equation

Equation (3.24) yields F(1) 0.5 which is in accordance with 3.19 ). Further (3.22)
suggests the linearity ofF for x -< 1. When we take these facts into account, the following

10
100
300
577

TABLE

577
41,k

0.3033
3.0211

30.0941
90.3489
175.0000

3k/r

0.3040
3.0396

30.3964
91.1891
175.3870
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function F reflects very well the actual distribution of the p-bounded fractions in Ldp:

F(x) x/2 for 0x< 1,

(3.25) F(x) 1- 1/2x for <=x<d,

F(x)= for x>-d.

The results of this analysis can be summarized as follows.
(1) The generalized residue classes Ldp (consisting ofthe fractions d mod p) consist

(nearly independent of d) of p.0.6 fractions a/b with different denominators less
than p.

(2) The distribution of the fractions a/ b Ld, is such that half ofthem are smaller
than one, but within the interval 0, l] they are equally distributed.

3 The average distance of successive (according to <) fractions in Ldp fq 0, is
71-2 / 3p. Therefore, most intervals (more than 80 percent) of length 3/p contain exactly
one fraction (which can be recovered by Euclidean processes).

4. Conclusion. In the case of single modulus systems x/y d mod m we cannot
predict how large the modulus m has to be chosen to recover the fraction x/y when we
know nothing about the magnitude of numerator x or denominator y. Moreover, x/y
is not uniquely determined if there are no restrictions for x and y. When we have bounds
for x and y we can estimate the necessary magnitude of the modulus m; but if we want
to work with moduli not much greater than x and y, then sharp bounds for the fraction
x/y itself are required. Here, we suggest essentially two methods for the second ofwhich
(PSQM) the range of applicability is not very transparent.

In the case ofmultiple modulus congruence systems with rational numbers, Matula
and Gregory have discovered a solution method using Farey fractions but the seed matrix
for their procedure generally contains entries not much smaller than the product of the
moduli, and so it does not guarantee an efficient solution to the congruence system. A
better approach seems to be the modulus elimination method as well as the intersection
method of 2, where the former has a wider range of applicability but appears to be not
quite as efficient as the latter.

Acknowledgments. The author thanks the referee who contributed the modulus
elimination method for his critical reading of the manuscript. He also expresses thanks
to Dr. Johannes Grabmeier for his valuable comments.
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HOW LONG CAN A EUCLIDEAN TRAVELING SALESMAN TOUR BE?*

HOWARD J. KARLOFF"

Abstract. Where S is a set ofN points in the unit square, let t(S) be the Euclidean length of the shortest
traveling salesman tour through S. Let t maxs t(S). We improve Few’s bound [Mathematika, 2 (1955),
pp. 141-144]thatt_ 2+7/4totv_a/-+ ll, where a/ < 0.984.

Key words. Euclidean traveling salesman, Strips algorithm, Euclidean minimum spanning tree, Euclidean
perfect matching

AMS(MOS) subject classifications. 05C45, 51M05, 68R10

1. Introduction. If n points are placed into the unit square

((x,y) IO<-_x <- 1,0_-<y -< 1},
how long can the shortest Euclidean traveling salesman tour through those N points be?
(A Euclidean traveling salesman tour is a closed walk passing through all the points; its
length is measured by the Euclidean metric.) Let tv be the maximum possible value (by
continuity and compactness, tv exists). In 1955, Few 4 proved the best upper bound
known on tv: tv --< 2 + 7/4; the best lower bound known, tN >-- (4/3)/4r-_
o(V) (( 4 / 3 /4 < 1.075 is obtained by approximately tessellating the unit square with
equilateral triangles. This gap--(4/ 3 /4 is about 24 percent smaller than V--has stood
since 1955. (A 2 + o(/-) bound was rediscovered in 1983 by Supowit, Reingold,
and Plaisted [7].) We break the barrier by proving that tN _-< a/- + l, where
a// < 0.984.

Let us define a tour to be Manhattan if it uses only segments parallel to the square’s
sides (but there may be "corners" anywhere, not only at the given Npoints). It is possible
to place N- o(N) points in the unit square so that the Manhattan (i.e., L ) distance
between every pair is at least //ra grid rotated 45 will do--and therefore every
Manhattan tour must have length at least r}r-_ o([); consequently any method
that decreases the constant must, as does ours, generate some non-Manhattan tours.
(Few’s method generates Manhattan tours.) Methods that generate non-Manhattan tours
are harder to analyze.

Researchers have also studied related problems. Chung and Graham [3 improved
Few’s upper bound on the length ofthe shortest Steiner tree through Npoints in the unit
square from / 7/4 to 0.995V. (They gave details for an improvement to
0.99995 only.) Moran 6 studied the maximum value ofthe shortest traveling sales-
man tour through a set ofN points of unit diameter in k. Our technique is related to
these authors’ methods. In 5 we will show how our result improves the bounds for the
minimum spanning tree and minimum weight perfect matching problems.

(A different, more popular line of research deals with the average values of these
quantities, when, say, N points are uniformly drawn from the unit square, and either the
Euclidean or L metric is used. See, e.g., [5 ], [2], [1].)

2. Preliminaries and oreorocessing. Our bound will be proven by exhibiting an
algorithm that generates the desired tour; the algorithm will use infinite-precision real
numbers. Modeled after Few’s original Strips method, the algorithm uses two key ideas.
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work was supported in part by the National Science Foundation under grant DCR 8609733.

f Computer Science Department, University of Chicago, 1100 East 58th Street, Chicago, Illinois 60637.

91



92 H.J. KARLOFF

We can preprocess the points by iteratively replacing a pair of points that are
very near each other by their midpoint, and patch in the pair later;

(2) Then, if no two points are too close, a local modification of Strips will achieve
the bound.

First, we give some notation. If X and Y are points in the plane, XY will denote
both the line segment between X and Y and its Euclidean length. IfX, X2, Xk are
points, XX2" Xk will denote both the walk from X to Xk formed from segments XI X2,
XEX3, Xk-lXk, and its length, XIX2 / XEX3 / X3X4 / / Xk-iXk

We need a lemma.
LEMMA 1. Let S be a set ofn >= 3 points in the Euclidean plane. Let D min AB,

where the minimum is over all pairs ofdistinct points in S, and let XY D, where X,
Y S. Let M be the midpoint ofXY. Choose Z, W S- {X, Y }. Then

min {ZX+XY/ rw, z Y+ YX/XW} -(ZM+MW)<-(3 f)D.

Lemma appeared in a slightly different form from Lemma 4.1 in [6 ]. For com-
pleteness, the reader can find a proof of Lemma in the Appendix.

In the preprocessing phase, we repeatedly replace the pair of nodes closest together
by their midpoint, until no pair are too close together. The value of the parameter c
(lfi-/6 -< c

_
fi-6/4) that appears in line (2) of the preprocessing algorithm will be

determined later.
Here is the preprocessing phase, for a set SN ofN points:

(1) k: N.
(2) Let D c/)f-.
(3) Let D be the minimum distance between two points in Sk.

IfD > Dk or if Ski < 4, assign n := k and halt.
(4) Let X, Yk Sk such that XkYk D.

Let Mk be the midpoint ofXkYk.
Sk- (Sk--{Xk,Yk})U{Mk}/* I&-l -< k-. */
k:= k-1.

(5) Go to 2.
End

After applying the preprocessing phase, we use a modified version of Strips (to be
described later) to find a tour Tn through the at most n points in Sn. Then we patch in
the deleted points:

For k n + to N do
In tour T_, let Z and Wbe Mk’S predecessor and successor.
To get Tk, replace the portion Z --Mk--Win Tk- by either Z --Xk-- Yk--W

or Z Yk--Xk-- W, whichever is shorter.

THEOREM 1. [(length of TN) (length of Tn)l <= 2c(3 V’)(V- lfn--).
Proof. Let n+ l<=k<-N and let D=XkYk. By the choice OfXk, Yk, D=

min AB

_
Dk, where the minimum is over all pairs of distinct nodes in Sk. Sk >- 3. By

Lemma 1,

min {ZXg +XkYk + YW, Z Yk + YkX+XkW} -(ZMk+MkW)
__< (3 1/)D__< (3 V)D.
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Thus (length of Tk) (length of Tk_ _-< 3 f)D. Thus
N

[(length of TN)-(length of Tn)] [(length of Tk)-(length of Tk-)]
k=n+l

N N

-< Z (3-f)D= (3-V) c

k=n+l k=n+l

x-/2dx=c(3 f)(2x/2) Ix=< c(3- /)
--n

x--

2c(3 f)(/-- V).
Theorem 4.2 in [6] and our Theorem are very similar.

3. The main procedure. Let S Sn be a set of at most n points in the unit square,
no two separated by distance D c/V, or less. Because SI n in the worst case, we
will assume this without loss of generality. First we present the Strips algorithm, which
is the starting point for our algorithm (actually, we have modified it and its analysis
slightly).

Our version of Strips generates two tours, the shorter ofwhich is guaranteed to have
length -< + 11. Here is a naive version generating only one tour. Let w //
and w’ D// (c/V)(1/V) (c/f-)w. Divide the unit square into [ 1/wq hor-
izontal nonoverlapping contiguous w strips, each of width w, enlarging the square
vertically by less than w if necessary. Now extend the square to the right by at most w’,
if necessary, to ensure that the horizontal width is a multiple of w’. Mark each width-w
strip’s horizontal center line with a dotted line. Follow the uppermost strip’s center line
rightward, starting at its left end, jogging vertically (and only vertically) to reach each
point in the strip, and then immediately returning to the center line; the incremental
cost due to a point in the strip is double its vertical distance from the center line. At the
fight end, drop down to the fight end of the second strip’s center line, and follow it
leftward, jogging up and down to visit each point in the strip. Changing direction with
each strip, repeat this process until the bottom strip is crossed. Returning to the starting
point adds at most 2 + w’ to the total length, even if only horizontal and vertical edges
are used.

Note that a Strips tour is a Manhattan tour.
Now we present the improved version of Strips. Run Strips a second time, this time

using the original center lines as boundaries for a set of + f / w] new strips of width
w, each displaced vertically w2 from a previous strip (the top and bottom ones can be
viewed as width-w strips whose upper and lower halves, respectively, contain no points);
the horizontal center lines ofthese new strips are the old strip boundaries. Together, over
both Strips runs, each point contributes a vertical cost of w. Thus the total cost, over
both runs, is

=<nw+2[(1 +[])(1 +w’)+(1 +w’)+2(1 +w)] <=nw+-w2+22"
w V/n implies that the total cost is at most 2 + + 22. Thus the length of the
shorter tour is at most + 11.

Our procedure Local_Strips divides each horizontal strip into f /w’] disjoint w
w’ rectangular regions (as does Strips), extending the fight boundary of the unit square
by at most w’ if necessary; points on a boundary are arbitrarily assigned to one region.

FAC. If c

_
f(-6/ 6 and we divide a w w’ rectangle into a vertically centered

2w’ w’ rectangle, and upper and lower ((w/2) w’) w’ rectangles, then the central
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2w’ w’ rectangle is the largest, and none ofthe three rectangles can contain more than
one point.

Proof. The diagonal of a 2w’ w’ rectangle is of length w’/ Dn. The rest is
trivial. []

Here is a description of Local_Strips. Local_Strips constructs two tours; the first is
based on the original [ / wq strips, and the second on the + [ / w] displaced strips.
The smaller is suitably short. As in Strips, in each strip Local_Strips starts at one end of
the center line and moves horizontally toward the other. The difference is what happens
within each strip’s [ /w’q w w’ regions. Local_Strips starts at one side’s midpoint G
and ends at the other side’s midpoint H. Within the region, it visits the three orfewer
nodes in an optimal way. In other words, among the six or fewer G H paths passing
through all the points in the w w’ region, Local_Strips uses the shortest. This is the
only difference between Few’s Strips and Local_Strips: in each ofthe w w’ rectangular
regions in a strip, Local_Strips visits all the nodes optimally (starting at the midpoint of
one side and ending at the other side’s midpoint), while Strips blindly moves horizontally,
jogging vertically to reach each point.

Note that a Local_Strips-generated tour is probably not Manhattan. The idea of
using non-Manhattan modifications to a Manhattan tour appeared as early as 1950 8 ],
and thus predates Few’s paper.

4. Analysis of Local_Strips. We will analyze the sum of the lengths of the two
tours generated by Local_Strips. Rather than analyzing it directly, we will calculate the
savings over the version of Strips described earlier.

First, we need a few lemmas. In 2, let I be the closed interval between (0, l) and
(1, 1), let J be the one between (0, 0) and (1, 0), and let K be the one between (0, -l)
and (1, 1).

LEMMA 2. Let P (0, 0), Q (1, 0). For afinite W , let g( W) be the length
of the shortest walk that begins at P, ends at Q, and passes through all the points in
W. Then

31 + f
max g({A,B,C})=<4.631

AI,BJ,CK 7

FIG.
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Proof. Without loss of generality, A is the leftmost point.
Case 1. The left-to-right order is A, C, B. See Fig. 1.

SUBLEMMA. Among the six paths PABCQ, PACBQ, PBACQ, PBCAQ, PCABQ,
PCBAQ, either thefirst or second is the shortest.

ProofofSublemma. Both PBACQ and PBCAQ self-intersect and it is known that
the shortest P Q path does not self-intersect.

PC>- PA,AQ

_
CQ= (PC+AQ) + CB+AB >= (PA + CQ) + CB+AB

PCBAQ >-- PABCQ.

Now PC

_
PA, AB

_
CB implies that

PC+ CA +AB+BQ >= PA +AC+ CB+BQ,
so that PCABQ

For now, let us assume that A (0, 1), C (0, 1), B (b, 0) (0 _-< b _-< 1) and
let us find b b* to maximize g( { A, B, C } )"

g({A,B,C})=min(1 +2 + /b2+ + l-b, +2/b2 + +f).
It is not hard to see that the maximum occurs at b* (9 4/)/7, where

4-b* + /1 +(b*)2= + /+ 2/1 +(b*) 2

31+V
(4.630,4.631).

7

Having finished that, let us allow A, B, C to vary again (but stay in Case 1). Fix A
on I, B on J. Project A and B down to K, getting A’ and B’, respectively; allow C to vary
between them. Let

r=AA’ +A’B= 2 +A’B,
s AB’ + B’B AB’ + 1;

AB’ <= +A’B= r>=s.
But {X 2 lAX + XB

_
r is an ellipse that contains A’ and B’ and by convexity

of ellipses, the segment between them. Thus, for C between A’ and B’, AC + CB <=
AA’ + A’B. Also BC + CQ <= BA’ + A’Q, for C in the same range. It follows that there
is an optimal Case configuration with C A’.

Where B (b, 0), now allow A to vary on I between P’ (0, 1) and (b, 1). Let
C A’be the projection ofA, as before. Let P" (0, -1)"

PACBQ PA +AA’ +A’B + BQ
=PA +AB+ (2 +BQ)

<= PP’ + P’B +(2 + BQ)= PP’P"BQ;
by a similar convexity argument,

PABCQ PA +AB+ BA +AQ.
But PA + AB <- PP’ + P’B and BA + AQ <- BP" + P"Q. Thus PABCQ <- PP’BP"Q.
Therefore, there is a Case optimum with A P’, C P". We know that in this case
the maximum is 31 + )/7 when B ((9 4)/7, 0).

The rest is easy.
Case 2. The left-to-right order is A, B, C.
Let Q" (1, 1). Consider only the path PABCQ. Fix B and allow A and C to vary

(but stay in Case 2). By a convexity argument, we may assume A P’ and C Q".
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Now, allowing B to vary, we see that we may assume B P. Thus the length ofPABCQ
in Case 2 is at most PP’ + P’P + PQ" + Q"Q 3 + 1/ < 4.63.

We state Lemma 3 without proof. This lemma will enable us to bound the im-
provement gained over Few’s algorithm by ours.

LEMMA 3. (1) IfAeI, BeJ, CeK, theng({A,B, C})-< (31 + f)/7 5
((4- V)/7).

(2) IfAI,CK,g({A,C})<-3+ /c<5-0.5.
(3) IfAI,BJ,g({A,B})< + (V/2) + /(5/2)t < 3 0.25.
(4) IfAI,g({A}) <- + /2 <3-0.25.

In cases (1) and (2), there are two points on I (3 K and ((1 + 2.2) (g value))2
(4- f)/14. In cases (3) and (4), there is one point on I t.J K and ((1 + 2.1)-
(g value))/1 > (4 f)/14.

Now the analysis of Local_Strips is simple. Within each w w’ rectangle, consider
the central 2w’ w’ subrectangle, and the upper and lower ((w/2) w’) w’ subrec-
tangles. Each contains at most one point.

DEFINITION. IfXis a point in an w w’ rectangle R, let d(X) be the signed vertical
distance between X and R’s horizontal center line (positive ifX is above the center line,
negative if below).

Let T be the set of at most three points in R. Then the Strips cost associated with
the points T in R is

w’+2 Z Id(X)l.
XT

Where G and H are the midpoints of the vertical sides of the w w’ rectangle, let h(T)
be the length of the shortest G- H path containing all the nodes in Tnthis is the
Local_Strips cost for R. Our goal is to establish a positive lower bound on

w’+2 Id(X)l ]-h(T),X T

the savings we obtain over Strips.
THEOREM 2. Let T be a set ofpoints in a w w’ rectangle such that at most one

has d(X)

_
w’, at most one has d(X) <= -w’, and at most one has d(X) < w’. Let k

be the number ofX T such that Id(X) >-- w’. (k { 0, 1, 2 }.) Then ifk { 1, 2 },

[w’+2 Exit[ d(X) I]-h( T) >_4-V
k 14

Proof. By the triangle inequality, w’ + 2 xT [d(X) 1] h(T) cannot increase
if d(X) decreases for any X e T. Thus we may assume that

d(X)_ w’ d(X)= w’,

d(X) <- -w’ d(X) -w’, and

d(X) < w’ d(X) O.

In other words, the points lie somewhere on the top, center, or bottom segments of a
2w’ w’ rectangle. Without loss of generality, we may assume that there is a point Xe
T with d(X) w’.

Now we use Lemma 3, which applied to 2 rectangles. If k 2, we are in case
(1) or (2) and then w’+ 2 Yxr Id(X)] 5w’. Cases (1) and (2) of Lemma 3
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imply that

14

If k 1, w’ + 2 Yx r d(X) 3w’ and cases 3 and (4) imply that

[w’+2,xrld(X) l]-h(T) w’ (4- f)k >---> w’
14

THEOREM 3. Choose c and a to satisfy

2(3- V)c= a, 1/_ (4- lf

Thus c (0.548, 0.549) (so that < c/VT6 < and a < 1.3916 (and a/V < 0.984).
Then the length ofthe shorter Local_Strips tour is at most tfff + 11.

Proof. Let K be the number ofpoints at a distance at least w’ away from the center
lines of the original strips, and let K’ be the number at a distance at least w’ away from
the center lines of the displaced strips. We make the following crucial observation. Since
c =< fi-6/4 w’ + w’ -< w/2, every point contributes to either K or K’ (of course some
may contribute to both). Thus K + K’>= n.

By Theorem 2, the savings achieved by the first Local_Strips tour over the first
Strips tour is at least K. w’(4 1/)/14; the savings achieved by the second Local_Strips
tour over the second Strips tour is at least K’. w’(4 1/)/14. Since K + K’ >= n, the
total length of the two Local_Strips tours is at most

(22f+22) ] (4 f) 22+f 2V-(4-1/) c

14

22 + 2f(1/_ (4- f) )28-------- c
22 + 2af-,

and therefore the shorter one has length at most a/- + 11.
THEOREM 4. The length ofthe shorter tour through &v is at most cV + 11.
Proof. The proof is immediate from Theorems and 3 and the fact that

2c(3 V) a.

5. Conclusions. We have improved Few’s bound by more than 1.6 percent. Ob-
taining a slightly better improvementmat the cost ofcomplicating the algorithmmis not
too difficult. For example, many points may contribute to both the Kand K’ ofthe proof
of Theorem 3, yet we exploit only the fact that K + K’

_
n. A second potential method

is to prove a stronger version ofTheorem 2as it stands, in the worst case configuration
of Lemma 3 (1), the three points A, B, and C all lie within distance Dn of each other.
Probably the most promising method is to drop Lemmas 2 and 3 altogether, and not
divide the horizontal strips into vertical regions at all, but instead simply to run L2-Strips
in each strip; L2-Strips is the variant of Few’s algorithm that visits the points in the same
order but runs directly from one point to the next, using diagonal edges. We should be
able to bound, the total length favorably as long as no points are within a distance Dn or
less from each other.

Small improvements in the constant are probably uninteresting. However, improving
the bound by, say, 10 percent, would require interesting new ideas.
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This traveling salesman improvement immediately implies improvements in the
known bounds for minimum spanning tree (MST) and minimum weight perfect matching
(for even N) in the unit square. A tour minus one edge is a spanning tree; thus the MST
on N points has length at most c/- + 11. If N is even, then alternate edges of a tour
form a perfect matching. Choosing the better of the two implied perfect matchings, we
infer immediately that the length of a minimum weight perfect matching is at most
(a/2) r- 4- (11/2).

To prove that the lower bound based on the tessellation by equilateral triangles is
tight (for any of these three problems), we might consider, not a unit square, but an
equilateral triangle with unit-length sides. Let the lth triangular number be 1(1 + 1)/2.
IfNis the (2 k + 1)st triangular number (2 + 1)(2 + 2)/2, the equilateral triangle can
be tessellated with N points perfectly--there are no boundary effects, as there are in the
cube--and this might aid in a proof that the tessellation is precisely the worst case.
Probably the MST problem is the easiest here. With MST, we might be able to use a
simple MST algorithm to deduce the configuration that results in the longest MST.

Appendix. Proof of Lemma 1. Let U be the union of the open disks of radius D
about X and Y. (See Fig. 2.) No points of S other than X and Y lie in U. Note that

min { ZX+XY+ YW, Z Y+ YX+XW} -(ZM+MW)
ZX+XY+ YW+ZY+XY+XW<- -(ZM+MW)

2

g(Z + g(W)
=D+

2

FIG. 2
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where g(P) PX + PY 2PM. We will show that if P is not in U, g(P) <= 2D
Df, thereby proving the lemma.

Fix r

_
0 and let us try to maximize g(P) over all P such that PM r. It is not

difficult to show that every point at distance less than (f/2)D from M lies in U; thus
we may assume r

_
f/2)D. Let I be the (infinite) line through X and Y and let 1" be

the line perpendicular to l that passes through M. Let A be a point on l* such that
AM r and let B be a point on l such that BM r. Then BX + BY 2BM 2r. Let
d=AX+AY> 2r.

Since BX + BY< d and AX + AY d, the ellipse { C e 2 CX + CY <= d} contains
A and B and therefore every point on the disk { E gq21EM =< r }. Thus PM r =
PX+ PY

_
d. Furthermore, the intersection of { CI CX+ CY d} and { CI CM r} con-

sists of two points alone, A and A’s reflection through 1. Thus given r, the worst case
occurs on l*.

Yet decreasing PMcannot decrease PX + PY- 2PM. Consequently the maximum
occurs when r (/2)D and P lies on the common intersection of l* and the two
circles of radius D about X and Y. There,

Thus g(P)

_
2D DV for all P not in U. [3

Acknowledgments. Joan Boyar and Barry Merriman helped to prove the crucial
Lemma 2, which the author originally thought would be too hard to prove. Without the
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A LINEAR REORDERING ALGORITHM FOR PARALLEL PIVOTING
OF CHORDAL GRAPHS*

JOSEPH W. H. LIU AND ANDRANIK MIRZAIAN"

Abstract. This paper provides an efficient algorithm for generating an ordering suitable for the parallel
elimination of nodes in chordal graphs. The time complexity of the reordering algorithm is shown to be linear
in the size of the chordal graph. The basic parallel pivoting strategy is originally by Jess and Kees IEEE Trans.
Comput., C-31 (1982), pp. 231-239 ]. The relevance ofthe reordering to parallel factorization ofsparse matrices
(not necessarily chordal) is also discussed.

Key words, chordal graph, sparse matrix, parallel pivoting, zero deficiency, sparse elimination

AMS(MOS) subject classifications. 65F50, 65F25

1. Introduction. In this paper, we consider the parallel pivoting problem, which
arises in the exploitation of parallelism in the direct solution of large sparse symmetric
positive definite linear systems. For a given large sparse symmetric matrix A, we want
to determine an ordering which is appropriate in terms ofpreserving sparsity and exploiting
parallelism in its Cholesky factorization. Parallel pivoting strategies have been studied
by Alaghband and Jordan [1], Betancourt [2], Calahan [3], Huang and Wing [7], Jess
and Kees [8], Peters [10], and others.

A modular approach has been used by Jess and Kees 8 ], which determines a good
fill-reducing ordering P for A, and then finds an equivalent reordering/5 (that is, one
that preserves the filled graph) suitable for parallel elimination. Since PAP and ff Aft
have the same set of fills,/ has the same fill-reducing property as P. Moreover, it is well
known that the filled graph of PAPr (that is, the graph of G(PAPr) together with the
fill edges due to factorization) is chordal [11 ]. Therefore, the problem is reduced to
finding a perfect elimination ordering for a chordal graph, which is appropriate for parallel
elimination. In [8 ], Jess and Kees have also provided such a parallel pivoting strategy
for chordal graphs. It is shown in [9] that the resulting reordering has the desirable
property of minimizing the number of parallel elimination steps among the class of
perfect orderings (orderings with no file).

In this paper, we provide an efficient algorithm to generate this parallel pivoting
sequence. Central to the algorithm is an effective method to identify nodes with zero
deficiency in a given chordal graph. The method is based on an interesting property of
perfect elimination orderings. Repeated use ofthis zero-deficiency test results in an overall
reordering algorithm. We prove that the time complexity of this new algorithm is linear
with respect to the number of nodes and number of edges in the chordal graph.

The reader is assumed to be familiar with basic notions related to chordal graphs.
The book by Golumbic [6] contains an excellent treatment of the subject. Moreover,
graph-theoretic notions relevant to sparse matrix computation are also assumed. The
reader is referred to George and Liu [5].

An outline of this paper follows. In 2, the parallel pivoting strategy by Jess and
Kees 8 for chordal graphs is reviewed. In 3, we provide a simple, efficient zero-
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deficiency test on nodes in a given chordal graph. We apply this result in 4 to obtain
a linear time reordering algorithm that will produce a desirable parallel elimination se-
quence. Section 5 contains the concluding remarks.

2. Review of parallel elimination algorithm by Jess and Kees.
2.1. The parallel elimination algorithm. A graph is called chorda! (or triangtdated)

ifevery cycle oflength 4 or more has a chord; or equivalently, if it has a perfect elimination
ordering 6 ]. It is known that a perfect elimination ordering of a chordal graph can be
found in linear time 6 ], 12 ]. In 8 ], Jess and Kees provide a reordering scheme tailored
for parallel elimination of a chordal graph. In 9 ], a minor variant of their strategy is
shown to produce orderings with minimum number of parallel node elimination steps
among all perfect elimination orderings. It is indeed a relevant scheme for parallel elim-
ination.

In this section, we briefly review the Jess and Kees’ strategy in preparation for our
algorithm in the next section. We first introduce some terminology. Let A be a given n-
by-n sparse symmetric positive definite perfect elimination matrix, that is, its graph G(A)
is chordal. We shall use G(A) and G interchangeably to refer to this chordal graph. For
convenience, we shall also use G to refer to the set of nodes in this graph.

Two nodes are said to be independent if they are not adjacent. A node is said to
have no (or zero) deficiency if its adjacent set is a clique ]. In the literature, such a
node is also referred to as simplicial [6 ]. It is well known that a chordal graph always
has one node with no deficiency. Furthermore, if the graph is not a clique, there are at
least two such independent nodes. Jess and Kees make use ofthis observation to develop
a parallel pivoting strategy [8, procedure "e-tree", p. 233 ], which we describe in our
terminology below.

ALGORITHM 2.1. Parallel_Elimination (G) G chordal graph }
begin

Go G;
i’=0;
while G do begin

S; := the set of all nodes with no deficiency in Gi;
R a maximum independent subset ofS
Gi + := Gi Ri { eliminate the nodes of Ri from Gi }
i:=i+l

end

end.

It should be clear that we can exit from the "while" loop whenever the subgraph
G; becomes a clique. In such a case, each subsequent R (forj >= i) consists of only one
node and the remaining nodes can be numbered in any order. Associated with the al-
gorithm is a sequence of chordal graphs:

Go,G1, ,Gin,

and a sequence of subsets of independent nodes:

Ro,R ,R,,

where each Ri is a maximum independent set of nodes with no deficiency in Gi.
It is worthwhile to point out that Jess and Kees 8 make the important observation

that the set Si consists of disjoint cliques. This implies that any maximal independent
subset of S is maximum. Therefore it is sufficient to consider maximal independent



102 J. W. H. LIU AND A. MIRZAIAN

subset Ri of Si. Intuitively, the algorithm eliminates as many nodes in "parallel" as
possible in each step. This explains the appropriateness of the scheme for parallel fac-
torization.

We include an example in Fig. 2.1 with eight nodes. On applying Algorithm 2.1,
the following shows one possible choice of independent subsets:

Step & Selected Ri
0 {a,b,c,f,h} {a,c,f,h}

2 {e,g} {g}
3 (e) {e}

The sequence of chordal graphs { Gi } is also given in Fig. 2.1 to illustrate the algorithm.
Implicit in Algorithm 2.1 is that nodes are reordered in the order as given by the

sequence { Ri }. Within each subset Ri, the nodes can be numbered in any order. Note
that the resulting reordering from this algorithm may not be unique due to the different
choices of the independent subset Ri at each step, and the freedom to number nodes
within Ri.

The description ofAlgorithm 2.1, as it is, does not offer an efficient implementation.
Indeed, Jess and Kees [8, p. 238] point out that in this reordering algorithm, "the major
source of complexity is the test on zero deficiency." But they have not addressed this
zero-deficiency test problem. Our contribution in this paper is to provide a linear-time
algorithm to determine a parallel pivoting sequence as specified by Algorithm 2.1.

01 02
FIG. 2.1. Sequence ofchordal subgraphs by Algorithm 2.1.

2.2. Use of the parallel elimination reordering for nonchordal graphs. Although
Algorithm 2.1 is designed for chordal graphs, it is actually applicable in a more practical
setting to parallel sparse Cholesky factorization. Consider a given sparse matrix A with
graph G(A). Although the graph G(A) is most likely nonchordal, it is well known that
its filled graph is chordal 11]. Indeed, the ordering inherited from A will clearly create
no additional fill on the filled matrix, and hence is a perfect elimination ordering. The
parallel elimination ordering of Algorithm 2.1 is, therefore, applicable to the filled graph
ofA.

Ideally, we want to find an ordering for the matrix A, which is appropriate for both
reducing fill and exploiting parallelism. A modular approach to this is to determine first
a good fill-reducing ordering, which defines the filled graph. Then, a reordering for this
filled graph can be obtained by Algorithm 2.1, and the reordering minimizes the number
of parallel elimination steps among all perfect elimination orderings of the filled graph.
In other words, the competing issues of fill reduction and parallelism exploitation are
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being dealt with in separate steps. We may view this modular approach as having the
following phases.

(a) (Ordering) Determine a fill-reducing ordering P for the given G(A);
(b) (Filled Graph) Form the filled graph of G(PAPt) explicitly or implicitly;
(c) (Reordering) Apply Algorithm 2.1 to the filled graph (which is chordal) to

obtain an equivalent reordering ff of G(A).
It should be pointed out that the problem of finding good orderings for reducing

fill and exploiting parallelism is still under active research. The modular approach dis-
cussed here has the advantage of being simple and efficient. An alternative approach is
to find such orderings directly from the structure of G(A). The work in ], 2 explores
this direct approach.

3. Zero-deficiency test. The key to Algorithm 2.1 is the step that determines a
maximum independent subset Ri of nodes with no deficiency in the current chordal
subgraph Gi. In this section, we provide a linear-time algorithm to find such an inde-
pendent subset based on an efficient zero-deficiency test. We first provide a characterization
of nodes with zero deficiency using a perfect ordering of the given chordal graph.

Let G G(A) be the given chordal graph and x l, X2, Xn be a perfect elimination
node sequence. We shall use the notation Adja(x) for the adjacent set of the node xj. in
G. Following Rose 11 ], we define the monotone adjacent set of the node x to be

Madj(x) { xi-Adj(xj) i>j}.

We shall refer to deg(xj) Adj(xj) and Mdeg(xj) Madj(xj) as the degree
and monotone degree ofxj, respectively. When the chordal graph G is clear from context,
we shall omit the subscript G and use Adj(x), Madj(x), deg(x), and Mdeg(xj) instead.

For each node xj, define J} as

j= min { kl xkeAdj(xj)U {x} }.
In matrix terms, j is the first nonzero (including the diagonal) in the jth row of the
sparse matrix A.

LEMMA 3.1. Madj(xf.) t_J {xf} c__ Adj(x) t3 {x},forj 1, n.

Proof. Let k J). Since the sequence is a perfect elimination sequence, when Xk is
eliminated, Madj(Xk) is the set of its adjacent nodes at the elimination time and is
therefore a clique. But xje Madj(x) so that x is adjacent to every node in
Madj(Xk) { xj }. [2

LEMMA 3.2. The node xj has no deficiency in the chordal graph G if and only if
Adj(x) tO {x}

___
Madj(x)tO {xf}.

Proof. "only if" part. Let k J). Assume that the node x has no deficiency in the
chordal graph G. Since x Adj(xj) tO {x }, and Adj(x) tO {x } forms a clique in G,
we have

Adj(xj)U {xj} _Adj(Xk)U {xk }.
The result then follows from the fact that x is the first adjacent node ofxj in the perfect
ordering.

"if" part. Assume that the condition on adjacent sets ofx and xf is given. Again,
let k J). Since Madj(x) is the set of adjacent nodes ofx at its elimination time, it,
together with the node x, forms a clique in G. This implies that its subset Adj(x) tO
{ xj } must also be a clique in G. [2

COROLLARY 3.3. If J) j, then the node xj has no deficiency in the chordal
graph G.
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COROLLARY 3.4. The node xj has no deficiency in the chordal graph G ifand only
ifAdj(xj) (.J {xj} Madj(xfj) (.J {xfj}.

Corollary 3.4 provides an efficient zero-deficiency test. By definition, a node v has
no deficiency if and only if

Adj(v)U { v} _Adj(w)U { w},
for every node w adjacent to v. Corollary 3.4 makes use ofa perfect elimination sequence
to perform the deficiency test using (at most) one adjacent node of v. An even simpler
test is provided in the next theorem based only on node degrees.

THEOREM 3.5. The node xj has no deficiency in the chordal graph G ifand only if
deg(xj) Mdeg(xfj).

Proof. The "only if" part follows directly from Corollary 3.4. The "if" part follows
from the results of Lemma 3.1 and Corollary 3.4. D

For a given chordal graph G with a perfect elimination ordering, we can use Theorem
3.5 to determine the set of all nodes with no deficiency. The following algorithm adapts
this idea to find a maximum independent subset R ofnodes with no deficiency. As before,
we assume that x l, x2, "", x, is a given perfect elimination sequence for G.

ALGORITHM 3.1. No_Deficiency G R)
begin

R:=;
for j:= ltondo

compute deg(xj), Mdeg(xj), andj;
unmark all nodes in G
forj’= ltondo

if xj is unmarked and deg(x) Mdeg(xf)
then add xj to R and mark nodes in Adj(x)

end.

The marking involved in the algorithm is to ensure that the set R is independent.
It is interesting to note that in Algorithm 3.1, if we omit the zero-deficiency test on
degrees, it is essentially the algorithm by Gavril 4 to determine a maximum independent
set (not necessarily of no deficiency) of a chordal graph. The linear time complexity of
Algorithm 3.1 is clear and we state the following result without proof.

THEOREM 3.6. Algorithm 3.1 finds a maximum independent subset ofnodes with
no deficiency in G in O( n + e) time, where n is the number ofnodes and e the number
ofedges in the given chordal graph.

4. A linear reordering algorithm. It is easy to incorporate Algorithm 3.1
("No_Deficiency") into the basic parallel elimination algorithm of 2. The "while"
loop in Algorithm 2.1 can now be replaced by the following"

while G do begin
No_Deficiency (Gi, Ri );
Gi + := Gi Ri;
i:=i+1

end

Unfortunately, this simple replacement does not make the time complexity of the
overall parallel pivoting scheme linear. We need some more fine-tuning ofthe algorithm.

Recall in Algorithm 2.1, at step i, G; is the chordal graph under consideration. We
use the notation Si to represent the set of all nodes with no deficiency in Gi. Since Ri
contains independent nodes, if v Ri, the adjacent nodes of v can be excluded from R.
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The next observation can be used to further discard nodes for membership consideration
in Ri. It says that we only need to look at the adjacent nodes of Ri_ in the search for
the next independent set R.

THEOREM 4.1 [8]. For > O, R
_

Si Adj(R_I) N Gi.
COROLLARY 4.2. For > O, Ri <= R-I.
Proof. Consider a node x in R_ i. Since Adj(x) fq Gi is a clique and nodes in Rg

are independent, by Theorem 4.1, at most one vertex from Adj(x) fq G can belong to
R. Therefore, the number of nodes in R cannot exceed that ofRi- 1. l--I

Before we give the overall reordering algorithm, we first discuss the computation of
J, a quantity required for the zero-deficiency test of node xj. We need a fast way to
compute and update Jj for each j, since the value ofJ) may change as edges and nodes
are being removed from the graph during the course ofthe algorithm. In order to overcome
this problem, we presort each adjacency list in ascending order of the node indices ac-
cording to the given perfect elimination ordering. All adjacency lists can be sorted in
O(n + e) time by a careful application ofbucket sort. After having adjacency lists sorted,
then for each node xj we can find the node xfj in O(1) time, since xfj is either x or the
first node in the adjacency list ofx, whichever has the smaller index. It should be added
that in practice, the adjacency lists are often already in this desired ascending order (see,
for example, 9 ]).

ALGORITHM 4.1. Parallel_Elimination (G) { G chordal graph }
begin

determine a perfect elimination sequence x l, x2, "", xn

s0:= ;
for j to n do begin

sort Adj (x) in ascending order;
compute deg (x) and Mdeg (xj)
mark (x) := 0;
if deg (x) Mdeg (xf) then add x to So

end;
i’=0;
G0"= G;
while G # J do begin

Ri:= ;
Si+:=;
for each xk ofS do begin

if mark xk then begin
add xk to R;
for each node xj Adj,(x) in ascending order do begin

remove xk from Adj,(xj) and updateJ if necessary;
deg (xj) := deg (xj)
ifj < k then Mdeg xj := Mdeg x
if deg (xj) Mdeg (xf) and mark (xj) <=

then add xj to S/1 and set mark (xj) := +

end
end

end;
Gi+l := Gi- Ri
i:=i+1

end
end.
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At step of the algorithm, the main "while-loop" determines the sets Ri and Si /
simultaneously, using S;. It makes an implicit use of Theorem 4.1 in the determination
of Si +1. The marker vector mark(.) is employed in the algorithm to ensure the correct
selection of nodes in Ri and Si / 1.

During the execution of step i, for each node xj in Gi, mark(xj) { O, i, + }.
mark(x2) means x2 Si Si / (unless 0); and mark(x) + implies x. e
Si/ 1. Furthermore, ifxj is not zero deficient in G, then mark(x2) 0. A node xk in Si
with mark(xk) > is not included into R since its marker value must be + 1. This
means Xk was adjacent to some node Xk, which was removed from the graph into Ri at
an earlier time ofstep i. At the end ofthis step, Si / contains all nodes with no deficiency
in the (chordal) subgraph Gi Ri. Moreover, at the end of the algorithm, we have
mark(x) if and only if x2 Ri.

There are two places in the algorithm where the zero-deficiency test of the form
deg(x2) Mdeg(xfj) is performed. It should be emphasized that at the point of testing,
both deg(xj) and Mdeg(xf) have their correct values. The correctness of deg(x2) is
rather obvious. The correctness of Mdeg(xfj) follows from the fact thatJj =< j and that
the degree update "for-loop" goes through nodes in ascending order. This implies that
Mdeg(xf) has already been updated.

The time for each operation in the algorithm can be charged to either a node or an
edge of the graph so that the total charge received by each node or edge is O(1). This
guarantees that the time complexity ofthe algorithm is O(n + e). Indeed, it is clear that
for each x in R;, the loop for degree update of nodes in Adjri(xg) and membership
consideration of Si/ can be done in time proportional to IAdjr(xk) l. Summing over
all nodes, we have it bounded by O(e). Next, consider the total time for membership
selection of Ri from Si for all i. By Theorem 4.1, this total time is bounded by

m

IS01 / ISil <=n+ , IAdj(R-)I
i=1 i=1

<-n+ Iadj(x)l =O(n+e).
x

Furthermore, since a perfect elimination ordering of a chordal graph can be obtained in
linear time [6], [12], we have thus proved the following theorem.

THEOREM 4.3. Given a chordal graph G with n nodes and e edges, Algorithm 4.1
correctly computes a parallel elimination ordering ofG in O( n + e) time.

5. Concluding remarks. Algorithm 4.1 is a linear time reordering algorithm that
generates a perfect ordering for a given chordal graph suitable for parallel elimination.
Indeed, it may be regarded as an efficient implementation ofthe parallel pivoting strategy
by Jess and Kees [8].

This reordering scheme can be used in the parallel factorization of sparse matrices
(whose graphs are not necessarily chordal). In such a case, this algorithm should then
be applied to the filled graph ofthe given sparse matrix. The resulting equivalent reordering
will be appropriate for the original matrix in terms of both preserving sparsity and ex-
ploiting parallelism.

Acknowledgment. The authors thank Professor Alex Pothen for his comments.
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PARALLEL ALGORITHMS FOR ZERO-ONE
SUPPLY-DEMAND PROBLEMS*

NOAM NISAN" AND DANNY SOROKER:

Abstract. A technique that yields fast parallel algorithms for several zero-one supply-demand problems is
presented. NC algorithms are given for the following related problems:

(1) Given a sequence of supplies a, an and demands b, , bin, construct a zero-one flow pattern
satisfying these constraints, where every supply vertex can send at most one unit offlow to each demand vertex.

(2) Given a sequence ofpositive and negative integers summing to zero, representing supplies and demands,
respectively, construct a zero-one flow pattern so that the net flow out of(into) each vertex is its supply (demand),
where every vertex can send at most one unit of flow to every other vertex.

(3) Construct a digraph without self-loops with specified in- and out-degrees.
The results are extended to the case where the input represents upper bounds on supplies and lower bounds

on demands.

Key words, parallel computation, graph theory, network flow

AMS(MOS) subject classifications. 68Q15, 68R10, 90B10

1. Introduction. Supply-demand problems are fundamental in combinatorial op-
timization 3 ], 10 ]. In one formulation ofthe problem, the input is a network in which
each arc has a nonnegative capacity, and each vertex has a certain supply or demand
(possibly zero). The task is to find a flow function, such that the flow through each arc
is no more than its capacity and the difference between the flow into a vertex and out of
it is equal to its supply (or demand). This problem is equivalent to the general max flow
problem, and can, therefore, be solved efficiently sequentially 10 ], 14 ], 5 ], but probably
has no efficient parallel solution, since it is P-complete 6 ]. There are, however, many
interesting special cases of this problem the solutions of which do not require the full
power of general max flow.

In this paper we are concerned with several such problems. The first problem we
discuss is as follows: Given a sequence of supplies, a, an, and demands, bl,
bm, construct a zero-one flow pattern satisfying these constraints, where every supply
vertex can send at most one unit of flow to each demand vertex. Equivalently, we can
state this problem as that of constructing a zero-one matrix, M, having ai ones in the ith
row and bj ones in the jth column (for all -< =< n, -< j =< rn). We will refer to this
problem as the matrix construction problem. M is called a realization for the input (,
;). There is a simple sequential algorithm for constructing a realization if one exists 3 ],
[4]: Select any row, assign its ones to the columns having largest column sums, and
repeat this procedure in the reduced problem. If this procedure gets stuck (i.e., some
column sum becomes negative), then no realization exists.

This algorithm, although easy to implement sequentially, seems very hard to par-
allelize. Thus it is natural to ask ifthere is a fast parallel algorithm for this problem. Two
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remarks are relevant to this question. First, the problem can be solved by network flow
techniques. Since the capacities are small (polynomial in the size of the flow network),
there are Random NC algorithms for the problem by reduction to maximum matching
[9 ], [13 ]. Second, there is a simple sequential method for testing whether an instance,
(, ;) is realizable [3], [1]. It is based on partial sums of the sequences, and can be
implemented in NC in a straightforward manner. However, this method does not yield
a way of constructing a realization. This is another example ofthe apparent gap between
search and decision problems in the parallel realm [8].

We present a deterministic NC algorithm for the matrix construction problem. Let
n and m denote, respectively, the number ofrows and columns ofthe realization matrix,
and assume without loss of generality that n

_
m. Our algorithm can be implemented

to run in time O(log4 n) using O(n2. m) processors on a CRCW PRAM, or, alternatively,
in time O(log n) using O( n4. m) processors on an EREW PRAM. In terms ofthe output
matrix M when n O(m) the number of processors is O(IMI .5) and O(IMI 2.5),
respectively (where MI n. m).

The algorithm is based on a careful examination of the network flow formulation
of the problem. It exploits the fact that there are only a polynomial number of cuts that
need to be considered and that this set of potentially min cuts has a natural ordering
associated with it.

The methodology we develop enables us to solve the following two related problems
(with the same time and processor bounds)"

(1) The symmetric supply-demandproblem. Given a sequence ofpositive and neg-
ative integers summing to zero, representing supplies and demands, respectively, construct
a zero-one flow pattern so that the net flow out of(into) each vertex is its supply (demand),
where every vertex can send at most one unit of flow to every other vertex. Notice that
this problem is quite different than the matrix construction problem, since it does not
have a "bipartite" nature.

(2) The digraph construction problem. Construct a simple directed graph with spec-
ified in- and out-degrees. This corresponds to constructing a zero-one matrix with specified
row and column sums, where the diagonal entries are forced to be zero. References 3
and give a simple sequential algorithm when the in- and out-degrees are sorted in the
same order (i.e., a vertex with higher in-degree has higher out-degree). Our algorithm is
the only one we know of for general orders that does not use max flow.

We extend our results to the case where the input represents upper bounds on
supplies and lower bounds on demands.

An outline of the paper follows. In 2 we explain our methodology in detail. We
then state the matrix construction algorithm formally and finally discuss its parallel
complexity (time and processor bounds). In 3 we describe how our techniques can be
used to yield a solution to the symmetric supply-demand problem. Section 4 contains a
description of the algorithm for the digraph construction problem. Finally, in 5 we
describe our method for solving the supply-demand problems when we are given upper
bounds on supplies and lower bounds on demands.

First, a few words about parallel algorithms. Our algorithms use, in various places,
parallel prefix computations. An example of a problem in this category is as follows.
Given a sequence x xn, compute all sums of the form -,... xi. Parallel prefix
computation has been extensively studied in the literature (e.g., 2 ], 12]) and we will
not discuss it in this paper, other than mentioning that it can be solved efficiently in
parallel. Several other tools that we use implicitly are finding connected components
16 and various algorithms on trees 17 ].
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2. The matrix construction problem.
2.1. The slack matrix. Our parallel algorithm is based on a careful analysis of the

network flow formulation ofthe problem. The main tool we use is what we call the slack
matrix which is similar to the "structure matrix" of Ryser 15 ]. In order to define the
slack matrix, we need to look at the solution to our problem by network flow. Given the
input (, ): a

_
a2 - - a,, b

_
b2 - - bm, we construct a flow network N,

as shown in Fig. 2.1. The vertex set consists of a source s; a sink t; and vertices ui, <=_
n, corresponding to rows and vertices v,

_
j _-< m, corresponding to columns. The

arc set contains three types of arcs: for all

_ _
n, =< j _-< m there are arcs (s, u) of

capacity ai; (v, t) of capacity b; and (u, v.) of capacity one.
Let S ’--1 ai ’--1 bj. Clearly the max flow value in N is bounded by S.

Furthermore, a flow that satisfies all row and column sums is of value S. It follows (by
the max flow-min cut theorem that the problem instance (, ) is realizable ifand only
if every directed cut in N has capacity at least S.

Let C (Cs:Ct) be a directed cut in N (i.e., the vertices are partitioned into
two sets, C, C subject to s e C, e Ct). Say C contains x vertices from the set
{ ul, un } and m y vertices from { vl,’", Vm}. Observe that if we replace uj
by ui in C, for some < j, then the capacity of the cut can only decrease. Similarly,
replacing vk by vt in C can only decrease the capacity of the cut, for 1 > k. It follows
that the capacity of C is no less than the capacity of the cut Cx,y, where C,y { s }
{ ul, Ux } t.J { vy+ 1, v,, }. Thus there are only n.m cuts,

{ Cx,y <-x<-n, <=y<-m),

which are potential min cuts. The cut Cx.y is shown in Fig. 2.2. Therefore, necessary and
sufficient conditions for the instance (, ) to be realizable are that for every
_x_n, _y_rn:

capacity (Cx,) ai + , b+ x.y >= S
i=x+l j=y+l

, , a+ S b +x.y>-S
i=x+l

n y, ai- , b+x’y-O.
i=x+l j=l

DEFINITION. The slack of C,y of problem instance (, ;) is

sln,7(x, y) ai- , bj+ x. y.
i=x+l j=l

The slack matrix SLn,7 is the matrix whose i,jth entry is sly,(i, j). For convenience we
will use either the functional notation (sl(x, y))or the matrix notation (SL[x, y] )when
referring to slack.

PROPOSITION 2.1. The instance (-d, 7) is realizable if and only if SLn,7 is non-
negative.

PROPOSITION 2.2. Let (-, 7 be an instance realizable by some matrix M and
assume that sl,7(x, y) O. Then we have thefollowing:

(1) M[i,j] forall <- <=x, <-j <= y;
(2) M[i,j]=Oforallx+ <=i<=n,y+ <-j<=m.
Proof. Since sla,7;(x, y) 0, the cut Cx,y has capacity S, which means that in any

max flow forward arcs (1) are all saturated, and backward arcs (2) all have zero flow.
This situation is shown in Fig. 2.2.
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FIG. 2.1. Flow networkfor solving the O-1 matrix construction problem.

FIG. 2.2. A tight cut--sln,7(x, y) O. Allforward arcs are saturated; all backward arcs haveflow zero.

If sln,3(x, y) 0, we will call Cx,y a tight cut. Proposition 2.2 shows that existence
of a tight cut simplifies the solution considerably. In fact it gives rise to the following
divide and conquer approach. If Cx,y is tight, constructing a matrix M[ 1" n, 1" m for the
original problem is reduced to constructing the two submatrices, M[x + l’n, l’y] and
M[ :x, y + l’m]. Of course, we are not always lucky enough to have a tight cut. Our
approach is to perturb the input so as to improve our luck! Here is a high-level description
of our algorithm:

Perturb the inputs, (, ). Call this new instance (, ).
(2) Recursively solve the instance (3, fl). Call the solution M’.
(3) Correct the matrix M’ to obtain a matrix, M, which solves the original instance,

(, ;).
How do we perturb an instance? A basic perturbation can be viewed as shifting one unit
from the poor to the rich in order to make the situation tighter: subtract one from ak
and add one to at for some k > 1. We do not allow that a perturbation will change the
ordering ofthe ai’s, so it is necessary that ak > ak+ and at < at- before the perturbation.

Remark. We will be discussing only perturbations of the row sums (the ai’s). All
this discussion holds for perturbation of the column sums as well.

PROPOSITION 2.3. Let (-d, 7 be a problem instance, and let , - be obtained by
shifting one unit from ak to at for some k > I. Then sl,-(x, y) sl,7(x, y) if_

x < k, and sl,(x, y) sl,(x, y) otherwise.
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Proof. This can be seen by looking at the formula for sl.
This proposition shows that a basic perturbation reduces the slack of a certain set

of cuts, and leaves the rest unchanged. This observation is the basis for our algorithm.

2.2. One phase of perturbations. Achieving poly-log recursion depth for the basic
algorithm described in the previous section is a nontrivial matter. The reason is that it
is hard to control which cut or cuts will become tight. Furthermore, since we have limited
ourselves to perturbations that do not change the ordering of the ai’s, it is not clear that
a tight cut can always be obtained.

Say we are shifting units from ak to at (for some k > l). How many units can we
shift? Viewing the unit shifting as a sequential process (i.e., shifting one unit at each time
step), we can shift until one of three things happens:

al becomes equal to a_ .
(2) ak becomes equal to ak+.
(3) sln.7(x, y) becomes zero, for some =< x < k.
In case (3) progress is made, since a tight cut is created, and we can split the problem

into two smaller problems. What about the first two cases? We observe that we have
possibly reduced the number of different ai values. This observation is the key to our
approach for performing perturbations.

DEFINITION. The complexity ofan instance (-, ), denoted by comp (, ), is
the product of the number of different ai values and the number of different bj values.

Our parallel algorithm works in phases. The input to a perturbation phase is an
instance of certain complexity, say K, and the output is one or more instances, each
having complexity bounded by c. K, for some constant c < 1. Finally, if the complexity
of the input is less than a certain constant B, we construct a realization for it (this is the
base case). Since the complexity ofthe input is initially bounded by n. m, it follows that
the total recursion depth is logarithmic in n. m. We proceed to describe one perturbation
phase. In this discussion we will derive the constants c and B. For better exposition we
will first describe a phase as a sequential process. The parallel implementation will be
explained later.

In each phase either row sums or column sums are perturbed. The sequence that is
perturbed (row or column sums) is that which has a larger number of different values.
We will discuss a phase in which row sums are perturbed. Phases in which column sums
are perturbed are essentially identical.

A phase starts by selecting a consecutive set of active rows, { h, h + l, l }. The
parameters h and I depend on the input, , ), and its complexity K, and will be derived
later. Let L a/ and H ah- . The perturbation is performed as follows. Repeatedly
shift units from the lowest active row (initially row l) to the highest active row (initially
row h). A row becomes inactive, and stops sending or receiving units, when its row sum
either drops to L or reaches H. The phase terminates when one of two things happens:

(1) At most one active row is left.
(2) sl.7(x, y) becomes zero, for some h -<- x < 1.
In case no tight cuts have been obtained, but the row sums of all the active rows

(except, possibly, one) have become either L or H. Therefore the number of different
row values decreases.

In case 2 one or more tight cuts are created, and the instance can be split, using
Proposition 2.2, into two smaller instances ("smaller," in this case, means less rows and
lower complexity).

Let a, 3, and 3’ be the number of different values in the sets {a,..., ah-},
{ ah, "", a } and { a/ , an }, respectively. We want to select these parameters so
as to minimize the complexity of the outputs of the following phase.
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Case 1. The number of different row sums remaining is bounded by a + "g +
(since the values corresponding to active rows disappeared, except for at most one).

Case 2. Zero slack is obtained for one or more rows in the range [h, !- ]. A
simple calculation shows that the number ofdifferent row sums in the resulting instances
is bounded either by a +/3 + or by t3 + " + 1.

Thus we need to minimize the maximum of a +/3 + 1, a + 3’ + 1, and/3 + 3’ +
subject to a +/3 + 3’ K (where K comp (, ;)). The solution is, of course, to have
a, r, and 3’ as equal as possible, i.e., all roughly K3. From this calculation we can see
that the complexity can be reduced by these perturbations as long as the number of
different row values is more than five.

To summarize, ifthe input to a phase has complexity K, the outputs have complexity
bounded by 2K/3] + 1. Thus the total number of phases is O(log (n. m)). The base
case is any instance with at most five different row values and five different column
values.

Next we discuss the parallel implementation of one perturbation phase. The first
step is to calculate the new row sums and slack matrix under the assumption that none
of the cuts become tight. If this new slack matrix is strictly positive then, indeed, we are
in Case 1.

Let p be the initial number ofactive rows (p h + 1). After the phase (assuming
Case 1), there will be q rows of value H, p q + rows of value L and one row ofvalue
I, where H > I

_
L. q and I are easy to calculate:

Z,_h(ai-L)]q--
H-L

I= , (a-L) mod (H-L).
i=h

Let mi min { sln,-(i, y) =< y -< m }, and let m be the new minimum slack in row
after the phase is completed (assuming Case 1). Then we have the following:

Forh_i<h+q m=mi- , (H-a.);
j=h

Forh+q<i<l m’= mi , (aj L).
j=i+l

If all the m are positive, then we are probably in Case 1. If not, we need to detect
at what "timestep" (during the "sequential process") the first tight cut was created. This
turns out to be a simple task for the following reason. If we plot the value of any entry
in the slack matrix as a function of time, it decreases by one unit each step until some
point in time, and remains constant from that point on. Thus the rows where the first
zero slack occurs are the rows for which m is minimum among the rows that have
m’

_
0. The total number of units shifted in the phase is this minimum m value. It is

easy to compute the new row sums given the number of units shifted.
In Cases and 2 we need to calculate the number of units shifted from rowj to row

i, for every h

_
< j

_
1. (These numbers will be used later, in the correction phase.)

This calculation can be performed by a simple partial-sums computation.

2.3. Correcting a perturbed solution. After a realization is obtained for the perturbed
instance we need to correct it in order to obtain a realization for the original instance.
Clearly the required task is to shift units back to their original rows. The rows participating
in the shifting of units are divided into two setsthe donors and the receivers, where
donors shift units to the receivers during the perturbation phase, and get them back at
the correction phase. Note that no row is both a donor and a receiver in any given phase.
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Let s(j, i) be the number of units shifted from the donor j to the receiver in the per-
turbation phase.

DEFINITION. Let M be a realization matrix. Sliding a unit from row to row j
means changing M[i, k] from one to zero and M[j, k] from zero to one, for some
column k.

LEMMA 2.1. Given any realization M’ oftheperturbed instance it is always possible
to correct it by sliding s(j, i) unitsfrom receiver to donorjfor all receivers and donors.

Proof. Again it is convenient to view the process of sliding units as a sequential
one. Assume that some of the units have been slid, but less than s(j, i) units have been
slid from row to row j. Call the current matrix M. We will show that it is possible to
slide a unit from row to row j in M, which proves the lemma.

Since units were shifted from rowj to row in the perturbation phase, it is the case
that a was no larger than a before the phase began. Other perturbations in which rows
and j might have participated only increased the row sum of and decreased the row

sum ofj. Now, since less than s(j, i) units have been slid from row back to row j, it
follows that row has more ones than row j in MI. By the pigeonhole principle there is
some column k such that M[i, k] and M [j, k] 0.

The implication of the proof above is that we do not need to be very careful in the
way we slide units. The main problem we need to solve is that conflicts may arise when
we slide many units in parallel. This could happen since a donor might have shifted units
to many receivers, and a receiver might have received from many donors. Our goal is to
break down the problem into a set of independent problems, which can all be solved in
parallel. The first step is to get a formal description of the donor-receiver relation.

DEFINITION. The donation graph G (D, R, E) is a bipartite graph with a vertex,
d D, representing each donor and a vertex, r; R, representing each receiver, such
that the edge { dj., r; } is in E if and only if s(j, i) > O.

The following lemma plays a key role in simplifying the situation.
LEMMA 2.2. The donation graph G is a forest.
Proof. Call a vertex nontrivial if its degree is greater than one. It follows from the

way the perturbations were performed that each vertex v has at most two nontrivial
neighbors, one that became inactive before v, and one that became inactive after v.
Furthermore, all the vertices can be ordered according to when they became inactive.
Therefore G cannot contain any cycles.

We can see that a matching in the donation graph G corresponds to an independent
set of sliding problems. However, there is no guarantee that the edges of G can be par-
titioned into a small set of matchings, since G might have vertices of high degree. Thus
a more subtle partition is required.

DEFINITION. A constellation is a subgraph of a given graph in which all connected
components are stars (where a star is a tree with at most one nonleaf vertex).

LEMMA 2.3. The edges ofa forest can be partitioned into two (edge-disjoint) con-
stellations.

Proof. It suffices to show that the edges of a tree can be partitioned into two con-
stellations. Let T (V, E) be a tree, and take it to be rooted at some vertex P. The level
of a vertex is its distance from P. v is the parent of u if { u, v } e E and v is closer to
P than v. The partition of T into two constellations, C (V, E), C2 (V, E2), is
as follows:

E { { u, v } u is the parent of v, the level of u is even },

E2 { u, v } u is the parent of v, the level of u is odd }.
An example of such a partition is shown in Fig. 2.3
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T C 1

000
FIG. 2.3. Partitioning a tree into two constellations.

Our solution is based on the observation that a constellation corresponds to a set
of independent sliding problems that we can solve in parallel. Therefore our approach
will be to partition the donation graph into two constellations and then to slide units in
two stages. The first stage corresponds to one constellation and the second to the other.

A star in the donation graph corresponds to several donors with a common receiver
or several receivers with a common donor. These two cases are symmetric, so we will
discuss only the first one. In what follows we describe a parallel algorithm that slides all
the units corresponding to a star with receiver R and donors Dl, "-, Dd. Let M be a
realization matrix of the perturbed instance we are about to correct. Let r, d, ..., dd
denote the number of ones in rows R, D, ..., Dd, respectively, and let s s(D, R).
We need to slide si units from R to D, for all -< -< d in parallel. Our approach is to
solve a matching problem in the following bipartite graph, B (X, Y, E):

X= {x M[R,j]= },

Y= {Yi.k <=i<=d, <-k<=&},

E= { { x:, Y,.k ) MtD,,jl =0 ).
LEMMA 2.4. Every matching ofB that covers all the vertices in Y corresponds to

sliding si unitsfrom R to Di, for all <= <= d simultaneously.
Proof. By construction, there are /a__ si vertices in Y, one corresponding to each

unit that was shifted from some D; to R. There is an edge between xj and Y,k ifand only
if a unit can be slid from row R to row Di in column k. The claim is, therefore,
evident. [2]

At first sight it seems that we need to solve a maximum bipartite matching problem,
but closer observation reveals the following lemma.

LEMMA 2.5. Every maximal matching in B is maximum.
Proof. It suffices to show that any matching that does not cover all the vertices in

Y can be extended. The degree of Yi,k in B is, by definition, at least r- d. Before the
perturbation phase the row sum ofR was no less than that of row D. After the pertur-
bations, the row sum ofR increased by at least a= &, and the row sum ofDi decreased
by at least one. Therefore,

d

Forall i,k degree(yi,k)>_r-di > s+ IYI / 1.
i=1
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Since any matching contains no more than Y edges it follows that no partial matching
is maximal, ff]

A maximal matching can be constructed efficiently in parallel 7 ], 11 ]. Our parallel
algorithm is, therefore, the following. Construct the donation graph, and partition it into
two edge-disjoint constellations C and C2. For each component of C construct the
bipartite graph B as described, and find a maximal matching F in it. For all edges ofB
do the following in parallel. If { Xy, Yi,k } e F, then slide a unit from R to Di in column
j. Finally, repeat this procedure on C2 (with the updated matrix).

It follows from Lemmas 2.4 and 2.5 that after performing these operations all the
perturbations (of the current phase) are corrected.

2.4. The base case. The base case for our algorithm is when the number ofdifferent
values of row and column sums is bounded by a constant (five). The problem is then
characterized by the different values: a, .., a5 and b, .., b5 and their multiplicities
n, , n5 and m, , ms, respectively. Let Mbe the realization matrix we construct,
and let M,y be the submatrix ofM induced on the rows with sum ai and columns with
sum by. We construct M in two steps.

Step 1: For each i, j,

_
i, j

_
5, determine the number, F,y, of units in

Step 2" For each i, j, -< i, j -< 5, distribute the F,y units between the different
rows and columns of Mi,y.

We carry out step one by constructing a flow network of constant size, and finding
a max flow in it. The network has twelve vertices: a source s, a sink t, five "row" vertices
u, ..., us, and five "column" vertices v, ..., vs. The arcs are of three kinds: arcs
from s to each u; with capacities n.a, from each vy to t with capacities my-by, and from
each u to each vy with capacities ni’mj. This network is simply the result of taking the
original network flow formulation for this problem, and compressing all "row" vertices
with equal capacity into one vertex, and similarly for "column" vertices. Since this network
is of constant size, a max flow can be constructed in constant time using standard se-
quential methods.

In Step two we convert the solution for the compressed network to a solution for
the original network by distributing the flow along each compressed arc evenly between
the arcs it defines. We do this by providing a solution for the following problem. Construct
M;,y so that x;,y selected rows have each ri,y units, y,y columns have each c,j units and
each of the remaining rows and columns have ri,y and ci,y units, respectively.
First, it is not hard to see that

[Fy+ 1]Fi,j Xi,j Fi,j mod n,

[Fj+ 1]Ci,j
mj

Yi,y Fi,j mod my.

Assume we want each of the first x,y rows and first y,y columns to have l’i,j and Ci,j units,
respectively. Our solution is to put the units of the first row in the first r,j columns, the
units of the second row in the cyclically next set of columns, etc. An example is shown
in Fig. 2.4. A construction for arbitrary sets ofselected rows and columns (not necessarily
the first ones) is obtained from the one described above by simply permuting the rows
and columns appropriately.

Now we are ready to construct a realization M for the base case. The values
determine the xi,j and y,j values. All we need to ensure is that any two rows (columns)



PARALLEL ZERO-ONE SUPPLY-DEMAND 117
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FIG. 2.4. Structure ofM,j with five rows, seven columns, and 13 units. Selected rows and columns are
marked with arrows.

with equal row (column) sums get selected the same number oftimes. This can be done
by selecting the first xi, rows in Mi,, the cyclically next set of x,2 rows in M,2 and so
on, and similarly for columns.

Since -_ Fi,j ni’ai, the total number of rows selected in { Mi,, M,5 } is
an integer multiple of n, and it follows that any two rows with equal row sums are
selected the same number of times. A similar argument holds for columns. Thus the
construction described yields a correct solution for the base case.

2.5. The algorithm. In this section we state the algorithm more formally. First, we
give some notation. I.P is shorthand for "in parallel." Comments are between double
parentheses, l:k denotes a range of indices (in a matrix or a sequence). denotes con-
catenation of sequences. #A is the cardinality of the set A.

procedure MATRIX_CONSTRUCTION (
((This is the recursive procedure for constructing a matrixMwith given row sums and
column sums ;. The row and column sums are assumed to be given in a nondecreas-
ing order.))

Let n length of ; m length of ;.
(2) Compute Vn and V;---the number of different values in and ;, re-

spectively.
(3) If Vn =< 5 and VT; =< 5 then return BASE_CASE (-d, 7).
4 , -, S, SL, pert, zerop) PERTURBATION -d, 7 ).
(5) If not zerop then M’ MATRIX_CONSTRUCTION , ).
(6) Else let x, y be such that SL[x, y] 0 and either ax is in the middle third of

the values or by is in the middle third of the ; values. Do the following I.P:
(6.1) I.PsetM’[i,j]= for alll =<i-<x, 1-<j-<y.
(6.2) I.P set M’[ i, j] 0 for all x < =< n, y < j =< m.
(6.3) M’[x + l’n, l’y] MATRIX_CONSTRUCTION

([x + l’n], [l’yl x).
(6.4) M’[ 1" x, y + 1" m MATRIX_CONSTRUCTION

([l:x] y,/3[y + l’m]).
7 M CORRECTION(M’, S, pert).

(8) Return M.
end MATRIX_CONSTRUCTION
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procedure PERTURBATION -d 7 )
((This procedure computes one perturbation phase. The inputs are row sums and
column sums . The outputs are new row and column sums and , respectively, the
slack matrix SL, the matrix of numbers of units shifted S, a variable pert indicating
whether row sums or column sums have been perturbed, and a variable zerop indicating
if zero slack is obtained.))

Let n length of
(2) Compute V and V;the number of different values in and , respec-

tively. If V
_

VT; then set pert "rows." Else set pert "columns" and
perform the rest of this routine with ;, VT; and rn instead of , V and n,
respectively.

(3) Find h and for which a 4 ah-, at 4 at+, and the number of different
values in (a,..., ah- ) and (ah,’’’, at) are V/3J and IVy/3 ], respec-
tively. Let H ah-

(4) Compute q [,=h (a- L)/(H- L)J and
1 ,[=h (ai- L) mod (H- L).

(5) Compute SL i, j] ((the slack matrix)) for all -< -< n, -< j -< m I.P.
(6) Compute mi min { SL[ i, j] -< j -< rn } for all h -< -< ! I.P.

(H- aj) for all h < < h + q I.P.(7) Compute m mi

(8) Compute m mi / (aj L) for all h + q _-< < I.P.
(9) Ifm>Oforallh _i<lthenset T= ,--h++ (ai-L)+

max { 0, an + I }. Else set T min { mi m <-_ 0 }, and set zerop to true.
(10) Initialize S[ i, j] 0 for all _-< i, j _-< n.
(11) ’, S) SHIFT_UNITS ( ah ..., at), T, H, L
(12) Set (a,, ,ah-,) ’ (at+,, ,an).
(13) Set SL[i,j] SL[i,j] ,k--h max {0, ak ak} for all h =< =< 1,

<=j<=mI.P.
16 Return (, -, S, SL, pert, zerop).

end PERTURBATION

procedure SHIFT_UNITS (-, T, H, L)
((Shifts a total of T units between active rows with row sums . H is the upper bound
on new rows sums and L is the lower bound. Returns the new row sums and the matrix
S of the numbers of units shifted between pairs of rows.))

Denote the elements of by ah, "", at.
(2) Compute for all

_ _
T I.P:

d max j

_
; (ak L) ((donor of unit i))
kj

r,. min j

_
(H- a) ((receiver of unit i)).

k=h

(3) Compute S[ i, j] # { k d i, r j } for all h _-< j < -< l I.P.
(4) Compute o a + r d for all h -< -< I.P.
(5) Return (, S).

ed SHIFT_UNITS

procedure CORRECTION M, S, pert)
((This procedure computes one correction phase. The inputs are a realization matrix
M, a matrix S, containing amounts of units to be slid, and a variable pert indicating if
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units need to be slid between rows or columns. The output is the matrix M after it has
been corrected.))

Let n length of S.
(2) Construct the donation graph, G where

V(G)= {1,...,n}E(G) {{i,j} S[i,j]>O}

(3) For every connected component T of G do I.P:
(3.1) Partition T into two constellations C and C2.
(3.2) Perform SLIDE_UNITS C, M, S, pert) for every connected component

C of Cl I.P.
(3.3) Perform SLIDE_UNITS (C, M, S, pert) for every connected component

C of C2 I.P.
(4) Return M.

end CORRECTION

procedure SLIDE_UNITS C, M, S, pert)
((Units are slid in the matrix M, between one donor and many receivers or one receiver
and many donors. The vertices of the star C are the participating rows/columns ofM.
The matrix S contains the numbers of units to be slid, and the variable pert indicates if
units need to be slid between rows or columns.))

Let c be the unique nonleaf of C ((If C has exactly two vertices let c be any
one of them)). Let 1, la be the remaining vertices of C.

(2) If pert "rows" then let Mc, Mt, Mra be rows c, 1, ld of M. Else
let Me, Mr,, Mra be columns c, l, ld ofM.

(3) If S[ c, l > 0 ((i.e., c is a donor and li are receivers)) then complement Mc,
Mrs, Mr I.P, and set comp to true. Let si max { S[ li, c], S[ c, li] } ((the
number of units to be slid from Mc to Mrs)) for -< =< d.

(4) Construct the bipartite graph, B (X, , E):

X- {xl g[j]- 1},
Y= {Y;.k <-i<=d, <-k<=s},
E { {x, y,.,} Mt, tJl 0}.

(5) Compute F, a maximal matching in B.
(6) For all { x, Yi, } e F do in parallel: set Mc[j] 0 and Mrs[j] 1.
(7) If comp then complement M, Mrs, Mra I.P.
8 Copy M, Mrt, Mrback into their original location in M((see step (2))).

end SLIDE_UNITS

procedure BASE_CASE-d, -((Constructs a matrix M with row sums and column sums , where the number of
different values of elements in and ] is at most five.))

(1) Let ai > > ak and b > > br be the values of the elements of and, respectively, and let n, ..., nk and m, ..., mr be their respective multi-
plicities.

(2) Construct a flow network N with vertices s, t, u, , Uk, V, , Vr and the
following arcs (for all =< =< k, =< j -< l)"

from s to ui with capacity ni.a,

from vj to with capacity mj.b,
from u to l)j with capacity n.ml.
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(3) Find a max s flow in N. For all i, j let Fg, be the flow on the arc Ui, 1)j).
(4) For all i, j construct M, .as shown in Fig. 2.4. There are F, mod ni selected

rows, starting at row (7;-h= Fib mod ni) + (cyclically) and Fi.i mod m
selected columns, starting at column (, Fh,.i mod m) + 1.

(5) Let M be the appropriate concatenation of the M,’s.
(6) Return M.

end BASE_CASE

2.6. Parallel complexity. The time and processor bounds ofour algorithm depend
on how we choose to implement the maximal matching routine. Two competing imple-
mentations are given in [7 and [11], respectively. On a graph with e edges, Israeli and
Shiloach’s algorithm takes time O(log e) and uses O(e) processors on a CRCW PRAM.
Luby’s algorithm requires only O(log2 e) time on an EREW PRAM, but uses O(e2)
processors. It is straightforward, though somewhat tedious, to verify that all the other
operations in one phase of MATRIX_CONSTRUCTION can be performed with the
resources required for maximal matching (in both the implementations listed above).

There are O(log MI phases (as proven in 2.2). In a correction phase for rows
there are O(n)parallel calls to maximal matching on bipartite graphs with O(m2) edges
each. When columns are corrected, there are O(m) calls, each of size O(n2). Thus the
number of processors required is O(nm(n + m)) O( IMI .(n + m)) using [7], and
O(nm(n + m)3) O( IMI .(n / rn) 3) using [11]. When n O(m) the processor re-
quirements are o(Igl ’5) and o(Igl 2.5), respectively.

3. The symmetric supply-demand problem. In this section we will show how the
methodology developed in 2 gives rise to a parallel algorithm to the symmetric problem.
Here the input is a sequence of integers,f

_
f_

_
>_-f, summing to zero. The goal

is to construct a flow pattern in which every vertex can send up to one unit of flow to
any other vertex such that the flow out of v; minus the flow into it isj (for all _-< _-<
n). The goal can be viewed as constructing an n n zero-one matrix M (where M[ i, j]
is the amount of flow sent from vertex to vertex j) such that, for all i, the number of
ones in row minus the number of ones in column isf. Note that changing the values
along the main diagonal does not change the instance Mdescribes, so they can all be set
to zero at the end of the computation.

Again we start with a network-flow formulation for the problem. The flow network
has n + 2 vertices: s, t, v, , vn. Ifj > 0 then there is an arc from s to vi with capacity
f, and iffi < 0 then there is an arc from vi to with capacityJ. Also, there is an arc with
capacity one from v to vj for all _-< i, j =< n. Examination of this network shows that
there are only n potential min cuts: of all cuts containing x vertices with s, the one
containing v, Vx is of smallest capacity. Thus, for this problem we have a slack
vector. An analysis similar to the one in 2 shows that, for all =< x =< n,

x

slT(x) x" n x) fi.
i=l

It is interesting to note that here, in contrast to the matrix construction problem, the
object describing the slacks (a vector of length n) has a different size (and dimension)
than the object being constructed (an n n matrix).

A perturbation phase is performed in the same way as in 2, except that there is
only one sequence being perturbed (in contrast to separate row and column sequences).
Again we have the property (similar to Proposition 2.3) that shifting a unit from j to
(i < j) decreases the slacks at entries i, + 1, ..., j 1, and does not change the other
entries.
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A correction phase is, however, trickier than before. The reason is that if a unit is
to be returned from entry to entry j, it can be done either by sliding a unit from row
to row j or by sliding a unit from column j to column i. The equivalent of Lemma 2.1
holds here, but for each unit only one ofthe two ways ofsliding listed above is guaranteed
to exist. Furthermore, if we simultaneously try to slide units in rows and in columns,
conflicts may arise.

Our solution is to perform the correction in two stages: first slide between rows,
then slide between columns. The first stage is identical to a row-correction phase of 2.
The only difference is that the maximal matching computed does not necessarily cover
all the vertices of one side of the bipartite graph B. After the first stage, we update the
donation matrix (the s(i, j)’s), according to the numbers of units slid in the first stage.
We then perform a column-correction phase for the resulting problem.

LEMMA 3.1. Every maximal matching computed in the second stage is maximum.
Proof. As in 2.3, let R, DI, Ddbe the vertices ofa star in the donation graph.

Let B (X, Y, El be the bipartite graph for sliding between the rows corresponding
to these vertices in the first stage. Let BE (X2, Y2, EL) be the bipartite graph for sliding
between the columns corresponding to these vertices in the second stage. First note that
Y2 is a subset of Y (since Y represents all the units that need to be slid in the correction
phase and Y2 represents the units that remain to be slid after the row-correction stage).
Let r (d.,

_ _
d) denote the difference between the number of ones in row R (re-

spectively, Di) and the number of ones in column R (respectively, Di).
Let Y,k be any vertex in Y2. Let and 2 denote its degrees in B and BE, respectively.

By the same reasoning as in the proof of Lemma 2.5, ; / 2 >-- Yl[ / 1. Let q be the
number ofunits slid in the row-correction stage. Since q is the size ofa maximal matching
in B, it follows that q

_ . Also, by definition, Y21 YI q. Therefore 2 >-- Y2 /
1, which proves the lemma.

COROLLARY 3.1. Every unit that is perturbed gets slid in one ofthe two stages.
The base case is solved along the same lines described in 2.4, but a few more

details need to be handled. The base case is when there are at most five different values,
f > > fs, with respective multiplicities n, , ns. Again we start by finding a max
flow in a constant size network (having seven vertices--s, t, v, -.., v) to determine
the number of units Fi,j, in M,j. Now, contrary to the previous case, F,j need not
be an integer multiple of hi. Therefore, after distributing units evenly between all rows
with the samef value (as described in 2.4), some of these rows will have p units and
some will have p units (for some appropriate p). Similarly, not all the columns with
the same f value will necessarily have the same number of units. We overcome this
obstacle by observing that if andj have the samefvalue, and if row sum is greater by
one than row sum j, then column sum should be greater by one than column sum j.
Therefore, the problem is solved by (using terminology of 2.4) selecting rows and
columns in the same order.

Finally we note that the algorithm for the symmetric problem uses the same resources
(time and number of processors) as the matrix construction algorithm (see 2.6).

4. Digraph construction. In this section we describe our solution for the problem
of constructing a simple digraph with specified in-degree and out-degree sequences. By
"simple" we mean no selfloops and no parallel arcs. Notice that if selfloops are allowed,
this problem is exactly the matrix construction problem described in 2. The
digraph construction problem can be stated as follows. Given two equal-length sequences,
(ol, on) and i, in) (that are not necessarily sorted! ), construct an n n zero-
one matrix, M, that has ok ones in row k and ik ones in column k (for all _-< k _-< n),
so that all the elements on the main diagonal ofM are zero.
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Our solution is based on the algorithm described in 2. Again we start by looking
at the network flow formulation for this problem. The network is almost identical to the
one in Fig. 2. l, except that each vertex on the left is missing one outgoing arc, and each
vertex on the fight is missing one incoming arc. It is convenient to view the missing arcs
as existing arcs with capacity zero. We will call these blocked arcs and the corresponding
entries in the realization matrix blocked entries. Our first goal is to show that in this case
too there are only n 2 potential minimum cuts. Let al - >- a and b >- >= b be
the sorted sequences of ou_t-degrees and in-degrees, respectively (i.e., is obtained by
sorting and by sorting ), and let Nbe the network corresponding to and (similar
to the one shown in Fig. 2.1). The capacity of the cut Cx,y (as shown in Fig. 2.2) is, in
this case

capacity(Cx,y)= ai+ bj+x.y-B(x,y)
i=x+l j=y+l

where B(x, y) is the number of blocked arcs crossing the cut. Since there is at most one
blocked entry in every row and every column, a simple argument shows that if ax > ax/
and by > by + then this cut has the smallest capacity among all cuts for which the s side
contains x vertices on the left and n y vertices on the right. However, if, say, ax a/

then the cut obtained by switching vertices u and u+ might have smaller capacity,
since the number of blocked arcs crossing it could be greater by one. Therefore, if we
want the cuts C,y to be the only potential minimum cuts, we need to be careful about
the ordering of "row" vertices corresponding to rows with equal row sums, and similarly
for columns. The conditions we need to enforce on the order are, simply: if ax a+ ,
then the blocked entry in row x should be in a lower-indexed column than the blocked
entry in row x + 1. The symmetrical conditions should hold for columns.

These conditions can be obtained by two rounds ofsorting: first sort rows according
to row sums. Sort rows with equal sums acc_,ording to the corresponding column sums
(i.e., the correspondence given by the and sequences), breaking ties arbitrarily. Now,
sort the columns according to column sums. Columns with equal sums are sorted ac-
cording to the order of the corresponding rows that was obtained in the first round. No
ties can arise, since there is, at this point, a total ordering of the rows.

After this preprocessing is done, we are ready to proceed along the same lines as the
algorithm described in 2, with a few modifications. The slack function is now

n y

sln,7,(x,y) , ai- , bj +x.y-B(x,y).
i=x+l j=l

By the discussion above, it is again true that an instance is realizable if and only if its
slack matrix is nonnegative. If sln,7(x, y) 0 then M[i, j] for all =< -< x,

<= j <= y exceptfor blocked entries, and M[i,j] 0 for all x + -< -< n, y + =<j -< n.
The perturbation phases work identically here, since they only deal with the row

and column sums, and not with the internal structure of the realization matrix.
In the correction phases there is a small modificationunits should not be slid into

blocked entries. This is fixed by modifying the bipartite graph B in the obvious way.
Also, we need to re-examine the proof of Lemma 2.5. It works out exactly fight in this
case, since it turns out that

for all i, k degree (Yi,k)-- [Y I,

which is precisely sufficient (see the original proof).
The only tricky modification turns out to be for the base case. Again, there are at

most five different row sum values and five different column sum values. The difficulty



PARALLEL ZERO-ONE SUPPLY-DEMAND 123

is that there are blocked entries scattered throughout. This spoils the simple cyclic real-
ization that existed. We overcome this by partitioning the matrix into finer submatrices
than in the previous case. Each ofthe M;,.’s is partitioned further so that each submatrix
either contains no blocked entries, or contains a blocked entry in every row and column.

Again we construct a realization in two steps. The first step is to determine the total
number ofunits in each submatrix. This is done, here too, by solving a max flow problem
(where the capacity of a submatrix is the number of nonblocked entries in it). Again,
the network here is of constant size, so a max flow can be computed in constant time.
In the second step, the units are distributed within the submatrices. The key here is to
deal first with the submatrices containing blocked entries. It is not always possible to
select arbitrary sets of rows and columns, but it is possible to distribute the units so that
the discrepancy between any two rows or any two columns will be at most one unit. This
can be done as follows. Say the blocked entries are along the main diagonal (this will
always be the case because of the preprocessing), and let k be the number of rows (and
columns) of the submatrix. Let dr (the rth diagonal) be the set of entries i, j) for which
j- r (mod k). If F units are to be distributed, fill d, ..., dtF/kj, and place the
remaining units in dtF/kj/ . An example is shown in Fig. 4.1. Now, after the "problem-
atic" submatrices have been dealt with, we can construct the submatrices with no blocked
entries in the same fashion as described in 2.4. The same arguments for proving validity
of the scheme go through, because there is at most one blocked entry in every row or
column.

1 1

1 1

1

FIG. 4.1. A 5 5 sub-matrix with blocked entries containing 11 units.

5. Bounds on supplies and demands. Our parallel algorithm for the matrix con-
struction problem can be extended to the case in which the sequences and represent
upper bounds on row sums and lower bounds on column sums, respectively. This is a
natural extension of the matrix construction problem when rows represent supplies and
columns represent demands.

Let U n
i-- ai and L 7’-- bi. Let M be a realization matrix for the instance

(, ;), and let S be the number of ones in M. Then, clearly, L -< S =< U. Say we fix S.
Then the problem condenses to the following. Modify the sequences and to obtain
and , respectively, so that:

(1) ai <- ai and bj <- j for all <= <- n, <-_j <= m.
(2) X= Z’=, & S.
3 (a, B is realizable.

It is, of course, not always possible to satisfy all three conditions simultaneously.
Thus our goal is find such a pair of sequences if it exists.

The key for obtaining the sequences a and B is to consider the slack matrix, as
defined in 2.1. Recall that the condition for realizability is that all the slacks are non-
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negative, and that
y

sla,(x, y) ai- +x"y
i=x+l j=l

where a - - an and 1 -- -- m.LEMMA 5.1. Let al - - an and bl - - bin. Let (k)((/)) be the sequence
obtainedfrom - by subtracting onefrom ak (adding one to bl). Then ( ), - m
is realizable if(-&(k), -(l)) is (for any

_
k <- n, <-_ <- m).

Proof.

sl(l),(m)(x, Y) sl(k),(l)(X, Y)
n y, (a(1)i-a(k)i)+ , (t(l)j-/(m)j).

i=x+l j=l

It is easy to see that for all values of x, y, k, and I this difference is nonnegative, which
proves the lemma.

THEOREM 5.1. Let (s) be obtainedfrom -d by repeatedly subtracting onefrom the
largest element U- S times and let -(s) be obt_,ainedfrom by repeatedly adding one to
the smallest element S- L times. Then (Sis), [3(s)) is realizable ifthere is any realizable
pair of sequences (, -) where "gi - ai, 6

_
b (for all <= <= n, <= j <- m) and

?_ S."i ,7’=
Proof. The proof is by induction on U- S, using Lemma 5.1.
(s, ts) can be obtained from (, ) efficiently in parallel by a simple partial-

sums computation. The algorithm is as follows.

For all S, L

_
S

_
U, do I.P:

1.1 Compute ts2 and
(1.2) Test if(ts),/3ts)) is realizable. This can be done by the following method

described in [3, Chapt. 2, 12]. (3,/3) (where a and/3 are of lengths n
and m, respectively) is realizable if and only if, for -< k =< m"

k k

Z
j=l j=l

where a) { ai - j }.
(2) Select an S for which ((s),/3(s)) is realizable.
(3) Compute M MATRIX_CONSTRUCTION ((s), 3(s)).

Steps (1.1) and (1.2) are simple partial-sum computations, and can be implemented
using O n + m) processors. Since steps and (2) can be implemented within the time
and processor bounds used for step (3), the algorithm has the same parallel complexity
as the matrix construction algorithm. Note that we may perform step (2) with some
criterion in mind (e.g., "construct a matrix with the smallest possible number of ones
subject to...").

The extension ofthe symmetric supply-demand problem turns out to be even simpler.
Here the natural extension would be that all thef values represent upper bounds, since
making a number "less positive" corresponds to less supply, and making a number
"more negative" corresponds to more demand. So in an instance of this problems, the
positive number would sum up to +H and the negative number would sum up to -L,
for some H > L.

Here, in contrast to the matrix construction problem, it is clear which value of S
works best (where S is the sum ofthe positive entries, and minus the sum ofthe negative
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entries). By looking at the expressions for the slack vector, we can see that decreasing S
cannot ruin feasibility. Therefore S should be selected to be as small as possible, i.e.,
S=L.

To summarize, only the positive f entries should be modified. Again, as in the
matrix construction problem, the best way to modify these numbers is to repeatedly
subtract one unit from the largest entry until H- L units have been subtracted.

Acknowledgment. We thank Richard Karp for suggesting the matrix construction
and symmetric supply-demand problems and for interesting discussions.
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OPTIMAL ALGORITHMS FOR A PURSUIT-EVASION
PROBLEM IN GRIDS*

KAZUO SUGIHARAf AND ICHIRO SUZUKI

Abstract. This paper discusses a problem of searching for and capturing a fugitive by a team of searchers
in an N N grid GN representing a system ofN avenues and N streets in which a searcher can "see" a fugitive
if and only if both are on the same avenue or the same street. A 0.5N -k O(N) time algorithm is presented for
searching G by a team of two searchers in order to decide whether there exists a fugitive in G. The algorithm
is shown to be (l) optimal with respect to the number of searchers required for the case in which the fugitive
can move at least as fast as the searchers, and (2) asymptotically optimal with respect to the worst case time
complexity. An O(N2) time algorithm is also presented for capturing a fugitive inGby a team offour searchers.
The algorithm is shown to be asymptotically optimal with respect to the worst case time complexity.

Key words, graph search, grids, optimal algorithms, pursuit-evasion, pursuit game

AMS(MOS) subject classifications. 68Q20, 68Q25, 68R10

1. Introduction. The following pursuit-evasion problem has been known as the game
ofcops and a robber:

Let G be a finite connected graph. First, a number of cops are placed on some
vertices of G. Then a robber is placed on some vertex of G. After that, the cops
and the robber move alternately along the edges of G. The cops win if one of
them occupies the same vertex as the robber (i.e., the robber is captured), and
the robber wins otherwise.

It is assumed that the cops and the robber have complete information on the moves of
their opponents. Relationships between the topology of a given graph and the number
of cops needed to win the game has been investigated in ]- 5 ], 9 ], 11 ], 13 ]. For
example, Aigner and Fromme [1] showed that three cops always suffice to win if a given
graph is planar.

In this paper we consider a similar problem in which complete information on the
moves of the opponents is not available. In particular, we consider a pursuit-evasion
problem in which searchers are required to search for and capture a fugitive in an
N N grid GN shown in Fig. 1. GN is viewed as a system ofN avenues and N streets in
which a searcher can "see" (and obtain the position of) the fugitive if and only if both
are on the same avenue or the same street. In all algorithms presented except one, it is
assumed that a searcher can communicate with other searchers and obtain their positions
in real time irrespective of whether they are on the same avenue or the same street. We
assume that searchers and a fugitive can move continuously and concurrently.

We first present a 0.5N2 + O(N) time algorithm SEARCH for searching Gv by a
team of two searchers in order to decide whether there exists a fugitive in GN. The
algorithm SEARCH is shown to be (1) optimal with respect to the number of searchers
for the case in which a fugitive can move at least as fast as the searchers, and (2) asymp-
totically optimal with respect to the worst case time complexity for the case in which the
maximum speed of a fugitive is not zero (i.e., a fugitive is not immobile). The time
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complexity of an algorithm is measured by the total time needed for the searchers
to move.

As will be explained in 3.3, SEARCH1 requires that the searchers must be able
to communicate with each other in real time irrespective oftheir positions. In our second
algorithm SEARCH2 a team of two searchers searches GN, and it works even if the
searchers can communicate only when they are on the same avenue or the same street.
The time complexity ofSEARCH2 is N2 + O(N). Both SEARCH and SEARCH2 work
correctly irrespective of the speed of the fugitive.

Next we present an O(N2) time algorithm for capturing a fugitive in Gv by a team
of four searchers, under the assumption that the fugitive can move at most as fast as the
searchers and the searchers can communicate with each other in real time irrespective
of their positions. Here the fugitive is said to be captured if it occupies the same position
as one ofthe searchers. The algorithm is shown to be asymptotically optimal with respect
to the worst case time complexity for the case in which the fugitive is not immobile.

There is another problem similar to the problem of capturing a fugitive discussed
in this paper. It is known as the graph search problem, which was first studied by Parsons
12 and further investigated by Kirousis and Papadimitriou 8 and Megiddo et al. 10 ].
This problem is different from ours in the following aspects:

(1) Searchers in the graph search problem are assumed to be "blind" in the sense
that they can detect a fugitive only when they capture it.

(2) In the graph search problem, a fugitive can move with unbounded speed.
It is not difficult to show thatN/ searchers are necessary and sufficient for capturing

a fugitive in Gn under these assumptions.
The pursuit-evasion problem considered in this paper may have applications in

motion coordination of multiple robots 6 ], 7 ], 14 ]- 17 ]. Basically, motion coordi-
nation is the problem of generating a plan for moving a number of robots from their
initial positions to given final positions avoiding collision. A slightly different but equally
interesting problem would be that ofcoordinating the motion ofrobots so that the robots
as a team will achieve a given goal that may involve other moving objects, such as robots
that are not members ofthe team. Achieving such goals can be more difficult than simply
moving the robots to their final positions, since the possible movement of other objects
whose behavior is not always predictable must also be considered. The problem we con-
sider can be regarded as an example of problems of this type.

We note that the pursuit-evasion problem in Gn considered in this paper can be
regarded as a special case ofmore general problem ofsearching a two-dimensional region
that contains obstacles of various sizes and shapes.

In 2 we introduce some terminologies and assumptions. The results on searching
Gn are presented in 3. Section 4 describes the algorithm for capturing a fugitive. Con-
cluding remarks are found in 5.

2. Preliminaries. An N NgridG (N >_- 2) is the set of points (x, y) in the plane
such that (l) 0 _-< x, y _-< N and (2) at least one ofx and y is an integer (see Fig. 1).
GN can be viewed as the union of the following 2N line segments:

(a) The line segment between (i, 0) and (i, N- 1), called avenue (0 <- <- N- l).
(b) The line segment between (0,j) and (N- 1,j), called streetj (0 <-j <- N- 1).
For convenience of discussion, a point (x, y) in G is called a vertex if x and y

are both integers. The line segment between two vertices (x, y) and (x’, y’) such that
x x’l + Y Y’[ is called an edge. We say, for example, that vertices (5, 8) and

(7, 5 are to the north and to the east of vertex (5, 5 ), respectively. South and west will
also be used in the same manner. The distance between two points in Gs is defined to
be the length of a shortest path between them in G.
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N-1

/

(i,j)

FIG. 1. N Ngrid Gv.

N-1

Searchers and a fugitive are represented by their positions in GN. Any number of
searchers and a fugitive can occupy the same position at the same time. Throughout this
paper we assume that a searcher can "see" (and obtain the position of) a fugitive if and
only if both are on the same avenue or on the same street. We assume that searchers and
a fugitive can move continuously and concurrently.

The pursuit-evasion problem in GN consists of two subproblems, searching and
capturing. In the search problem, a team of searchers must decide whether there exists
a fugitive hiding in Gn. In the capture problem, searchers must capture a fugitive, where
the fugitive is said to be captured if it occupies the same position as one of the searchers.
Algorithms for these subproblems should ensure that a given goal is achieved eventually
irrespective of the movement of the fugitive.

Algorithms for the pursuit-evasion problem are analyzed in terms ofthe number of
searchers and the time complexity. In this paper we assume that the time needed for a
searcher to communicate with other searchers and compute its next move is negligible.
Thus the time complexity ofan algorithm is the total time needed to move the searchers.

3. Search problem. In this section we consider the problem of searching Gs by a
team ofsearchers in order to decide whether there exists a fugitive in G. For convenience
of discussion, we assume that there exists at most one fugitive in G, and we call it Z.
The argument that follows remains valid even if there is more than one fugitive in GN.

3.1. Algorithm SEARCHI. In Algorithm SEARCH given below two searchers A
and B search G. It is assumed that the searchers can communicate with each other in
real time irrespective of their positions, although this assumption is not essential for
solving the search problem, as will be discussed later. A and B traverse Gn as described
below, and when the traversal is completed, they conclude that there exists no fugitive
in Gn if and only if none of them has seen a fugitive during the traversal.

GN is traversed in N- phases, Phases through N- 1. Phase k + can be started
only after Phase k is completed. Phase k (k

_
2 consists of subphases (a), (b), and (c),

which are executed in this order. Phase does not have subphases (a) and (b). Initially,
A and B are in (1, Yl and in (0, Y2), respectively, where Y fN/2] and Y2
N [N/2q. When Phase k is completed, A and B are in (k, 0) and (k 1, N 1),
respectively, if k is odd, and in (k, Y and (k 1, Y2), respectively, if k is even. The
traversal is illustrated in Fig. 2.



PURSUIT-EVASION PROBLEM IN GRIDS 129

Y2 YI=Y2

(it) N (b)

FIG. 2. Traversal ofGN determined by SEARCH 1.

ALGORITHM SEARCH1.

Phase 1: (c) A moves south from (1, YI) to (1, 0), and B moves north from
(0, Y2) to (0, N- 1), in parallel.

Phasek: (k=2,4,6,...)
(a) A stays in (k 1, 0), and B moves east from (k 2, N- 1) to

(k- 1, N- 1).
(b) B stays in (k 1, N 1), and A moves east from (k 1, 0) to

(k, 0).
(c) A moves north from (k, 0) to (k, YI), and B moves south from

(k 1, N- 1) to (k 1, Y2), in parallel.

Phasek: (k=3,5,7,...)
(a) A stays in (k-1, YI), and B moves east from (k-2, Y2) to

(k- , Y).
(b) B stays in (k- I, Y2), and A moves east from (k- 1, Y1) to

(k, Y1).
(c) A moves south from (k, YI) to (k, 0), and B moves north from

(k 1, Y2) to (k 1, N- 1), in parallel.

Note that SEARCH works only if searchers A and B can communicate with each other
even if they are not on the same avenue or the same street. For example, B can start
executing subphase (a) of Phase 2 only after A notifies B that it has arrived at (1, 0).

In order to analyze the time complexity of a search algorithm, we assume that the
searchers move at a speed ofone edge per unit time. (That is, they move over a distance
of one (1) in unit time.) Then the time complexity is measured by the number of time
units needed. In each phase ofSEARCH1, subphases (a) and (b) can be executed in two
time units. Subphase (c) can be executed in YI (=[N/2]) time units, since searchers A
and B move over 1 edges each, in parallel. Therefore, the time complexity ofSEARCH
is Y1 + (N- 2)(2 + Y1) 0.5N2 + O(N).

3.2. Optimality of SEARCHI. Let e be an edge ofa grid G. We say that e is clear
at time ifA and B "know" that there exists no fugitive in e. For example, e is clear at
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t if (1) A and B have not seen a fugitive, and (2) A and B have moved in such a way that
a fugitive cannot be in e at unless it has already been detected by A or B. Also, if a
searcher is on avenue and there exists no fugitive on avenue i, then all edges on avenue
are clear at that moment. (Note that A and B always have the same knowledge, since

we are assuming that they can communicate in real time irrespective of their positions.)
For integers and j (0

_
i, j

_
N 2), the four vertices i, j), (i + 1, j), i, j + 1),

and (i + 1, j + 1) together with the four edges between them are called block B (i, j)
(see Fig. 3). Block B (i, j) is said to be clear at time t if and only if all four edges of
B(i, j) are clear at time t. An edge or a block is said to be contaminated if it is not clear.
Initially, all edges of Gv except those which are seen by the searchers are contaminated,
and hence all blocks except possibly one are contaminated.

THEOREM 1. SEARCH correctly determines whether there exists afugitive in
even ifthefugitive can move at any high speed.

Proof. For each k (1

_
k _-< N- 1), let CLEAR(k) be the proposition that block

B(i, j) is clear for all 0 _-< _-< k and 0 _-< j -< N 2. That is, CLEAR(k) states that
A and B know that there exists no fugitive in the subregion of GN consisting of points
(x, y) such that 0 _-< x

_
k and 0 _-< y -< N- 1. In Phase 1, searchers A and B stay on

avenues and 0, respectively, so that they can see a fugitive that appears on these avenues.
Furthermore, in Phase 1, A and B examine all edges between avenues 0 and 1. Therefore,
when Phase is completed, either CLEAR(1) holds or at least one ofA and B has seen
fugitive Z. Now assume that A and B did not see Z, and let us consider Phase 2. Since
at least one ofA and B stays on avenue during subphases (a) and (b) ofPhase 2, when
subphase (b) is completed, either CLEAR(1) holds or at least one ofA and B has seen
Z. In subphase (c), A and B stay on avenues 2 and 1, respectively, and examine all edges
between avenues and 2. Therefore, when Phase 2 is completed, either CLEAR(2) holds
or at least one of A and B has seen Z. By applying the same argument repeatedly, we
can show that when Phase N- is completed, either CLEAR(N- 1) holds (i.e., A and
B know that there is no fugitive in GN) or at least one ofA and B has seen Z. It is easy
to see that the argument given above is valid irrespective of the speed of Z.

Theorem 2 establishes the optimality of SEARCH with respect to the number of
searchers for the case in which the fugitive can move at least as fast as the searchers.

THEOREM 2. GN cannot be searched by a single searcher ifthefugitive can move at
least asfast as the searcher.

j+l

i+1

FIG. 3. Block B( i, j).
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Proof. Consider the case of N 2. Since fugitive Z can move at least as fast as
searcher A, Z can always be at the "opposite" position from A around block B (0, 0)
(see Fig. 4). Therefore it is possible that A will never see Z. Similar scenarios can be
constructed for any N > 2.

Remark 1. Ifthe speed offugitive Z is sutficiently low compared to that ofa searcher,
then Gcan be searched by a single searcher A. For example, ifthe speed ofZ is at most
one (2N- 1)th of that ofA, then A can search G in N2 time units by traversing
avenues 0, 1, and N- as shown in Fig. 5. Since A moves at a speed of one edge
per unit time, in this traversal every street is examined by A repeatedly at intervals of at
most 2N- time units. Since it takes at least 2N- time units for Z to move from
one avenue to another, Z cannot change avenues without being detected by A. Thus Z
will eventually be detected, since A examines all avenues. To the authors’ knowledge, it
is not known exactly when two searchers are required. []

Lemmas 1, 2, and 3 are used to derive Theorem 3, which establishes the optimality
of SEARCH1 with respect to the time complexity for the case in which the maximum
speed of the fugitive is not zero (i.e., the fugitive is not immobile) and the number of
searchers is O(1).

LEMMA 1. lfa search algorithm can search Gv by time T, then there exists a search
algorithm such that

(1) Gv can be searched by time T;
(2) A searcher does not stop nor change directions of its movement in the middle

ofan edge; and

(0,1) (1,1)

z

(0,0) (1,0)

FIG. 4. Illustration for Theorem 2.

FIG. 5. A #(N2) traversal by a single searcher.
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(3) When a searcher moves from a vertex to an adjacent vertex, it moves at the
maximum speed ofone edge per unit time.

Proof. Suppose that searcher A moves from vertex (i, j) to vertex (i + 1, j) along
streetj without visiting any other vertex. Assume that A leaves (i, j) at time t and reaches
(i + 1, j) at time t’. IfA stops in the middle of the edge between the vertices or A moves
at a speed lower than the maximum of one edge per unit time, then we have t’ > t + 1.
Clearly, A can only see street j during the time interval (t, t’), and A can see street j and
avenue + at time t’. On the other hand, if A leaves (i, j) at time t, moves toward
(i + 1, j) along street j at a constant speed of one edge per unit time, reaches (i + 1, j)
at time + 1, and stays in (i + 1,j) from time + to t’, thenA obtains at least as much
information as in the first case, since A not only can see street j during the time interval
(t, t’], but also can see avenue + during + 1, t’]. By using a similar argument, we
can show that changing directions ofmovement in the middle ofan edge does not make
an algorithm faster. E]

To prove a lower bound on the worst case time complexity of searching, in the
following lemmas we only need to consider search algorithms that satisfy conditions (2)
and (3) of Lemma 1.

LEMMA 2. If a block becomes clear at time > 0 for the first time after a search
algorithm is started at time zero, then there exists some A > 0 and an edge e ofthe block
such that

(1) e is contaminated in [t- A, t); and
(2) At least one searcher can see e at time t.
Proof. If all edges of a block become clear simultaneously before time t, then the

block is clear before t, contradicting the assumption. This, together with the assumption
that the searchers traverse the edges at a constant speed in one direction, implies that
there exist some A > 0 and an edge e of the block such that (1) e is contaminated in
t A, t), and (2) none of the edges that are clear at time A become contaminated

in [t A, t]. Since a contaminated edge can become clear only when it is seen by a
searcher, edge e must be seen by a searcher at time t. [3

LEMMA 3. Suppose that the maximum speed offugitive Z is not zero. If block
B( i, j) becomes clear at time > 0for thefirst time after a search algorithm is started at
time zero, then at time there exist a searcher in either avenue or + and a searcher
in either street j orj + 1.

Proof. Let the four edges of block B(i, j) be called a, b, c, and d, respectively, as
shown in Fig. 6. Lemma 2 implies that at time a searcher must see an edge that was
contaminated just before t. Therefore, at time t, there exists a searcher on one ofavenue
i, avenue + 1, street j, and street j + 1. Without loss of generality, we can assume that
for some A > 0 edge a is contaminated in t A, t) and searcher A is on street j + at
time (see Fig. 6). Since nothing has to be proved ifA is in (i, j + 1) or (i + 1, j -t- 1)
at time t, we assume that A is in (k,j + 1) at time t, where k < or k > + 1, and show
that there exists another searcher on avenue or avenue + at time to Assume, on the
contrary, that there exists no searcher on avenue or avenue + at time t. Then, since

j+l

b

i+l

at time

FIG. 6. Illustration for Lemma 3.
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edges b and d cannot be seen by any searcher in [t A, t], fugitive Z, which may be in
edge a at time A, can move to either edge b or edge d in A, t), as long as the
maximum speed of Z is not zero. Thus at least one of b and d is contaminated at time
t, contradicting the assumption. [3

THEOREM 3. The time complexity ofsearching Gv by a team ofO(1) searchers is
(N2 ifthe maximum speed ofthefugitive is not zero.

Proof. If (1) the maximum speed of the fugitive is not zero, (2) the number of
searchers is O(1), and 3 the maximum speed ofthe searchers is one edge per unit time,
then by Lemma 3 a constant number of blocks at most can become clear in unit time.
Since (1) there are (N- 1)2 blocks in G, (2) initially all blocks except possibly one are
contaminated, and (3) the search is complete if and only if either all blocks are clear
simultaneously or one of the searchers sees the fugitive, we conclude that searching Gre
takes fl(N2) time units in the worst case. [3

3.3. Searching with limited communication. By using algorithm SEARCH2 de-
scribed below, Gv can be searched by two searchers even if they can communicate only
when they are on the same avenue or the same street. Initially, searchers A and B are in
vertices (1, 0) and (0, 0), respectively. The traversal is illustrated in Fig. 7.

ALGORITHM SEARCH2.
Phase 1: (c) A and B move north from (1, 0) to (1, N- 1) and from (0, 0) to

(0, N- 1), respectively, in parallel.

Phase k" (k 2, 4, 6, ...)
(a) A stays in (k 1, N 1), and B moves east from (k 2, N 1)

to(k- 1, N- 1).
(b) B stays in (k 1, N- 1), and A moves east from (k 1, N- 1)

to (k, N- 1).
(c) A and B move south from (k,N-1) to (k, 0) and from

(k 1, N 1) to (k 1, 0), respectively, in parallel.

Phasek: (k=3,5,7,...)
(a) A stays in (k-1,0), and B moves east from (k-2,0) to

(k- 1, 0).
(b) B stays in (k 1, 0), and A moves east from (k 1, 0) to (k, 0).
(c) A and B move north from (k, 0) to (k, N 1) and from (k 1, 0)

to (k 1, N- 1), respectively, in parallel.

The time complexity of SEARCH2 is N2 + O(N). The correctness of SEARCH2
follows from an argument similar to the one in the proof of Theorem 1.

FIG. 7. Traversal ofG determined by SEARCH2.
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4. Capture problem. In this section we present an O(N2) time algorithm for cap-
turing a fugitive in Gn by four searchers. It is assumed that the maximum speed of the
searchers and the fugitive is one edge per unit time.

4.1. A four-searcher algorithm. Let A, B, C, and D be the searchers, and Z the
fugitive. Fugitive Z is said to be captured if one of the searchers occupies the same
position as Z. It is assumed that the searchers can communicate with each other in real
time irrespective of their positions. Furthermore, we assume that if at least one of the
searchers can see Z, then the searchers can (1) determine the exact position of Z, and
(2) move, without any delay, based on the observed movement of Z. For example,
suppose that at time t searchers A and B are in vertices (0, 0) and (1, 0), respectively,
and Z is on (1, 2) (see Fig. 8 (a)). If Z moves east to (2, 2) at a constant speed of one
edge per unit time and reaches (2, 2) at time + 1, then searcher B can see the direction
in which Z moves at time t, and both A and B can start to move east at time and reach
(1, 0) and (2, 0), respectively, at time + (see Fig. 8(b)). Of course, Z may change
directions in the middle of the edge between (1, 2) and (2, 2), and in this case A and B
cannot know about it until B finds out that Z is not on (2, 2) at time t + 1. In the
following, unless otherwise stated, the searchers always move at a speed of one edge per
unit time.

(a) At time

(b) At time t+l

FIG. 8. A and B can move at the moment Z moves.

4.1.1. Algorithm SEARCH3. Since none of the searchers may be able to see Z in
the initial state, first they have to search for Z. Searching can be done by the following
algorithm SEARCH3.

In SEARCH3, searchers A, B, C, and D traverse Gn in N- 2 phases, Phases
through N 2. Initially, A, B, C, and D are in (0, 0 ), 1, 0 ), 2, 0 ), and (0, 0 ), respectively.
The traversal is illustrated in Fig. 9.
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D

IG. 9. Traversal ofGv determined by SEARCH3.

ALGORITHM SEARCH3.

Phase 1: (b) A, B, and C stay in (0, 0), (1, 0), and (2, 0), respectively, and D
moves north from (0, 0) to (0, N- 1), and then east to (1, N- 1).

Phasek: (k=2,4,6,...)
(a) D stays in (k-l,N-1), and A, B, and C move east to

(k 1, 0), (k, 0), and (k + 1, 0), respectively, in parallel.
(b) A, B, and C stay in (k 1, 0), (k, 0), and (k + 1, 0), respectively,

and D moves south from (k 1, N- 1) to (k 1, 0), and then
east to (k, 0).

Phasek: (k=3,5,7,...)
(a) D stays in (k 1, 0), and A, B, and C move east to (k 1, 0),

(k, 0), and (k + 1, 0), respectively, in parallel.
(b) A, B, and C stay in (k 1, 0), (k, 0), and (k + 1, 0), respectively,

and D moves north from (k 1, 0) to (k 1, N- 1), and then
east to (k, N- 1).

The traversal is terminated at the moment the following condition LOCATE(p, q)
is satisfied for some integer p k, -< k -< N- 2, and q 0.

Condition LOCATE(p, q). The following conditions hold simultaneously:
(1) The positions ofA, B, and C are (p 1, q), (p, q), and (p + 1, q), respectively.

(p and q are not necessarily integers.)
(2) The position (x, y) of Z satisfies p _-< x _-< p + and q _-< y _-< N- 1.
(3) The searchers know that p _-< x _-< p + and q -< y _-< N- hold.
(4) Ifp is an integer, then the searchers know the exact value of y.
(5) If x and y are integers and either x p > 0 or x p / < N- 1, then q

is an integer.
IfA, B, and C are in positions (p 1, q), (p, q), and (p + l, q), respectively, then

the area consisting of all points (x’, y’) such that p _-< x’ _-< p + and q _-< y’ -_< N-
is called the critical area, and is denoted by CA (p, q) (see Fig. 10). Conditions (1)

through (4) of LOCATE(p, q) imply that the searchers know an approximate position
of Z, which is in the critical area CA (p, q). Condition (5) assures that whenever Z is in
a vertex and tries to move east or west in order to leave the current critical area, A, B,
and C are also in some vertices and can move east or west so that Z will stay in new
critical areas.
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Since (1) A, B, and C remain on street 0 and the critical area moves from west to
east during the execution of SEARCH3; (2) the critical area is two edges wide east to
west; 3 the searchers move at a speed ofone edge per unit time; and (4) the maximum
speed of Z is one edge per time unit, Z will eventually be in the critical area CA (k, O)
for some integer kwhen the searchers execute SEARCH3. (Without the fourth condition,
Z may only be detected, and LOCATE(k, 0) may not hold for any integer k.) IfZ moves
into CA (k, O) while A, B, and C are stationary in (k 1, 0), (k, 0), and (k + 1, 0),
respectively, then searcher C can see Z at the moment and knows the exact position of
Z (see Fig. 11). If Z is already in CA (k, O) when A, B, and C move to (k 1, 0),
(k, 0), and (k + 1, 0), respectively, then before A, B, and C move east again, at least
one of the searchers (including D) sees Z and knows the exact position of Z. Of
course, Z may be captured during the execution of SEARCH3. Therefore we have the
following lemma.

LEMMA 4. If the searchers execute SEARCH3, eventually either Z is captured or
condition LOCATE(k, O) holdsfor some integer k, <= k <= N- 2.

In the following section we denote by T the time when LOCATE(k, 0) holds for
the first time for some integer k during the execution ofSEARCH3. Clearly T O(N2).

p-1 p+l

FIG. 10. Critical area CA (p, q).

D
A c

k-1 k+l

FG. 11. C sees Z.
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4.1.2. Algorithm CHASEI. At time T, A, B, and C start executing algorithm
CHASE and D starts executing algorithm CHASE2 (CHASE2 is described in 4.1.3 ).

ALGORITHM CHASE 1.

Assume that LOCATE(k, j) is true at time for some integers k and j. Let (x, y)
be the position of Z at (the exact value ofx may be unknown to the searchers). If (1)
k < x < k or k < x < k / (i.e., A, B and C cannot see Z); or (2) either x k
> 0 or x k + < N- l, and y is not an integer, then A, B, and C stay in their

current positions until one of the four cases given below becomes applicable, at which
moment they move as specified for each case until LOCATE(k’, j’) becomes true again
for some integers k’ and j’.

Case 1: If x k, x 0, or x N- l, then A, B, and C move north and reach
(k- 1, j + 1), (k, j + 1), and (k + 1, j + 1), respectively, at time +
(see Fig. 12(a), (b)).

Case 2: If x k > 0, y is an integer and Z moves west at time t, then A, B,
and C move west and reach (k 2, j), (k 1, j), and (k, j), respectively,
at time / (see Fig. 13).

Case 3: If x k + < N- l, y is an integer and Z moves east at time t, then A,
B, and Cmove east and reach (k, j), (k + 1, j), and (k + 2, j), respectively,
at time t + (see Fig. 4).

Case 4: If x= k- > 0orx= k+ <N- 1, y is an integer and Z moves
north or south, then A, B, and C move north (and south if necessary) so
that, at any moment t’ > t, if (x, y + h) is the position of Z at t’ where
0< Ihl -< 1/2, thenA, B, andCarein(k- 1,j+ Ihl),(k,j+ Ihl),
and (k + 1, j + hl), respectively (see Fig. 15), and once Z reaches posi-
tion (x, y / 2) and A, B, and C reach (k 1, j + / 2), (k, j + / 2),
and (k + 1, j + / 2), respectively, A, B, and C proceed to (k 1, j + 1),
(k, j + 1), and (k + 1, j + 1), respectively, irrespective of the future move-
ment of Z.

Remark 2. In Case 4 of CHASE1, A, B, and C move north toward Z as much as
possible, as long as they can keep Z in the critical areas. Since for example Z may move
west from a vertex on avenue k- (ifA and Z are both on avenue k- 1), keeping Z
in the critical areas requires that A, B, and C are on some vertices whenever Z reaches
a vertex. This requirement is satisfied by the movement of A, B, and C specified in
Case 4. E]

Lemma 5 implies that by using algorithm CHASE 1, searchers A, B, and Ccan keep
Z in critical areas at any moment, and furthermore, they may be able to get closer and
closer to Z.

LEMMA 5. IfLOCATE(k, j) is true at time

_
Tfor some integers k andj, then

for any t’ > t, either Z is captured before t’, or LOCATE(p, q) holdsfor somep and q >=
j at t’.

Proof. Assume that LOCATE(k, j) holds for some integers k and j at time t

_
T.

Clearly, LOCATE(k,j) continues to hold ifnone ofthe four cases ofCHASE is applicable
at t. Assume that one of the four cases is applicable at t. Let t’ be any time such that
< t’

_
t", where t" is the earliest time after at which A, B, and C reach some vertices.

For Cases 1, 2, and 3, we have t" + 1. Assume that Z is not yet captured at t’. Let
(x, y) and (x’, y’) be the positions of Z at and t’, respectively.
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Case 1. We consider the case in which x k. Other cases are similar. At t’ the
positions of A, B, and C are (k 1, j + (t’ t)), (k, j + (t’- t)), and (k + 1, j +
(t’- t)), respectively (see Fig. 16). Since k- -< x’ -< k + and j + (t’- t) < y’,
conditions ), 2 ), and 3 ofLOCATE k, j + t’ t) hold at t’. Since searcher B stays
on avenue k between and t’, at t’ B either sees Z or knows the edge into which Z has
moved from avenue k. Thus condition (4) also holds. Finally, condition (5) is true at
t’ < + since k < x’ < k + 1, and also at t’ + sincej + is an integer. Therefore
LOCATE(k, j + (t’ t)) holds at t’, where j + (t’ t) > j.

Case 2. At t’ the positions ofA, B, and C are (k (t’- t), j), (k (t’- t), j),
and (k + (t’- t), j), respectively (see Fig. 17). Since k- (t’- t) -<
x’ < k + (t’ t) and j

_
y < y’, conditions (1), (2), and (3) of LOCATE(k

(t’ t), j) hold at t’. Since (1) k- (t’- t) is an integer only if t’= t + 1, and (2)
if the searchers cannot see Z at t’ + then the only possible value of y’ is y, con-
dition (4) also holds. Finally, condition (5) is true at t’, since j is an integer. Therefore
LOCATE(k- (t’- t),j) holds at t’.

Case 3. This case is similar to Case 2.
Case 4. Since A, B, and C move north or south starting from their positions at t,

conditions (1), (2), and (3) of LOCATE hold at t’. Since either A or C can see Z at t’,
condition (4) is also satisfied. Finally, condition (5) is satisfied at t’, since, as stated in
Remark 2, Case 4 of CHASE assures that A, B, and C are on some vertices whenever
Z reaches a vertex. Therefore LOCATE(k, q) holds for some q >_-j at t’.

The lemma follows from above, since the same argument applies after
LOCATE(k’, j’) becomes true for some integers k’ and j’. El

Lemma 6 states that whenever Z moves from one street to another, A, B, and C
can move north to the next higher numbered street and LOCATE(k, j) becomes true
for some integer k and the next larger integer j.

LEMMA 6. Iffor some and t’ such that T <- and + <- t’,
(a) LOCATE(p, q) holdsfor some p and q with q < N- at t,
(b) Z is in vertex (X, Y) at t,
c Z is in vertex X, Y + 1) or (X, Y- 1) at t’, and
d Z is not in any vertex between and t’, then before t’ + 1, either Z is captured

or LOCATE(p’, lqJ + 1) holdsfor some integer p’.
Proof. Assume that Z is not captured before t’ + 1. We consider the case in which

Z is in (X, Y + 1) at t’. The other case is similar.
IfX=p,X=p- =0, orX=p+ =N- 1, thenA, B, and C are executing

Case of CHASE at t, and reach (p 1,/qJ + 1), (p, qJ + 1), and (p + 1,/qJ + 1),
respectively, by + =< t’. Thus by Lemma 5 LOCATE(p, qJ + 1) holds before t’ + 1.

Assume that X p > 0. In this case q is an integer by condition (5) of
LOCATE(p, q). By (b), (c), and (d) of this lemma, A, B, and C start executing Case
4 ofCHASE at and reach vertices (p 1, q + 1), (p, q + 1), and (p + 1, q + 1), respec-
tively, by t’ at which Z reaches (X, Y + 1). Thus by Lemma 5 LOCATE(p, q + 1) holds
before t’ + 1. The case in which X p + < N- is similar.

Finally, assume that p < X < p or p < X < p + 1. In this case q is an integer
and A, B, and C are executing Case 2 or Case 3 ofCHASE 1. Assume Case 2 (Case 3 is
similar). Let be the time when the execution of Case 2 is started, where < t <
t. The only possible scenario is the following. At l, Z moves west from vertex (X, Y)
and A, B, and C start moving west from vertices (X, q), (X + 1, q), and (X + 2, q),
respectively. Then Z returns to (X, Y) at t, and moves north toward (X, Y + 1). When
the execution of Case 2 terminates at t + < t’, Z is on avenue X by (b), (c), and (d)
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of this lemma and B is on (X, q). So A, B, and C start executing Case of CHASE at
t + and reach (X- 1, q + 1), (X, q + 1), and (X + 1, q + 1), respectively, at t + 2.
Thus by Lemma 5 LOCATE(X, q + holds at t + 2 < t’ + 1. V1

z

A B C A B

k-1 k+l k-1

(-x) (---x)

(a) x=k

FIG. 12. Case ofCHASE 1.

(b) x=0

Z

k-1

(=x)

k+l

FIG. 13. Case 2 ofCHASE 1.

z

k-1 k+l

(=x)

FIG. 14. Case 3 ofCHASE 1.
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y+h

j+lhl

A B C

k-I

P-3G. 15. Case 4 ofCHASE with 0 < hl <= / 2.

(x’,’)

k-1 k+l

FG. 16. Case ofCHASE1 at t’.

z (x’,y’)

-’- B

k+l

k-l-(t’-t) k-(t’-t) k+l-(t’-t)

FIG. 17. Case 2 ofCHASE at t’.
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4.1.3. Algorithm CHASE2. Now we describe algorithm CHASE2 which searcher
D starts executing at time T. We say that D scans street j ifD visits all vertices on street
j either from west to east or from east to west (see Fig. 18).

ALGORITHM CHASE2.

The algorithm consists of two phases. It transits from Phase to Phase 2 at the
moment that D reaches a position such that (a) the distance between D and Z is at most
one, and (b) D can see Z. (If (a) and (b) are already satisfied at T, then Phase is not
executed.)

Phase 1" D repeatedly executes the following" D stays in the current position as
long as the value of y is unknown where (x, y) is the position of Z, and
then scans streets LYJ and [y] in any order. (Ify is an integer, then D scans
only street y.)

Phase 2: D continuously moves toward Z. (This is possible, since the distance
between D and Z is at most one and hence D always knows the direction
in which Z moves.)

Remark 3. IfA, B, and C are moving west or east by Case 2 or Case 3 ofCHASE
and D cannot see Z, then the searchers do not know the value of y, where (x, y) is the
position of Z. As is stated in the proof of Lemma 5, if Case 2 or Case 3 of CHASE is
started at time t, then at time t + either one ofA, B, and C can see Z or the searchers
know the edge in which Z exists. Therefore in Phase ofCHASE2, D does not continue
to stay in its current position for one time unit or more. Thus D completes a scan every
cN time units for some constant c.

For each j (0 -< j -< N 1), we denote by BACKBONE(j) the area consisting of
all points (x, y) such thatj < y < j + (see Fig. 19). Lemma 7 states that if Z stops
moving from one street to another, then Z is captured in O(N) time units.

LEMMA 7. IfZ stays in BACKBONE(j) after time >- T, then Z is captured by
time t + c’Nfor some constant c’.

Proof. Let (x, y) be the position ofZ at t. Since (x, y) e BACKBONE(j), we have
either lyl j or [yq j. Thus, by Remark 3, street j will be scanned by D by time t +
c"N for some constant c". Then, since Z stays in BACKBONE(j), at some time t’ =<
t + c"N the distance between D and Z becomes at most one and D can see Z (see Fig.
20). Then D starts executing Phase 2 ofCHASE2 at t’, and clearly Z is captured by time
+ c’N for some constant c’.

FIG. 18. D scans street j.
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FIG. 19. BACKBONE(j).

FIG. 20. Illustration for Lemma 7.

4.2. Optimality.
LEMMA 8. There exists some time T + O(N2) such that either Z is captured

before t, or LOCATE(K, N- 1) holds at tfor some integer K.
Proof. By Lemma 7, Z must move from one street to another at least every kN

time units for some constant k. Thus the lemma follows from Lemma 6. Va
THEOREM 4. The searchers can capture Z in O(N2) time units by the method de-

scribed above.
Proof. If LOCATE(K, N- 1) holds for some integer K, then the searchers can

capture Z in at most /2 unit of time by moving toward Z. The theorem follows from
this observation, T O(N2), and Lemma 8. E]

As was shown in Theorem 3, searching GN by four searchers takes ft(N-) time units
in the worst case if the maximum speed ofthe fugitive is not zero. Therefore the method
for capturing a fugitive by four searchers described above is asymptotically optimal with
respect to the worst case time complexity for the case in which the fugitive is not immobile.

5. Conclusions. We have presented efficient algorithms for a pursuit-evasion prob-
lem in a grid GN. It remains to be investigated (1) under what conditions two searchers
are required to search Gn, and (2) whether four searchers are required to capture a
fugitive in Gn under the conditions assumed in this paper. Additional results on the
pursuit-evasion problem under various conditions are presented in 16 ].
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UNIVERSAL GRAPHS FOR BOUNDED-DEGREE TREES
AND PLANAR GRAPHS*
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Abstract. How small can a graph be that contains as subgraphs all trees on n vertices with maximum
degree d? In this paper, this question is answered by constructing such universal graphs that have n vertices
and bounded degree (depending only on d). Universal graphs with n vertices and O(n log n) edges are also
constructed that contain all bounded-degree planar graphs on n vertices as subgraphs. In general, it is shown
that the minimum universal graph containing all bounded-degree graphs on n vertices with separators of size
n has O(n) edges if a < 1/2; O(n log n) edges if a 1/2; O(n2.) edges if a > 1/2.

Key words, universal graphs, separators, trees, planar graphs
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1. Introduction. Given a family F of graphs, a graph G is said to be F-universal if
G contains every graph in F as a subgraph. A fundamental problem of interest
is to determine how few edges a universal graph can have. Such problems are of inter-
est in circuit design [V l, data representation [CRS], [RSS], and parallel computing
[BLe], [BCLR].

Letf(F) denote the minimum number of edges in a graph that contains all graphs
in F as subgraphs. There is a large literature on universal graphs for various families of
graphs. In the early 1960s, Rado first investigated universal graphs for infinite graphs
[Ra]. Since then many results on this subject have been published. Here we give a list
of some of the known results about universal graphs for various families of graphs.

(1) Moon [M considered the universal graphs that contain all graphs on n vertices
as induced subgraphs. He established upper and lower bounds for the number ofvertices
in such universal graphs.

(2) Bondy [Bo] investigated universal graphs for the class C of all cycles of
length

_
n; such universal graphs are called pancyclic and he showed that

n+log2 (n- 1)- <f(C,,)<n+log2(n- 1)+log* n+ O(1)

where log* n denotes

k

min { k" lg log.., long n < 2 }.
(3) Let Tn denote the class of all trees on n vertices. A lower bound of 1/2 n log n for

f(T) can be obtained by considering degree sequences ofthe universal graph. The upper
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bound was improved by a series of papers [CG ], [CG2 ], [CG3 ], [CGP] and the best
known upper bound is only a constant multiple of the lower bound [CG3

7
-n logn_f(T,,)<=log 4n logn+O(n).

(4) One variation on universal graph problems is to require the universal graph to
satisfy specified properties. In [CCG], it was shown that a minimum tree that contains
all trees on n vertices must have ntt+ o(l))logn/Iog4 vertices, and that this is the best possible.

5 A caterpillar is a tree with the property that its vertices of degree greater than
one induce a path. Kimble and Schwenk [KS] first considered the problem ofdetermining
minimum caterpillars that contains all caterpillars on n vertices, and they gave some
estimates ofthe size ofthe universal caterpillar. In [CGS], it was shown that the minimum
number of edges in such a universal caterpillar is within a constant factor of n2/log n.

(6) Let En denote the class of all graphs with n edges. It turns out that En-universal
graphs contain many more edges than T,-universal graphs. In fact, it was shown in
[BCEGS that

cn 2 n 2 log log n
log2 n

<f(En < + o( )
log n

In this paper, we consider universal graphs for the family T,,d ofall trees on n vertices
with maximum degree d. We construct T,,d-universal graphs on n vertices with bounded
degree (depending only on d). In related independent work, Friedman and Pippenger
FP recently proved that an expander graph on cn vertices with constant degree contains

all trees on n vertices with maximum degree d. (The constant c, which depends on d,
is quite large.)

We will also consider universal graphs for the family Pn,d of all planar graphs on
n vertices with maximum degree d. The P,,d-universal graphs have n vertices and
O(n log n)edges, improving the previous bound of O(n 3/2) in [BCEGS].

In 2, we use graph separators to construct universal graphs with O(n) edges for
the family of binary trees on n vertices. Using similar techniques, we derive universal
graphs for families of graphs of bounded degree with small separators. In particular, we
obtain universal graphs with O(n log n) edges for bounded-degree planar graphs on n
vertices and universal graphs with O(n) edges for bounded-degree outerplanar graphs
on n vertices. We also obtain T,d-universal graphs on n vertices and O(n) edges, but the
maximum degree of these graphs is of order O(log n). To reduce the maximum degree,
we modify our construction using expander graphs in 3 and the resulting T,,d-universal
graphs have bounded degree. Section 4 concludes with further problems and remarks.

2. Universal graphs for families of graphs with small bisectors. In a graph G on n
vertices, a set S of vertices is called a bisector if, by removing vertices in S from G, the
remaining graph can be partitioned into two exactly equal parts so that there is no edge
joining a vertex from one part to the other.

Here we need a stronger notion of bisectors, called k-bisectors. When the vertices
of a graph G are colored in k colors, a set S of vertices is said to be a k-bisector if, by
removing vertices in S from G, the remaining graph can be partitioned into two exactly
equal parts so that each part contains exactly equal numbers of vertices of each color,
and there is no edge joining a vertex from one part to the other. Any tree on n vertices
has a bisector of size c log n and a k-bisector of size ck log n for some constant c C l,
[LT], [BL]. For binary trees, c (log 3)- < 1.
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We first consider a simpler version of our problem, namely, for binary trees, that
are trees with maximum degree three.

LEMMA 1. The n vertices of a binary tree T can be mapped into a complete bi-
nary tree C on no more than 2q vertices (2 q -< n < 2q+ 1) so that at most 6
log (n/2- 3) vertices of T are mapped into a vertex of C at distance from the root,
and so that any two vertices adjacent in T are mapped to vertices at most three apart
in C.

Proof. The idea is to recursively bisect T, placing the successive sets of bisector
vertices within successively lower levels of C, until T is decomposed into single vertices.
For example, the vertices placed at the root of C bisect T into two subgraphs T and T2.
Similarly, vertices mapped to the left child of the root bisect T, and vertices mapped
onto the fight child bisect T2. In addition, at level of C we map vertices of T (that have
not already been mapped within levels 1, 2) that are adjacent to vertices mapped
at level 3 of C. This ensures that vertices adjacent in T will be mapped to vertices of
C distance three apart.

To keep the number of vertices of T mapped to a level vertex in C within the
required bounds, we use 3-bisectors. The following procedure describes how this is done.

Step O. Initialize every vertex of T to color A, bisect T, and place the bisector
vertices at the root (level 0) of C.

Step 1. For each subgraph created in the previous step, recolor every vertex adja-
cent to the bisector in the previous step with color 0, and place a 2-color bisector for
the subgraph at the corresponding level-1 vertex of C.

Step 2. For each subgraph created in the previous step, recolor every vertex ofcolor
A adjacent to the bisector in the previous step with color 1, and place a 3-color bisector
for the subgraph at the corresponding level-2 vertex of C.

Step (log TI - _
3). For each subgraph created in the previous step, place

every vertex of color (mod 2) at the corresponding level of C, recolor every vertex
ofcolorA that is adjacent to a vertex mapped at the previous level with color (mod 2)
and place a 3-color bisector for the remaining subgraph at the corresponding level t vertex
of C.

To ensure the accuracy of Step t, it suffices to show nt -< 6 log (n/2) + 18 for 3 -<
< log Zl. Since we have

n
n,-<3 log +nt-3

n
-<6 log+ 18,

Lemma is proved.
The analogous version for higher-degree trees and planar graphs can be proved in

a very similar way, and the proofs are left to the reader. The main difference in proving
these results is that vertices adjacent to previously mapped vertices are themselves only
mapped at every O(log d) level instead of at every level. This way, only two or three
colors are needed, and the bisector at every level stays small.

Strictly speaking, we should use 6 log (n/2 3) instead of 6 log (n/2 3). However, we will usually
not bother with this type ofdetail since it has no significant effect on the arguments or results. Also, all logarithms
henceforth are of base two.
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LEMMA 2. The vertices ofa tree T with maximum degree d can be mapped into a
complete binary tree C on no more than 2 q vertices (2 q _-< n < 2+ l) so that
O(log (n/2t)) vertices ofT are mapped to a vertex ofC at distance from the root, and
so that any two vertices adjacent in T are mapped to vertices at most distance O(log d)
2 log d + 2 apart in C.

LEMMA 3. The vertices ofa planar graph G ofmaximum degree d can be mapped
into complete binary tree Con 2 vertices (2 _-< n < 2+ l) so that
O(1/n/2) vertices ofG are mapped to a vertex ofC at distance from the root, and so
that any two vertices adjacent in G are mapped to vertices at most distance O(log d)
apart in C.

A graph G is said to have a k-bisectorfunctionf if any subgraph of G on rn vertices
has a k-bisector of size no more than f(m). The preceding lemmas are all special cases
of the following.

LEMMA 4. Suppose G on n vertices with maximum degree d has a k-bisectorfunction
f. The vertices of G can be mapped into a complete binary tree C on no more than
2 vertices where 2

_
n < 2+ so that O(f(n/2t)) vertices ofG are mapped

to a vertex ofC at distance from the root, and so that any two vertices adjacent in G are
mapped to vertices at most distance O(k log d) apart in C ifk is large enough that

2f(xd3)<-d3-af(x) for all x.

Although Lemma 4 looks somewhat complicated, it is a natural generalization of
Lemmas 1-3, and we omit the proof. We can now construct universal graphs using the
decomposition lemmas.

THEOREM 1. The minimum universal graph for the family of all bounded degree
trees on n vertices has n vertices and O( n) edges.

Proof. Using Lemma 2, we consider the graph with vertices grouped into clusters
corresponding to the vertices in the complete binary tree C. A cluster corresponding to
a vertex of level contains O(log (n/2t)) vertices. We connect all pairs of vertices in
clusters with corresponding vertices within distance O(log d) O( apart in C. By
Lemma 2 the resulting graph is universal for the family ofall trees with maximum degree
d. The number h(n) of edges in this graph is O(n), since h(n) satisfies the following
recurrence inequality:

h(n)<= 2h()+ c(log n) 2

where c is an appropriate constant depending on d.
The construction just described has O(n) vertices. To obtain a universal graph with

precisely n vertices, we modify the embedding of Lemma so that the same number of
nodes of T are wrapped to nodes in the same level of C. This is easy to do since we can
always arbitrarily expand the bisector of any subtree to be within one of its maximum
allowed value (which is the lesser of the number of nodes remaining and O(log (n/2t))
for nodes on level of C. The exact value of the maximum bisector is the same for all
nodes on a level and depends on the parity of the number of nodes in the subgraphs at
that level. Hence, the size of the bisectors at each level depends only on n, and the
universal graph can be assumed to have precisely n nodes.

THEOREM 2. The minimum universal graph for the family of all bounded-degree
planar graphs on n vertices has n vertices and O( n log n) edges.
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Proof. The construction is obtained by using Lemma 3 in similar fashion as in the
proof of Theorem 1. The number of edges h(n) satisfies

and, therefore, the minimum universal graph has O(n log n) edges.
THEOREM 3. The minimum universal graphfor afamily ofbounded-degree graphs

on n vertices with bisector function f(x) x has n vertices with O(n) edges if a < 1/2;
O(n log n) edges if 1/2; O(n) edges if > 1/2.

Proof. The construction follows from Lemma 4 together with the fact that the
number h(n) of edges satisfies

h( n) <= 2h()+c(f(n)) 2.

THEOREM 4. The minimum universal graph for the family of all bounded-degree
outer-planar graphs on n vertices has n vertices and O( n) edges.

Proof. Since an outerplanar graph on n vertices has a bisector of size O(log n), the
result follows from Theorem 3.

3. A bounded-degree universal graph for bounded-degree trees. For the family of
bounded-degree trees, the minimum universal graph has n vertices and O(n) edges as
indicated in Theorem 2; however, the maximum degree is of order log n. Although the
number of the edges in this universal graph is within a constant factor of the optimum,
its vertices have unbounded degree.

In this section we describe a construction for graphs on n vertices with bounded-
degree that are universal for all bounded degree trees on n vertices. First we need a few
definitions.

DEFINITION. A graph G(V, E) is said to be full if for every V’c V, V’l--<
vI/2, the number of edges between V’ and V- V’ is at least v’l.

We observe that there is a constant i such that for every m, there is a full graph on
m vertices with maximum degree i. Any expander graph can be used for constructing
full graphs [AC], [LPS]. It was shown in [AC] that in any i-regular graph G(V, E) with
second largest eigenvalue h, for every V’ c Vwith V’I an, the number e(V’) ofedges
contained in V’ satisfies

e(V’)- 1/26a2nl _-<Xa(1 -a)n.

Therefore, there are at least (di 2X)a(1 a)n edges between V’ and V- V’. As long
as (6 2 h)/2

_
1, the graph G is full. For large enough 6, this is usually the case.

The universal graph H on n vertices is obtained as follows. For simplicity, we will
assume that n 2" 1.

Start the construction with a complete binary tree on n vertices. Then, add edges
so that the vertices at level k (a constant specified later) form a full graph on 2 k vertices.
Repeat this for vertices at levels 2k, 3k, .... Call the resulting graph H0.

Next, add extra edges so that the vertices at levels k, 2k, ..., log n s (k divides
log n s and s is a constant specified later) collectively form a full graph. Call the
resulting graph H.

Finally, insert an edge between any pair of vertices within distance t of each other,
where is a constant specified later. The resulting graph, denoted by H, is our universal
graph. Observe that the maximum degree of any vertex in H is no greater than
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(2/ + 3 )t which, of course, is a constant because/i and are. We will show that H is uni-
versal for the family of bounded-degree trees on n vertices if k, s, and are properly
chosen.

THEOREM 5. For thefamily oftrees on n vertices with maximum degree d, we can
construct universal graphs on n vertices with bounded degree (that depends only on d).

The proof of Theorem 5 is somewhat involved, and requires a few combinatorial
facts concerning full graphs and trees. The intuition captured in the following lemmas
may be understood as follows. Suppose that we have mapped a subset of the vertices of
a tree T within a graph G, and we next wish to map a vertex v of T onto a vertex of G
in such a way that it remains "close to" its neighbors that have already been embedded.
Ifthere is no place readily available, we can still find a suitable place for v by "perturbing"
the existing mapping slightly to make room for . The "flow lemmas" establish conditions
under which this can be done without dilating edges significantly.

LEMMA 5. Let G be a full graph with maximum degree d, and consider any as-
signment ofpackets to vertices ofG such that every vertex ofG is assigned at least [d/2]
packets. Then, for any disjoint subsets S and T of vertices such that SI TI, it is
possible to redistribute the packets so that we have thefollowing:

Every packet either stays stationary or moves to. a neighbor in G;
(ii) The number ofpackets in each vertex in S decreases by one;
(iii) The number ofpackets in each vertex in T increases by one; and
(iv) The number ofpackets in each vertex in V- (T t.J S) remains the same.
Proof. The lemma is proved with a simple max-flow/min-cut argument. Set up a

flow problem with a supersource connected to each vertex in Sand a supersink connected
to each vertex in T. Assign unit capacity to each edge. Because G is full, there is a 0-1
flow with value SI between the source and sink. The flow determines a one-to-one
correspondence (along with edge-disjoint paths) from the vertices in S to the vertices in
T. By moving one packet forward along each edge that has unit flow we can effect a
reassignment of packets that satisfies conditions (ii)-(iv).

Since every vertex in the flow graph (with the supersource and supersink) has degree
at most d + 1, at most L(d + 1)/2 J [d2q packets will be removed from any vertex of
G during the reassignment process. Since every vertex of G initially has [d2] packets,
no packet need ever move more than one step. Hence, the reassignment also satisfies the
first condition.

LEMMA 6. Let G be afull graph on n vertices with maximum degree d, and consider
any assignment ofpackets to vertices of G so that vertex ui has ai packets, where ai -[d/2] for <= <= m. Then for any set of numbers { a[1 -< -< m } for which a

_
[d/ 2] for

_ _
m, it is possible to redistribute the packets so that we have the fol-

lowing:
(i) Every packet is reassigned to a vertex that is at distance at most

maxl _i_m [ai a’i[ from its original location in G; and
(ii) The number ofpackets assigned to gi changesfrom ai to a, for all <= <= m.
Proof. Apply Lemma 5 for max zi z m a a iterations, each iteration decreasing

the maximum value of[a/- a[, -< =< m, by one.
To establish Theorem 5 we use a decomposition strategy different from that in 2.

The following lemma is a simple extension ofthe - ] separator theorem for binary trees
and was observed previously in BLe]. This can be generalized to arbitrary maximum
degree d via the /(d + 1), d(d + 1)) separator theorem (see C ).

LEMMA 7. For every constant p < 1/2, there exists a constant q such that any n-vertex
two-colored binaryforest with w vertices ofcolor A can be partitioned into two sets by the
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removal ofq edges so that each set has at least [pn] vertices and at least [pw] vertices of
color A.

We also require an additional, final lemma.
LEMMA 8. Every binary tree T on n vertices can be embedded within Ho so that we

have thefollowing:
(i) Vertices ofT are assigned to vertices in levels O, k, 2k, ..., log n s ofrio;
(ii) Every vertex in levels O, k, 2k, ..., log n s ofrio is assigned at least fd2]

and at most c vertices of T, where C is some constant;
(iii) Vertices adjacent in T are assigned to vertices in Ho separated by distance at

most c2, for some constant c2.
Once Lemma 8 is established, it is easy to complete the proof of Theorem 5 as

follows.
Proofof Theorem 5. First obtain the embedding of Lemma 8. Next, by Lemma 6

we can use the edges ofH H0 to reassign the vertices of T within H so that we have
the following"

(i) Every vertex in levels 0, k, 2k, log n s k ofH is assigned 2k

vertices of T;
(ii) Every vertex in level log n s ofH is assigned 2 vertices of T; and
(iii) Vertices adjacent in T are assigned to vertices in H separated by distance at

most 173, where C3 --< 172 "t" 2 max 12 [d21 I, 12 k [d/211 ).
At this point, we need only require that s

_
k and that 2 k --> [d/2] so that the

conditions of Lemma 6 are satisfied. Since k, s, d, Cl, and c2 are all constants, we know
that c3 also is constant. We now reassign vertices one more time so that the mapping
from T to H becomes one-to-one and onto. This is done by arbitrarily assigning the
vertices of T on levels 0, k, 2k, ..., log n s ofH to their immediate descendants.
Once this is done, the maximum distance in H between any two nodes adjacent in T
will be at most c3 + 2s, which is constant. By setting t c3 + 2s in the construction of
H, this will mean that T is a subgraph of H, thereby completing the proof of Theo-
rem 5.

ProofofLemma 8. We follow an approach similar to that in 2. However, since
we are allowed to place only O(1) vertices of T at any one vertex ofHo, we cannot afford
to bisect the tree at each step because that may require placing c log n vertices of T at
the root of H0 for some constant c. Therefore, instead of bisecting the tree at each step,
we separate it into proportional size components using Lemma 7, and continually balance
the sizes of components as the embedding proceeds towards lower levels of H0.

Initially, color all the vertices of T white. Then, pick any [d/2] vertices of T and
map them to the root (level 0) of Ho. Color red those vertices of T that are adjacent to
one or more of the vertices placed at the root of H0. Next, fix p with =< p < 1/2, and use
Lemma 7 to partition the (as yet unmapped) vertices of T into two sets, each with at
least the fraction p of the total number of unmapped vertices, and each with at least the
fraction p of the total number of red vertices (always rounded up to the nearest integer,
of course). One of the sets is distributed to the left subtree of the root of H0 and the
other set to the right subtree. By Lemma 7, no more than q edges connect vertices in the
two sets.

No vertices of T will be assigned to the next k levels of H0, but we continue to
partition T into smaller and smaller sets. In particular, we first color vertices in the "left
set" of T (those unmapped vertices of T assigned to the left subtree of Ho) that are
adjacent to vertices in the right set. We then use Lemma 7 to partition the left and right
sets each into two smaller subsets, one for each grandchild of the root. Continue in this
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fashion, coloring vertices red as they become adjacent to vertices in the opposite set and
splitting the forests (sets) into smaller forests until we have distributed a forest to each
vertex on the kth level of H0.

Although the vertices are split into roughly equal proportions (p" p) at each
level, the sizes of forests at the kth level could vary substantially (in fact, anywhere
between p and (1 p)k). Therefore, at this stage we balance the sizes of the forests
assigned to each vertex by redistributing forests among vertices at level k. To achieve
this balance, first use Lemma 7 to partition each forest into [ d/2-1 subforests (but we do
not distribute the subforests further down the tree). Next, we partition each subforest
whose size is greater than 1/p times the size of the smallest subforest. Observe that this
does not affect the size of the smallest subforest.

We are now ready to apply Lemma 6, with each subforest represented as a packet.
In particular, we use Lemma 6 to redistribute subforests on the level so that every vertex
ends up with an equal number of subforests (to within one). We then map all the red
vertices of T (i.e., those adjacent to vertices in different subforests) to the corresponding
vertex of H0 where the enclosing subforest is currently located, making sure to map at
least [d/2 vertices of T to each vertex on level k in H0. (If there are not enough red
vertices, then we use some of the white vertices in the same subforest to make up the
total. We show later that there are always enough vertices overall so that this is possible.)

After the mapping is completed for level k, we recolor red all white vertices of T
that are adjacent to vertices already mapped, and we henceforth regard the collection of
subforests assembled at a single vertex ofH0 as a single forest. Next, we repeat the process
used on levels 1, 2, ..., k for levels k / 1, k / 2, ..., 2k, log n s, where s is a
constant yet to be specified. At every kth level, we rebalance and coalesce forests as on
level k, and map all red vertices of T to the corresponding vertices of Ho. At level
log n s all the unmapped vertices of T (both red and white) are mapped directly to the
corresponding vertices ofH0. Several details remain to be ironed out; however, it should
be clear that vertices adjacent in T are mapped to vertices which are at most k levels
apart in H0.

The analysis needed to complete the proof is tedious, but not difficult. We start by
letting ri be the maximum number of red vertices in any forest after all partitioning,
balancing, coalescing, mapping, and recoloring is done at level ik of H0. Similarly, let
Zk be the number of vertices (both red and white) in the smallest forest at level ik.

We will prove by induction that, for ik <= log n s, zi - 2-n/6, and ri <- r’
96(1 + q)2-kp-(k+rlgrd/211+ 1).

Observing that r’ >= d[d2q for k sufficiently large (in terms ofp and d), we note
that both statements are trivially true for 0 and n sufficiently large. We next calculate
bounds for r;. / k and zik / to proceed with the inductive step.

By Lemma 7, we know that

rik + <= (1 -p)rik + + q;

therefore, each forest at level ik + k ofrio has at most p)krik + + q)/p red vertices
initially. The process of partitioning forests into subforests at level ik + k cannot increase
this value, but redistributing, coalescing, and recoloring certainly can. To measure their
effect, we need to bound the number ofsubforests that are located at any vertex following
redistribution. This ofcourse depends on the overall number ofsubforests, which in turn
depends on the size of the smallest subforest.

The size of the smallest subforest at level ik is zik. Hence, the size of the smallest
forest at level ik + is at least pzik 1. Applying the argument recursively, we find that
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the size of the smallest subforest at level ik + k (after all the subdividing at this level is
complete) is, for p

_
1/2, at least

Zikpk + rlogld/2] p) -1 _. pk + rlogrd/2]-I 2-ikn/ 6 2.

For sufficiently large s (i.e., small enough i), this is at least pk +rlogrd/2112-ikn/12. Hence,
the number of subforests at this level is no greater than 12 2ikp-(k+rlgrd/211). The
maximum number of subforests located at any vertex after balancing is, therefore, no
greater than

+ 12 X 2-kp-(k + PlogFd/Eq) 24 X 2-kp-(k +Flog[d/Eli).

Consequently, the maximum number of red vertices in any forest after rebalancing and
coalescing is at most

((1 --p)krik +(1 + q)/p)24 2-kp-(k+rlgrd/23).

Since mapping and recoloring can increase this at most by a factor of two, we have

rik + k <- 48(1 --p)krik2-kp-(k + rlogFd/2]]) _[_ 48(1 + q)2-kp-(k + rlogrd/211).

By choosing p > { so that (1 p)/2p < 1, we have that for k sufficiently large (in terms
ofp and d)"

ri/ + k <= 1/2rik + 48(1 + q)2-kp-(k + + rlogrd/233);

thus,

rig + k -- 96(1 + q)2-kp-(l + + flogl-d/2]]) r’,

as claimed.
We next complete the inductive step for Zik + k. Since the largest and smallest subforests

differ in size by at most a factor of 1/p, the size ofthe smallest forest after balancing and
coalescing is at least p(n r’2ik+k)2 -tik+k)-, the factor 1/2 accounting for the fact that
every vertex has the same number ofpackets to within one. After mapping and recoloring,
the size of the smallest forest is

>P-(n- r’2 ik + k)2-tik + k)_ r’.Zik+k-- 2

With some additional calculations it can be checked that this is at least 2 -tik+ k)n/6 for
p > ] and s sufficiently large, thereby completing the proof of the claim.

By choosing s sufficiently large, we have shown that every vertex at levels 0, k, ,
log n s- k of H0 is assigned at least fd/2] and at most r’ vertices of T. Since s is
constant, every vertex at level log n s ofH0 is assigned between [d/2] and c vertices,
where cl is some constant bigger than r’. Moreover, vertices of T are assigned only to
vertices in levels 0, k, , log n s of H0. Hence, it remains only to show that vertices
adjacent in T are assigned to vertices in H0 that are separated by distance at most c2, for
some constant c2. We already know that cz is at most k plus the distance subforests are
allowed to move during the rebalaneing step at every kth level. By Lemma 6, this distance
is at most the largest number of subforests at any vertex before rebalancing. By the
construction, this is at most some constant determined by p, d, k, and s. This completes
the proof of Lemma 8 and Theorem 5.

4. Further problems and remarks. While the universal graph for bounded-degree
trees is optimal (within a constant factor), the universal graph for bounded-degree planar
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graphs on n vertices has O(n log n) edges. On the other hand, the best known lower
bound for the number of edges is still cn. It is of interest to close up the gap.

One variation of the universal graph problem is to require the universal graph
to be of some specified type. For example, in [CCG] universal trees that contain all
trees with at most n nodes were considered. Relatively little is known about universal
planar graphs that contain all planar graphs on n vertices.

This work is heavily motivated by simulation of graph families in various host
networks with small dilation (i.e., adjacent vertices are mapped into nearby vertices)
and small expansion (i.e., the ratio of the size of host graph and the maximum size of
graphs in the family is small). The decomposition lemma (Lemma in 2) for binary
trees also provides optimal embeddings of binary trees within other structures. For ex-
ample, we can show that every n-vertex binary tree can be embedded within an n-vertex
complete binary tree with expansion and dilation O(log log n). This settles a conjecture
of Hong, Mehlhorn, and Rosenberg HMR who showed a lower bound of fl(log log n)
for this problem. By embedding a complete binary tree within the shuffle exchange graph
with expansion and dilation 2, we obtain O(log log n) dilation for arbitrary trees
embedded within the shuttle-exchange graphs. Similarly, we have recently shown that an
n-vertex binary tree can be embedded with constant expansion and dilation within the
butterfly network BCHLR]. Finally, we have shown that all binary trees can be embedded
in a hypercube with expansion and dilation 10 [BCLR].
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VERTEX TYPES IN BOOK-EMBEDDINGS*

JONATHAN F. BUSS, ARNOLD L. ROSENBERG:I:, AND JUDSON D. KNOTT

Abstract. A new measure ofthe complexity ofa book-embedding of a simple undirected graph, the number
of vertex types in the embedding, is studied. The type of a vertex v in a p-page book-embedding is the p 2
matrix of nonnegative integers

L R
,r(V) L2 R2

Lp Rp

where Li (respectively, Ri) is the number of edges incident to v that connect on page to vertices lying to the
left (respectively, to the right) of v. The number of types in a book-embedding relates to the amount of logic
necessary to realize fault-tolerant arrays of processors using one specific design methodology. Three sorts of
issues regarding vertex types in book-embeddings are studied. A number of techniques for bounding the type-
numbers ofa variety ofgraphs are developed; the relationships between typenumber and other graph properties,
such as book thickness, are investigated; and the problem of minimizing the typenumber of a graph is considered.
Finding that problem to be NP-complete, the problem of finding a (cyclic) rotation ofa given book-embedding
that minimizes the number of vertex types is studied.

Key words, fault-tolerance, VLSI design, graph embedding, outerplanar graphs, trees, NP-completeness

AMS(MOS) subject classifications, primary 68R10; secondary 05C10, 68Q35

1. Introduction. A book is a set of half-planes (the pages of the book) that share a
common boundary line (the spine of the book). An embedding of a simple undirected
graph G in a book consists of an ordering of the vertices of G along the spine of the
book, together with an assignment of each edge of G to a page of the book, in which
edges assigned to the same page do not cross. We shall always assume that a graph is
simple and undirected. A (cyclic) rotation of a given book-embedding is obtained by
cyclically rotating the vertices along the spine, while retaining all assignments of edges
to pages.

There are three germane measures of the quality of a book-embedding:
(1) The thickness number of pages) of the book;
(2) The individual and cumulative widths of the pages (= the cutwidths of the

edges on the various pages, and the cutwidth of the entire embedding);
(3) The number ofdistinct vertex types: Given ap-page book-embedding ofa graph

G, each vertex v of G has an associated p 2 matrix of nonnegative integers, called
its type,

(1)

L R
.r(l;) L2 R2
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Li respectively, Ri) is the number ofedges incident to v that connect on page to vertices
lying to the left (respectively, to the right) of v.

Note that any cyclic permutation (or, rotation) of a p-page book-embedding is
another p-page book-embedding.

Henceforth we refer to the book-thickness (also called the pagenumber), the page-
width, and the typenumber of a book-embedding and, via minimization over all book-
embeddings, of a graph G.

Most work on book-embeddings has focused solely on book-thickness [1], [2 ],
5 ], 8 ], 10 ], 15 ]; some have included pagewidth on their list of concerns 3 ], 4 ],

[9], [13 ]. The present paper concentrates on the third cost measure. We study techniques
for bounding the typenumbers of graphs by studying a variety of specific graphs ( 3);
we then investigate the relationships between typenumber and a number ofother structural
properties ofgraphs ( 4); we finally consider the problem ofminimizing the typenumber
ofa graph. We show that the problem offinding a typenumber-minimal one-page embed-
ding of an outerplanar graph is NP-complete. We then fall back to the problem of min-
imizing the typenumber of a given book-embedding, by means of a (cyclic) rotation.
We find a rather efficient algorithm for this minimization problem. We also demonstrate
the need for such an algorithm by considering the case of complete d-ary trees: the
typenumber ofany such tree is three; however, a randomly chosen rotation ofthe preorder
book-embedding of the tree has, with probability approaching one, d + 4 vertex types.

Motivating our study is the DIOGENES methodology for designing fault-tolerant
VLSI processor arrays 12 ], 3 ]. The methodology views the desired array as an undirected
graph, with vertices representing processing elements and edges representing commu-
nication links; the design process operates in two stages: First, the graph representing the
desired array is embedded in a book; then, the book-embedding is converted to an efficient
fault-tolerant layout of the array. The significance ofthe notion of vertex type is that the
type of a vertex "tells it" what role to play in the fault-free processor array. Thus, the
base-two logarithm of the number of vertex types is the number of control bits per
processing element needed to configure the array to its fault-free format.

Before turning to the main results ofthe paper, we present some easily verified basic
facts about vertex types and book-embeddings that are useful in the sequel.

PROPOSITION [1]. The graph G admits a 1-page book-embedding ifand only if
G is outerplanar.

The next result indicates the fundamental nature of vertex types.
PROPOSITION 2..4 book-embedding is determined uniquely by the sequence ofvertex

types it induces.
Sketch ofproof. Since edges on the same page of a book-embedding cannot cross,

we can recreate the entire embedding by reading off (from the sequence of vertex types)
how many edges leave each vertex to the fight and to the left on each page of the book
and matching these "dangling edges" up in a left-to-right scan of the sequence. For
instance, if the sequence of vertices in the book-embedding is

and if on Page k we have the following:
Vertex v; has e

_
edges leaving to the right;

Vertex vj, j > i, has at least one edge leaving to the left;
At most e vertices vt, < 1 < j, have edges leaving to the left;
No vertex Vm, < m < j, has an edge leaving to the right;

then we know that vertices vi and vj are connected by an edge on page k.



158 J. F. BUSS, A. L. ROSENBERG, AND J. D. KNOTT

The next two results present general upper and lower bounds on the typenumber
of an arbitrary graph and of an outerplanar graph.

A nonzero vertex type of the form (1) is a source if all Li 0 and is a sink if all
Ri 0. A source or a sink is a one-sided vertex type; a vertex type that is neither a source
nor a sink is two-sided.

PROPOSITION 3. Every graph G having a connected component with at least two
vertices has typenumber

_
2.

Sketch ofproof. Under the stated hypotheses, every book-embedding of G must
have a source and a sink.

We denote by na the number of vertices of the graph G and by na(d) the number
of degree-d vertices of G.

PROPOSITION 4. (a) In any p-page book-embedding of a graph G, the degree-d
vertices ofG can assume no more than

(2) min(na(d)(2p+d-l’d ))
vertex types. Hence, ifDa is the set ofall distinct vertex-degrees ofthe graph G, then the
typenumber ofthe given book-embedding can be no more than

ke DG k

(b The typenumber ofany book-embedding ofG must be at least IDol.
(c) IfG is a biconnected outerplanar graph, then the typenumber ofany 1-page

book-embedding ofG cannot exceed

2+ min (n(k),k- 1).
k DG

Sketch ofproof. (a) The two possibilities in (2) hold, respectively, since each vertex
has exactly one type, and since each vertex type can be viewed as a partition of the
integer d into 2p nonnegative parts. Equation (3) is a direct consequence of (2).

(b) The lower bound is immediate since for any degree- dvertex v, r(v), as specified
in (1), must satisfy Z p P

i=l Li "b i=1Ri d.
(c) A direct instantiation of (3) would yield the bound

min (no(k),k+ 1).
kD

We can reduce this total by noting that a 1-page book-embedding ofa biconnected graph
must have exactly one source and one sink, as we now verify. [3

LEMMA 1. A 1-page book-embedding ofa biconnected outerplanar graph has pre-
cisely one source and one sink.

Sketch ofproof. Assume that the embedding had more than one source (sinks yield-
ing to a symmetric argument). The rightmost neighbors of all but the leftmost source
are easily seen to be cut vertices, contradicting the biconnectivity of G. l--1

2. The typenumbers of specific graphs. We derive upper and lower bounds on the
typenumbers of (book-embeddings of) a variety of families of graphs.

Stars. The d-ary star is the graph with d + vertices and with edges connecting
one of these vertices (the root) to all the others (the leaves).
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PROPOSITION 5. A connected graph G with at least two vertices has typenumber two
ifand only ifG is a star.

Sketch ofproof. The one-page book-embedding ofa star that places the root to one
side (say the left) of all the leaves has two vertex types: the root has type (0, d), and
every leaf has type (1, 0).

Conversely, let G be a connected graph with typenumber two. By Proposition 3, G
has at least one source and at least one sink. Since G has typenumber two, it has precisely
one source, say

and precisely one sink, say

0 R
0 R:

o

L 0

L. 0

o
If both Y v

i-- Li > and Yv Ri > 1, then G would not be a simple graph, as we can
verify easily by considering the leftmost sink in the book-embedding and the source
immediately to its left. If G is connected, and at least one of p P

i= Li and Y i-- Ri equals
one, then G is a star. V1

Complete trees. For integers d, h > 0, the height-h complete d-ary tree Td,h is the
rooted tree in which every nonleaf node has d sons, and all root-to-leafpaths have length
h (measured in number of vertices). The preorder book-embedding of Td,h is the 1-page
book-embedding whose vertex-ordering is given recursively by

0. the root of Td,h, to the left of
1. the vertices of the leftmost copy of Td,h- in preorder, to the left of
2. the vertices of the second leftmost copy of Td,-l in preorder, to the left of

d the vertices of the rightmost copy of Td,- in preorder.

Note that Td,2 is the d-ary star.
PROPOSITION 6. a A 1-page book-embedding ofa complete d-ary tree can have

typenumber at most

if h= 1,

3 if h=2,

d+3 if h= 3,

d+ 5 ifh_4.

(b For any arity d

_
2, the preorder book-embedding of Td,h (which is a 1-page

book-embedding) has typenumber one when h 1, typenumber two when h 2, and
typenumber three when h

_
3. No book-embedding of Td,h has smaller typenumber.

Proof. Item (a) is immediate from Proposition 4, since the root of Td,h is the unique
node of degree d, all (dh- 1_ d)/(d- 1) interior nodes have degree d + 1, and all
dh leaf nodes have degree one.



160 J. F. BUSS, A. L. ROSENBERG, AND J. D. KNOTT

(b) In the preorder book-embedding: the root has type (0, d); each internal node
has type (1, d); and each leaf node has type (1, 0). The typenumber-minimality of the
preorder book-embedding follows from the lower bound in Proposition 4.

Complete graphs. The n-vertex complete graph Kn has n vertices, every two ofwhich
are connected by an edge.

PROPOSITION 7. Typenumber Kn n
Sketch ofProof. In any book-embedding ofK, the ith vertex from the left is unique

in having precisely edges going to the left; hence, all vertices have distinct types. E]

Complete bipartite graphs. For integers m, n >_- 1, the complete bipartite graph Km,
has m input vertices and n output vertices, and edges connecting each input with each
output.

PROPOSITION 8. Typenumber Km, + min m n The book-embedding
achieving this typenumber is unique, up to rotation.

Proof. We show first that Typenumber (Km,) -< + min (m, n). Say, with no loss
of generality, that m

_
n. Consider the m-page book-embedding of K,,n that places

all inputs to the left of all outputs and that uses page (1 _-< _-< m) for the star that
connects the ith input vertex to all of the output vertices. In this embedding, each
input vertex has a distinct type, and all output vertices have the same type, for a total of
+ min (m, n) types.
We complete the proof by showing that Typenumber (Km,) - + min (m, n),

and that the book-embedding achieving this bound (which is the one described in the
preceding paragraph) is unique, up to rotation.

Note first that the bound and the uniqueness are trivial when min (m, n) 1, for
then Km, is a star. We, therefore, assume henceforth that min (m, n) > 1.

Focus on a fixed book-embedding of Km,. Say that there are two input vertices, u
and v, that have the same type in the embedding. (Our conclusions will translate by
symmetry to output vertices.)

CLAIM 1. No output lies between u and v in the book-embedding.
If u and v were separated by an output, they would have different numbers of

leftgoing edges, and hence different types.
CLAIM 2. For each output w, the edgesfrom w to both u and v lie on the samepage.
CLAIM 3. For each pair of outputs w and x, the edges from u to w and x lie on

different pages; the same is true ofthe edgesfrom v to w and x.
We verify Claims 2 and 3 simultaneously. By Claim 1, no output lies between inputs

u and v in the book-embedding. Focus, therefore, on the k outputs that lie to the left of
both u and v and on the l outputs that lie to the fight of u and v. Say that the k left-hand
outputs are, from left to fight,

Ok Ok-17 01

and that the I right-hand outputs are, from left to right,

Say that, for each e { 1, 2,..., k}, input u’s edge to output 0 resides on page Pi,

and input v’s edge to output oi resides on page qi; say, moreover, that, for each j e
{ 1, 2, ..., l }, input u’s edge to output 6j resides on page/j, and input v’s edge to output

6 resides on page t. Suppose, with no loss of generality, that u lies to the left of v in the
book-embedding. We note the following facts about the portion of the embedding that
we have just described.
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(1) Since u and v share the same vertex type, we have both

and

(2) Because edges on the same page cannot cross, we have the following:
For eachie{1,2,...,k-1},qi{pi/l,...,pk};
Foreachi{1,2,...,l- 1},/i{4i+,’’’,4k};
For eachie{1,2,...,k}andje{1,2,...,k},q:

An easy inductive argument using these facts establishes the following"
For eachi{1,2,...,k},pi=qi;
For eachi{1,2,...,l},/i=4i;
For distinct i, j { 1, 2, ..., k}, p pj;
For distinct i, j { 1, 2, ..., 1 },/ /;
For i {1, 2, ..., k} andj {1, 2, ..., l},pi.

This establishes Claims 2 and 3.
We now use Claims 1-3 to complete the proof.
CLAIM 4. Ifsome two inputs have the same type in the book-embedding, then no

two outputs have the same type.
By Claim 1, the outputs would have to lie on the same side of the similar-typed

inputs; by Claims 2 and 3, the outputs would then have distinct types.
CLAIM 5. Ifsome two inputs have the same type in the book-embedding, then the

(common) type ofthese inputs differsfrom the types ofall ofthe outputs.
Say that inputs u and v have the same type in the book-embedding. Focus on an

arbitrary output w. By Claim 2, the edges from w to both u and v reside on the same
page. By Claim 3, all edges emanating from u (and from v) reside on distinct pages.
Since min (m, n)

_
2, this establishes the Claim.

In summary, we have shown the following:
Either all of the input vertices of gm.n, or all of its output vertices, must have
distinct vertex types in the book-embedding;
If some two input (respectively, output) vertices of Km,n have the same type in
the embedding, then their common type must differ from the types of all of the
output (respectively, input) vertices.

It follows that there must be at least + min (m, n) distinct vertex types in the book-
embedding. Moreover,

The only way to achieve this minimum typenumber is as follows:
inTo place the more numerous of the inputs or outputs in a contiguous block;
inTo dedicate a distinct page to (all of the edges incident to) each of the less
numerous of the inputs or outputs.

This last item determines the type-minimizing book-embedding completely, up to ro-
tation. (When m n, we should also add the phrase "up to isomorphism.")

Ladders. For integer h

_
1, the height-h ladder graph Lh has vertex-set

{ a, az, a,, b, b, b, }

and edges connecting the following"
Each pair (ai, b) for { 1, 2, ..., h }
Each pair (ai, ai / 1) and each pair (bi, bi / 1) for e { 1, 2, h }.
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PROPOSITION 9. Restricting attention to 1-page book-embeddings ofLh we have:
Typenumber (L1) 2; Typenumber (L2) 3; Typenumber (L3) 4; for h >- 4, Type-
number (Lh) 5.

Proof. The result is trivial for h < 3: LI is the 1-ary star, so the result is a special
case ofProposition 5; L2 is the four-cycle, so its unique 1-page book-embedding has three
vertex types, which must be minimal since L2 is not a star.

Focus henceforth on the case h

_
3.

Consider the 1-page book-embedding of Lh that orders the vertices

a2 a3 ah- bh b2- b a.
When h 3, this embedding uses four vertex types:

{(0, 3),(1, 1),(2,0),(2, 1)}.
When h 4, this embedding uses five vertex types:

{(0,3),(1, 1),(1,2),(2,0),(2, 1)};
the rotations ofthis book-embedding also use five vertex types (but, different ones). This
establishes the upper bound.

To see the lower bound, note first that Lh is a biconnected outerplanar graph; hence
by Lemma l, a 1-page embedding of Lh has precisely one source and one sink. Since Lh
has four bivalent vertices, at least two of these must have type (1, 1).

Consider first the case h 3. We have accounted for three types thus far, the type
(1, 1), the source and the sink. We consider three cases.

(1) If the source and sink are both bivalent vertices, then we need at least one more
vertex type to account for the two trivalent vertices in L3.

(2) If the source and the sink are both tdvalent, then we cannot have a legal book-
embedding, for we cannot have on a single page two vertex-disjoint length-four paths
with the same endpoints.

(3) If one of the source and sink is bivalent while the other is trivalent, then we
need a fourth vertex type to account for the second trivalent vertex.
In all realizable cases, then, we need four vertex types.

When h

_
4, we need one more ingredient for our argument. Let n(L, R) denote

the number of vertices in the embedding that have type (L, R). Since across the entire
embedding, the number of edges "leaving some vertex to the right" must equal the
number of edges "leaving some vertex to the left," we must have the equation

2n(0, 2) + 3n(0, 3) + n(1,2) 2n(2, 0) + 3n(3, 0) + n(2, 1).

Since we now have at least four trivalent vertices, this conservation equation must be
satisfied subject to the following equalities:

n(0, 2) + n(1, 1) + n(2, 0) 4;
n(0, 3) + n(1, 2) + n(2, 1) + n(3, 0) 2h 4;
n(0, 2) + n(0, 3) n(2, 0) + n(3, 0) 1.

We easily show that this system of equalities can be satisfied only if

n(1,2).n(2, 1)> 0.

This means, however, that we have at least five vertex types in the book-embedding: the
three two-sided types plus the source and the sink. The lower bound follows.

We conjecture that additional pages for Lh, h

_
4, will not lower its typenumber

below five, but we suspect that only an unilluminating case analysis will settle the con-
jecture.
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3. Typenumber and graph structure. We have tried to link the typenumber of a
graph with some other structural property ofthe graph. With the exception ofa nontrivial
bound connecting the number of pages and the number of types in a book-embedding,
our quest has been unsuccessful.

3.1. Book-thickness. We begin with our one success. Since trees, which are 1-page
embeddable, can have arbitrarily large sets of distinct vertex-degrees, and hence arbitrarily
large typenumbers, we cannot hope to bound the book-thickness of G from below using
the typenumber ofG. But, we can obtain a nontrivial upper bound on the book-thickness
of G from the typenumber.

PROPOSITION 10. If the graph G admits a p-page book-embedding with vertex
types, then

2

no smaller bound is generally possible, since this bound is achievable.
Proof. Consider an arbitrary p-page t-type book-embedding. Say that page k

(1 _-< k

_
p) is introduced by the leftmost vertex v in the embedding that has an edge

entering it from the left on page k, i.e., that has a positive entry L in its vertex type r(v)
as in (1). Assume that vertex v ofG introduces both page and pagej in a book-embedding.
Then the vertices u and u that lie to the left of v in the embedding and that "emit" the
witnessing edges on pages and j must have distinct vertex types: If they had the same
type, then the fact that edges on a given page of a book-embedding do not cross would
force v to accept both of these edges from the rightmore of u and u; these "parallel
edges" would contradict the simplicity of G. It follows that a vertex in the embedding
can introduce no more pages than it has distinct vertex types to its left in the embedding.
Furthermore, if v introduces a page, then its type differs from the types of all the vertices
to its left. It follows that the ruth vertex from the left in the book-embedding can introduce
no more than m pages (and this many only if all vertices to its left have distinct
types). The bound follows.

To see that the bound is achievable, consider K,,. We saw in Proposition 7 that every
book-embedding of K, has n vertex types. Consider the (thickness-ineflScient) book-
embedding that assigns each edge of K, to a distinct page. This embedding uses n types
and () pages.

Despite whatever hopes our bound might raise, we find that we cannot generally
hope to move toward optimizing either typenumber or book-thickness by moving toward
optimizing the other.

PROPOSITION 11. (a) There exist graphs G and t-type p-page book-embeddings of
G such that every (p + 1)-page book-embedding ofG has more than t types.

(b) There exist graphs G such that every p-page book-embedding ofG uses at least
+ types, but there is a (p + 1)-page book-embedding ofG that usesfewer than t types.

Sketch ofproof. (a) There is a 1-page two-type book-embedding of the d-ary star
(Proposition 5). For d > 1, any (p > 1)-page book-embedding must have more than
two types, since some leaves must reside on distinct pages, and hence have distinct types.

(b) By Proposition 8, the book-embedding that minimizes the typenumber ofKn,n
is unique, up to rotation. This (n + 1)-type embedding uses n + pages. Bemhart and
Kainen [1] exhibit an n-page book-embedding of Kn,. It follows that type-minimality
cannot be achieved simultaneously with thickness-minimality.

3.2. Graph homeomorphism. In the case of graph homeomorphism, not only can
we show that taking homeomorphs can either increase or decrease typenumber, we can
show that no functional bound can be placed on the amount of change.



164 J. F. BUSS, A. L. ROSENBERG, AND J. D. KNOTT

PROPOSITION 12. (a) There exist graphs G and t-type book-embeddings ofG such
that every nontrivial homeomorph ofG admits only book-embeddings that use more than
types.

(b) Let DG denote the set ofdistinct vertex-degrees in the graph G. There exists a
homeomorph ofG that admits a 3-page book-embedding with DGI + 14 vertex types.
Thus, there exist graphs G such that every book-embedding ofG uses at least types, but
there is a homeomorph of G, one of whose book-embeddings uses strictly fewer than
types.

Sketch ofproof. (a) We invoke the d-ary star once more. Any nontrivial homeo-
morphism of the star is no longer a star, and hence cannot be realized with a 2-type
book-embedding.

(b) We modify a device of Bernhart and Kainen [1, Thm. 5.4]. Let G (V, E) be
a simple undirected graph. We construct a 3-page-embeddable homeomorph of G in
stages, by constructing the book-embedding directly:

(1) Lay the V vertices of G along the spine of the book, in arbitrary order.
(2) Place 2 El new vertices along the spine, to the right of G’s vertices.
(3) Use one page to lay the edges of a forest of stars, with G’s vertices as roots and

the new vertices as leaves: each d-valent vertex of G becomes the root of a d-
ary star. In order to fit on one page of the book, these stars must be nested in
the sense that G’s rightmost vertex uses the leftmost new vertices, G’s second
rightmost vertex uses the new vertices just to the right of these leftmost ones,
and so on.

(4) Using one "pseudopage"ma page that allows crossed edgesmconnect up the
new vertices to construct a homeomorph of G, in fact one that has precisely
two new vertices along each edge of G.

(5) Place a pseudovertex at each edge-crossing on the pseudopage. Distort the edges
on the pseudopage so that all of the pseudovertices lie along a line. Place a new
pseudovertex at each point where an edge crosses the line.

(6) Pull the line of pseudovertices around 180 rigidly, so that the pseudovertices
lie on the spine, to the fight of the new vertices.

(7) Add new pseudovertices along the spine to the right of the already-present
pseudovertices, wherever an edge crosses the spine.

We now have a 2-page book-embedding of a graph derived from G. At this point, we
can apply the techniques of Theorem 5.4 of to use the third page to modify this
derived graph so that it becomes a homeomorph of G. (We refer the reader to that paper
rather than repeat the construction.)

The 3-page book-embedded homeomorph has the following characteristics.
The leftmost V vertices have IDol different valences; every degree-d vertex in
the block has type

0 0
0 0

All other vertices in the homeomorph are bivalent (as they must be); their types
are arbitrary, except that they cannot contain any entry "2," nor can they contain
the pattern "( 1, 1)" on page three.

The result follows by adding up the number of types.

4. On minimizing typenumber.
4.1. The infeasibility of minimizing graph-typenumber. We now show that the

problem of finding a typenumber-minimal book-embedding of a given graph is likely to
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be computationally infeasible. We accomplish this by considering the following decision
problem.

MIN-OUTERPLANAR-TYPES.
Instance: An outerplanar graph G and an integer k.
Question: Does G have a 1-page embedding using at most k vertex types?
THEOREM 1. The problem MIN-OUTERPLANAR-TYPES is NP-complete.
Proof. It is transparent that MIN-OUTERPLANAR-TYPES is in NP, so we shall

concentrate only on showing that it is NP-hard. To this end, we shall begin by showing
that the following problem, MIN-UNION, is polynomial-time reducible to MIN-OUT-
ERPLANAR-TYPES. We shall then complete the proofby showing that MIN-UNION
is NP-complete.

MIN-UNION.
Instance: m pairs (A, Ai2) of subsets of { 1, 2, n} and an integer k.
Question" Are there choices ji - { 1, 2 } =< < n, such that t-Ji A ji[ =<k?
In the following, we specify outerplanar graphs, and portions ofthem, by presenting

a sequence ofvertex types; Proposition 2 justifies this mode ofspecification. The notation
does not, of course, imply that the given order is the one used in embedding the graph.

2Let an instance of MIN-UNION be given. Let s(i) be the vertex sequence
1, 2) + 2 1, + 3, 1), and let g(i) be the reverse sequence 1, + 3 1, 1) (2, 1) + 2.
To each pair

(A] {jl,j, ,j),]},A2 {j2,j, ,j, }

associate two copies of the biconnected component

B;= (0, 2),(1, 1),s(jl + 3),s(j + 3), ,s(j + 3), g(j2 + 3),

(4) g(j2 + 3 ), "’, g(j + 3 ), 2, 0).

In addition take two copies of

(5) E1 (0,2),(1, l),g(4),g(5), ,g(n+ 3),(2,0).

If n > 2m 2, take [(n 2m + 2)/ 2] copies of (0, 2), (1, 1), (2, 0). Join all of the
above components into one component by identifying the first vertex ofevery sequence;
call the resulting vertex, with degree at least n + 4, the anchor vertex. Finally, add the
two connected components

E2 (0, 2),(1, 1),(2,0)(6)

and

(7) E3 (0,2),(1,2),(1, 1),(2, 1),(1,2),(1, 1),(2, 1),(2,0).

The preceding construction results in an outerplanar graph G that has a 1-page
embedding using k + n + 6 types if and only if there is a choice of sets from each pair
(A, A,2. with a union of size k, as we show now.

Suppose that there is a vector of choices of sets, l (11, 12,’", lm) { 1, 2 } m,
satisfying Ui A t’ < k Then G can be embedded using k + n + 6 types, as follows. The
components El, E2, and E3 are embedded as specified in (5), (6), (7) above. If li 1,
then both copies of B; are embedded in the order specified in (4) above. If li 2, then

(a, b)c denotes a string of c occurrences of the pair (a, b).
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both copies of B; are embedded in the reverse of the order specified in (4). We easily
verify that the embedding always uses types

{(1,4),(1,5), ,(1,n+ 3),(2,0),(1, 1),(0,2),(1,2),(2, 1)}

for E, E, and E3, and some type (a, a2) where a + az - n + 4 for the anchor vertex.
Let UiAt] {r,r, ,r}. Then the only additional types from the B are
{ (r + 3, 1)

_ _
k }. Hence the total number of types is k + n + 6. (Note that the

embedding of the component E "swallows up" the types corresponding to the elements

A that are not selected by the vector/.)
Next, suppose that G can be embedded in one page using at most k + n + 6 types.

Because each component of G is biconnected, the possible one-page embeddings G are
very restricted, as the following lemma indicates.

LEMMA 2 14 ]. A biconnected outerplanar graph has a unique outerplanar embed-
ding, up to rotation and reversal.

For any embedding of G, the components E2 and E3 must use types (0, 2), (2, 0),
(1, 1), (1, 2), and (2, 1). In addition, the anchor vertex is of some type (a, a_)
where a + a2 - n + 4. Of the two copies of E, at least one must have the anchor
vertex at one end. Hence, we may assume without loss of generality that types
{ (1, + 3)"

_ _
n } are used also.

For

_ _
n, one copy of Bi must have the anchor vertex at one end. That copy

must use either types { (j], 1)

_
_-< k] } or { (j/z, 1) -< _-< k/z }. In either case,

U A[
_
k for the corresponding selection vector/-.

We have thus reduced the MIN-UNION problem to the MIN-OUTERPLANAR-
TYPES problem. We now complete our proof by establishing the NP-completeness of
MIN-UNION. As before, membership in NP is transparent, so we shall show only that
the problem is NP-hard, by reducing the well-known NP-complete problem CLIQUE
[6] to it.

CLIQUE.
Instance: An undirected graph G (V, E) and an integer
Question" Does G have a clique of size at least k?

Assume, without loss of generality, that V { 1, 2, -.., n }. For _-< -< n, let

A {i} and A_= {j’(j, i)
{1 2}m, defineV {i i"

We claim that G has a clique of size k if and only if there is a selection vector I such
that Arl =<n-k.

Suppose first that the graph G has a clique C V. Let l 2 for C and li
for C. Then A r

_
V- C; hence, if C has size k, then A i =< n k.

Conversely, if A1 - n k, then the set Vt contains a clique of size k. This can
be seen as follows. Each e V appears in A i, and hence adds one to AI. A given
j e V fails to appear in A if and on_ly if it is adjacent to every other vertex of Vt2.
In particular, some k vertices from V fail to appear in A if and only if they are all
mutually adjacent and hence form a clique.

The argument in the preceding paragraphs establishes that CLIQUE is reducible
to MIN-UNION, so MIN-UNION is NP-complete. This completes the proof of the
Theorem.

As an added point of interest, the MIN-UNION problem is closely related to the
following variation of the SATISFIABILITY problem. Given an instance (A, A 2) of
MIN-UNION, construct a CNF formula with clauses

C= { xi" i-A) } tO {axi" i.A }.
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There is a selection vector -for which the union set A i has cardinality at most k if and
only if there is an assignment of truth values to the xi that satisfies at most k clauses.
This MIN-CNF-SAT problem contrasts with the MAX-2CNF-SAT problem, which is
proved NP-complete in [7 ].

4.2. The importance of minimizing embedding-typenumber. Ofthe three measures
of the cost of a book-embedding, typenumber is the only one that is very sensitive to
rotation (or, cyclic permutation). It is obvious that rotation has no effect on the book-
thickness of a book-embedding. It is not difficult to verify that rotation can increase (or
decrease) the pagewidth ofa book-embedding by at most a factor oftwo; this observation
is due to Heath (and is used in [4]). However, there is no a priori bound on how much
the typenumber of a book-embedding can be affected by rotation.

To verify this last claim, focus on the (1-page) preorder book-embedding of the
height-h complete d-ary tree Ta,h. We have shown in Proposition 6(b) that this embedding
never uses more than three vertex types. Moderating this good news (and emphasizing
the intended message ofthis section) is the fact that no nontrivial rotation ofthe preorder
book-embedding has typenumber less than four: any rotation uses at least three types
for the nonroot nodes ofthe tree. Even worse, a positive fraction ofthe possible rotations
of the preorder book-embedding actually use the pessimal number d + 5 of types. We
now verify this latter assertion.

Consider the following familiar labeling of the nodes of Ta,h with strings. Let the
root node of Ta,h be labeled by the null string, and inductively let the d children of the
node labeled by the string be labeled by the strings 1, 2, , d, in left-to-right order
of their appearance in the preorder book-embedding. It will be useful to determine how
many of these string labels contain all of the "letters" in the set { 1, 2, ..., d }.

LEMMA 3. Let A { 1, 2, d }. The number oflength-n strings oftheform ax,
where A and where x is a length-(n 1) string that contains all of the letters
{ 1, 2, d } in some order, is precisely

S(n;d)= ., (-1)
d-

.d.(d-i)"-

Proof. We invoke the Principle of Inclusion and Exclusion 11, Chap. 3 ]: There
are dn length-n strings over the alphabet A; there are d properties P(x) [j does
not appear in x]; for each

_ _
d- 1,

( d-1) .d.(d_ i),,-

of these length-n strings have the form ax, where a A and where x lacks at least of
the letters { 1, 2, ..., d- 1}.

We now verify that certain leaves whose labels are close to the form enumerated in
Lemma 2 lead to typenumber-pessimal rotations of the preorder book-embedding of
Td.h, while arbitrary nodes whose labels have that form lead to rotations that are close
to pessimal.

PROPOSITION 13. Consider the preorder book-embedding ofTd,h, where h > d >- 2.
Ifwe rotate the embedding so that the leftmost node, called the pivot node, is one ofthe
S(h 2; d) leaves whose label has theform ax 1, where a { 1, 2, d} and where x
is a length-( h 3) string that contains all ofthe letters { 1, 2, ..., d- } in some order,
then the resulting book-embedding has d + 5 vertex types. Forfixed d, as h grows without
bound, these S(h 2; d) leaves approach thefraction d- 1)/d2 ofthe nodes Of Td,.
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Sketch of proof. Consider the preorder book-embedding, rotated as prescribed
in the statement of Proposition 13. Note that when the pivot node u has a label
of the prescribed form, then in the preorder book-embedding it has, for each
{ 0, 1, 2, ..., d- }, a node to its left that has precisely children to ’s right. The
edges to these children change from rightgoing to leftgoing after the prescribed rotation.
Using this fact, we can verify that in the prescribed rotation ofthe preorder embedding"
the root of Td,h has type (k, d- k) for some 0 -< k =< d; the pivot leaf has type (0, 1),
while all leaves that were to its left before the rotation have type (1, 0); all internal
nodes that were to the left of the pivot leaf and whose children were also to the left of
the pivot leaf before the rotation have type (1, d); the father of the pivot leaf has type
(d + 1, 0); each internal node that lay to the left of the pivot leaf before the rotation
but had (i { 1, 2, ..., d-l}) children to the right of the pivot leaf has type
+ 1, d i), while its children have type (0, d + 1). Summarizing, we find the follow-

ing types:

(8)

k, d- k) the root,

(i, d- + 1) 0 -< -< d+ the internal nodes,

(0, 1) the pivot leaf,

(1,0) all other leaves,

which are d + 5 in number.
Finally, note that the claimed cardinality of the set of bad pivot leaves follows

immediately from Lemma 2. U]

In fact, the situation is even worse than Proposition 13 suggests: Asymptotically as
we consider successively taller complete d-ary trees, rotating the preorder book-embedding
to a random site will, with probability approaching one, yield an embedding with at least
d + 4 vertex types. This follows from the fact that the overwhelming majority of the
nodes of Td,h have labels of the form prescribed in Lemma 2, and each is a bad
pivot node.

PROPOSITION 14. Consider the preorder book-embedding ofTd,h, where h > d >- 2.

Ifwe rotate the embedding so that the pivot node has a label oftheform a.x, where a
{ 1, 2, d } and where x is a string that contains all ofthe letters { 1, 2, d }
in some order, then the resulting book-embedding has at least d + 4 vertex types. For
fixed d, as h grows without bound, these "bad" pivot nodes constitute thefraction

ofthe nodes of Td,h.
Sketch ofproof. Each length-n string referred to in Lemma 2 is the label of some

node at level n of Td,h. By the reasoning in the proof of Proposition 13, the typenumber
ofthe preorder book-embedding of Td,h, rotated so that any such node is the pivot node,
is at least d + 4: all of the types enumerated in (8), save perhaps (0, 1), must occur. We
can, therefore, use Lemma 2 to calculate a lower bound on the number of nodes of Td,h
whose labels guarantee such large typenumber. By our earlier reasoning, this number is
no less than

h-I

n=d+l
S(n;d)= ] (-1) .d.(d-i)"-

n=d+li=O
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d-l__0 (d-l) h-I

d" (--1) (d-- i)
i= n=d+l

d. (-1); +(-1)a-.d.(h-d- 1)
i= d-i-1

Since Td,h has (dh 1)/(d- 1) nodes, the claimed fraction of the pivot nodes fol-
lows.

To give the reader a feeling for how fast the "eventually" ofthe big-O in Proposition
14 eventuates, we present Table that indicates, as a function of d and h, the fraction
of potential pivot nodes in Ta,h whose labels satisfy the conditions ofthe proposition; all
lead to book-embeddings with typenumber at least d + 4.

Propositions 13 and 14, being asymptotic, are at most suggestive in impact. We
now present Tables 2 and 3 that indicate the maximum, minimum, and average type-
number observed in a series of experiments that looked at all rotations of a variety of
book-embeddings. We rotated the preorder book-embedding of Ta,h, for a variety of
values of d and h, and we rotated the (thickness- and width-optimal) 2-page book-
embedding from 3 of the height-h X-tree X(h), for a few values of h. The height-h X-
tree is obtained from the height-h complete binary tree T2,h by adding edges linking all
nodes at each level in a line. For perspective, we present an analogue of Proposition 6
for X-trees.

PROPOSITION 15. A 2-page book-embedding ofa height-h X-tree can have typenum-
her at most

min (56,2 h- l_ 2h+ 2)+ min (35, 2h- 4) + min (20, 2h- 2) + 3.

Sketch ofproof. The proof is immediate from Proposition 4, given that the height-
h X-tree has 2h- 2h + 2 nodes of degree 5, 2h 4 nodes ofdegree 4, 2h- 2 nodes
of degree three, and three nodes of degree two.

TABLE
Lower bound on the probability that randomly chosen pivot node yields d + 4 types.

Height

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Arity

0.400
0.645
0.794
0.882
0.933
0.963
0.979
0.989
0.994
0.997
0.998
0.999
0.999
1.000
1.000
1.000
1.000
1.000

0.298
0.511
0.664
0.772
0.846
0.897
0.931
0.954
0.969
0.979
0.986
0.991
0.994
0.996
0.997
0.998
0.999

0.176
0.330
0.467
0.584
0.680
0.755
0.814
0.860
0.894
0.920
0.940
0.955
0.966
0.975
0.981
0.986

0.092
0.190
0.296
0.401
0.498
0.585
0.659
0.722
0.775
0.818
0.853
0.882
0.905
0.924
0.939

0.045
0.103
0.175
0.256
0.339
0.421
0.498
0.569
0.632
0.687
0.735
0.776
0.812
0.842

0.021
0.052
0.097
0.154
0.218
0.286
0.355
0.423
0.487
0.547
0.602
0.652
0.696
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TABLE 2
Minimum (m), maximum (M), and average (a) number ofd-ary tree vertex-types.

d-ary Trees

Arity

2 3 4 5 6

Height

2
3
4
5
6
7
8
9
10
11
12
13

M

2.34
4.29
5.27
5.58
5.76
5.87
5.93
5.96
5.98
5.99
5.99
6.00

m M a

2 3 2.50
3 6 4.77
3 7 5.78
3 8 6.20
3 8 6.47
3 8 6.65
3 8 6.77
3 8 6.84
3 8 6.90
3 8 6.93
3 8 6.95

m M a

2 3 2.60
3 6 5.05
3 7 6.06
3 8 6.57
3 9 6.93
3 9 7.20
3 9 7.40
3 9 7.55
3 9 7.66
3 9 7.75

2
3
3
3
3
3
3
3
3

M a

3
6
7
8
9
10
10
10
10

2.67
5.23
6.24
6.81
7.25
7.60
7.88
8.11
8.26

m M

2
3
3
3
3
3
3
3

3
6
7
8
9
10
11
11

2.71
5.35
6.36
6.98
7.45
7.91
8.26
8.54

TABLE 3
Minimum (m), maximum (M), and average (a) number

ofX-tree vertex-types.

Height

6
11
13
13
14

X-tr :es

M

7
14
20
25
26

6.86
12.47
17.74
20.35
22.71

Tables 2 and 3 demonstrate that the phenomenon that is perhaps exaggerated by
the asymptotics of Propositions 13 and 14 obtains even for very modest size situations,
at least for the indicated book-embeddings of both complete trees and X-trees.

The results of this section establish the need for the algorithm of the next section.

4.3. Rotating a book-embedding to minimize typenumber. We now describe a family
of efficient algorithms that find the rotation of a book-embedding that minimizes type-
number. All ofthe algorithms follow the same strategy; they differ in their data structures,
which are tailored to the magnitudes ofthe book-thickness p ofthe book-embedding and
the maximum vertex-degree d of the embedded graph G.

The Algorithmic Strategy.
Input. A p-page book-embedding ofan n-vertex graph G, presented via the associated

sequence z l, z2, "’", zn of vertex types.
Output. A list, with one entry for each vertex v of G. The entry for each v comprises

the number ofvertex types in the book-embedding obtained by rotating the input
embedding so that v becomes the pivot vertex;
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The bag (multiset, with multiplicities) of vertex types that appear in the book-
embedding when v is the pivot vertex.

The Strategy. Say that vertex v is the current pivot vertex of the book-embedding.
In order to rotate the embedding, we do the following.

Step 1. Rotate v’s p 2 type-matrix so that each row (0, Rk) becomes (Rk, 0); this
effectively moves v to the fight end of the embedding.

Step 2. For each vertex w that is adjacent to v, if the edge of adjacency resides
on page k, then row k of w’s type-matrix is changed from (Lk, Rk) to
(Lk 1, Rk + 1); this effectively "swings that edge around."

Step 3. As each vertex type is altered in Steps I or 2, the old type’s multiplicity is
diminished in the bag and the new type’s multiplicity is augmented in the
bag; when a type disappears from the bag, or appears for the first time
(detected by the multiplicities), the typecount of v is adjusted accordingly.

Implementing the strategy.
We need to specify the data structures used to implement the strategy.
(I) The Paged Adjacency Table. It is convenient to make use of a paged adjacency

table for G, i.e., an adjacency list with a record of which edges lie on which pages. Such
a list is readily constructed from the input. Two organizations for the list recommend
themselves, the choice being dictated by the magnitudes ofp (the book-thickness of the
input embedding) and of the number of edges of the input graph G. In both represen-
tations, there is a one-dimensional array (the table) whose entries are the vertices of G,
in the order they lie along the spine ofthe book. The table entry corresponding to vertex
v of G comprises the following"

A register Type-Count(v) recording the number of vertex types in the book-
embedding when v is the pivot vertex;
A pointer into the bag of vertex types that points, at any given moment, to the
then-current vertex type of v;
A pointer to a list of those vertices that are adjacent to v in G; each such vertex

is represented via a pointer into the table.
The two organizations differ in their representations of the information about which
edges lie on which pages.

Distributedpage information. In this organization, each vertex w in the list ofvertices
adjacent to vertex v contains a field indicating the page via which v is adjacent to w.
Since each such field requires log2 p bits, and since there is such a field for each endpoint
of each of G’s e edges, this organization requires

2e. log2 p

bits for recording the page information.
Centralizedpage information. In this organization, the entry of each vertex v in the

table contains p subfields; the th subfield contains a pointer to a list of those vertices
that are adjacent to v in G via page i. This creates (p 1)n new subfields in all, each of
log2 n bits, since it must be capable of pointing to any vertex of G. Thus, this organiza-
tion requires

(p 1) n. log2 n

bits for recording the page information.
For all but quite dense graphs, the distributed organization is likely to be the pre-

ferred one.
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(II) The Bag of Types. We must represent the bag of vertex types in a way that
facilitates adding, deleting, and altering types, where each alteration either exchanges the
L- and R-entries of a type-matrix (thereby moving the associated vertex from the left
end to the fight end of the book-embedding), or adds (- 1, + 1) to some row ofthe type-
matrix (thereby flipping one edge from left-entering to right-entering). As noted earlier,
the changes to the bag must maintain an accurate count ofthe multiplicity ofeach vertex
type in the bag. The preferred representation of a bag depends on the magnitudes ofthe
book-thickness p of the book-embedding and the maximum vertex-degree d of G.

A p and d both small. This case is quite common:

binary trees p=l d=3 [4],

two-dimensional meshes p 3 d= 4 [4],

X-trees p=2 d=5 [4],

Benes networks p 3 d= 4 5 ],

In this case, (3) assures us that the number of vertex types must be small, and in fact
cannot exceed

2p+d)d
-1;

we shall, therefore, represent the bag as a one-dimensional array ofnonnegative integers,
indexed as follows. The array/bag-entry corresponding to vertex type

L1 RI
L2 RE

Lp Rp

each Li, R e { 0, 1, .., d}, is determined by converting the type-matrix to the length-
2p (d + 1)-ary numeral

and evaluating the numeral; since p is fixed, distinct numerals specify distinct numbers.
Each entry in the array is the multiplicity of the vertex type in the book-embedding that
indexes that entry.

At any given moment, we shall remember the index of the current pivot vertex v
of the book-embedding. To rotate the book-embedding one place, we move the current
v to the fight end of the embedding, and we use the paged adjacency table to pick up
the type of the next pivot vertex (which is the successor in the table of the current pivot
vertex). Moving v to the fight end of the embedding consists of the following.

Step 1. Decrease the multiplicity of v’s current vertex type.
Step 2. Determine v’s new vertex type, which is obtained by multiplying the current

type by d + (recall that all current L are zero and that we want to flip
each Li and Ri).

Step 3. Change the vertex type of each neighbor w of v, after decreasing the mul-
tiplicity of w’s current type; ifvertex w is adjacent to v on page k (discovered
from the paged adjacency table) then the new vertex type of w is obtained
by decreasing the current type by the quantity d(d + 1)2k- 2 (recall that we
want to decrease L by one and increase Rk by one).
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Ofcourse, during these alterations we are keeping track ofany vertex types that disappear
or appear anew, to evaluate Type-Count(v).

(B) p large and d small. Although we do not know ofany specific graphs with such
p and d, we do know that they exist: It is proved in [4 that for all d and all sufficiently
large n, there exist n-vertex graphs with maximum degree d that cannot be embedded
in fewer than

(const.)
n 1/2 l/d

log2 n

pages. Sincep is large, the array-solution ofthe previous section is likely to be too wasteful
of memory, since the bag/array is likely to be sparsely occupied. We shall, therefore,
represent our bag of vertex types as a height-(2p + l) trie (digital search tree).

Each internal node of the trie will be a (d + 1)-ary array ofpointers to the adjacent
levels ofthe trie; we assume that all edges are bidirectional. The array positions represent
labels on the edges from a node to its children, the labels 0, l, d being the valid
entries in a vertex type. Each vertex type that occurs in the current rotation ofthe book-
embedding will be a root-to-leaf path in the trie; the multiplicity of the type will be
recorded in its leaf node.

At any given moment, we shall point to the leaf-node corresponding to the current
vertex type of the current pivot vertex v of the book-embedding. To rotate the book-
embedding one place, we move the current pivot v to the right end of the embedding,
and we use the paged adjacency table to pick up the type ofthe next pivot vertex. Moving
v to the fight end of the embedding consists of the following.

Step 1. Decrease the multiplicity of v’s current vertex type.
Step 2. Determine v’s new vertex type, which is obtained by proceeding along the

(unique) path from v’s leaf to the root of the trie, constructing the vertex
type "complementary" to v’s, i.e., converting v’s current type

to v’s new type

0 T
0 .T2
0

T 0
T 0

o

if the multiplicity of v’s current type is decreased to zero in Step 1, then,
as a space-saving measure, all trie-entries unique to this vertex type can be
removed during the leaf-to-root traversal (i.e., all trie-nodes can be removed,
up to the occurrence of the first binary node along the path).

Step 3. Record v’s new vertex type by traversing the root-to-leaf path in the trie
dictated by the new vertex type, inserting new nodes when necessary, and
increasing this type’s multiplicity when the leaf node is reached.

Step 4. Change the vertex type of each neighbor w of v, after decreasing the mul-
tiplicity of w’s current type; this is accomplished by traversing the path from
the leaf containing w’s vertex type toward the root, until we encounter the



174 J. F. BUSS, A. L. ROSENBERG, AND J. D. KNOTT

type-entry for the page on which v is adjacent to w (as in Step 3, node
entries for a zeroed type can be removed during this traversal); we now
reverse direction, following the root-to-leaf path dictated by w’s new type,
adding new nodes when necessary, and increasing this new type’s multiplicity
when the leaf node is reached.

(C) p and d both large. When both p and d are large, as with the complete graphs
Kn or complete bipartite graphs Km,n, any data structure that incorporates arrays is likely
to be wasteful of space. The trie structure of the previous section deals well with large p;
with one small modification, it accommodates large d also. Rather than have a (d + 1)-
entry array of pointers at each nonleaf node of the tile, we shall now have a balanced
binary tree, having up to [log2 (d + 1)q levels. The processing of the tile proceeds as in
the previous section, with the one complication that, as vertex types are added or deleted,
the nonleaf nodes’ balanced trees are dynamically updated. Details are left to the reader.

Analyzing the implementation. As the algorithm proceeds, the vertex type ofa degree-
d vertex v of G is changed d + times: once as v is moved from the left end to the right
end ofthe book-embedding, and once as each of its neighbors is so moved. The structure
of the paged adjacency table allows us to determine in time O(1) what vertex type to
access, how to access it, and what change to make. The cost of maintaining the bag of
vertex types depends on the magnitudes of p and d; even with our trie of trees data
structure, which is the most costly ofthe three we describe, each transaction involved in
altering a type can be done in time proportional to p. log d. Ifthe graph G has n vertices,
e edges, and the set D ofdistinct vertex-degrees, then the entire algorithm can be executed
within time proportional to

which is in turn proportional to

p.(d+ 1).log d
dD

p" e" log dmax.
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Abstract. Consider a set of n tasks with a tree-structured precedence relation and execution time of or
3 units. We give an O(n log n)-time algorithm to find a minimum length schedule for these tasks on two
identical processors. Possible generalization to the case of or k units is also given.

Key words, multiprocessor scheduling, schedule length, nonpreemptive scheduling, tree-structured pre-
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1. Introduction. A fundamental problem in scheduling theory is that of non-
preemptively scheduling a set TS { Tl, T2, "", Tn } of n tasks on rn identical processors
so as to minimize the schedule length. Associated with each task Ti is an execution time
p(Ti). The precedence constraints among the tasks is given by a directed acyclic graph
G TS, E); Ti must finish execution before T can start if Ti, Tj.) E. The problem
is to find a minimum length schedule for TS, where the length of a schedule is the time
taken to execute all tasks in TS. Such a schedule will be called an optimal schedule.

The complexity of finding an optimal schedule has been studied extensively and a
rich collection of results has been obtained. To begin with, if the execution times are
arbitrary, then the problem is NP-hard even when m 2 and G has no edges [4], [9].
On the other hand, if the execution times are equal, then the problem is polynomially
solvable for arbitrary m when G is a tree [5 ]. For arbitrary directed acyclic graph, the
problem is polynomially solvable when m 2 [1 ], [3 ], but it becomes NP-hard if m is
arbitrary [8], [9]. For fixed m > 2, the complexity of the problem is still open even
though a considerable amount of effort has been invested in it. The above results suggest
that the complexity of the problem is fairly well understood when the execution times
fall into two extremes: arbitrary and equal. Recently, there have been some interest in
the complexity of this problem when the execution times are drawn from an arbitrary
set with fixed cardinality. In this case the problem is polynomially solvable for arbitrary
m when G has no edges [6]. For arbitrary directed acyclic graphs, the problem is NP-
hard even when m 2 and p(Ti) e { 1, 2 } for =< =< n 8 ], 9 ]. When G is a tree, the
problem has recently been shown to be NP-hard if m is arbitrary and p(Ti) e { 1, k } for

-< =< n, where k is arbitrary [2]. It is still an open question whether the problem
is polynomially solvable for fixed m

_
2 and p(Ti) e { 1, k } for =< =< n. However,

there is an O(n log n)-time algorithm for finding an optimal schedule when m 2 and
p(Ti). {1,2} for -<i -< n[7].

The purpose of this paper is to shed some light on this open question. The main
result consists of an O(n 2 log n)-time algorithm to find an optimal schedule for rn 2
and p(Ti) e { 1, 3 } for =< =< n. As we shall see in the sequel, our algorithm suggests
that finding an optimal schedule for m 2 and p(Ti) { 1, k }, <= <= n, might be
polynomially solvable for each fixed k, although the complexity and the difficulty of
obtaining such an algorithm increases rapidly with k. Our algorithm works in the same
spirit as that given in [7 ]. That is, the tasks are initially scheduled by a special list-
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scheduling algorithm, also called the Largest-Subtree-First (LSF) Algorithm as in [7 ],
and then the LSF schedule will be improved by one ofthe several procedures given later
if it is not already optimal. However, the procedures to improve the LSF schedule are
much more complex and involved than that given in 7 ].

The organization ofthe paper is as follows. In the next section we define the Largest-
Subtree-First Algorithm and derive conditions under which the LSF schedule is optimal.
In 3 we classify the cases, to be called degenerate cases, for which the LSF schedule
might not be optimal. In 4 we give procedures to improve the LSF schedule for the
degenerate cases. Finally, we draw some conclusions in the last section.

2. The Largest-Subtree-First Algorithm. In this section we describe the Largest-
Subtree-First (LSF) Algorithm and derive conditions under which the LSF schedule is
optimal. We also set up common notation that will be used throughout this paper. The
task system is given by G (TS, E), where G is an out-tree rooted at some task R in
TS and TS { T1, T2, Tn } is a set of n tasks with p(Ti) denoting the execution
time of Ti for

_ _
n. Unless stated otherwise, we assume p(Ti) { 1, 3 } for =< =<

n. We assume the reader is familiar with certain standard terminologies used in describing
a tree-structured task system such as the following: successor, immediate successor, pre-
decessor, immediate predecessor, root, leaf, chain, the length of a chain, two tasks being
independent to each other, and the subtree rooted at a task T; their definitions can be
found in 7 ].

The total execution time of the tasks in the subtree rooted at a task T is called the
weight of T and is denoted by w(T). For a given set of tasks A, w(A) denotes the total
execution time of all tasks in A. A task T is called a j-unit task if p(T) j. A task T
partitions TS into two subsets of tasks--the set of successors of T, denoted by suc (T),
and the set ofnonsuccessors of T including T), denoted by nsc (T). If Ti is a predecessor
of T, then the distance between Ti and T, denoted by d( Ti, T), is defined to be the
length of the chain from Ti to T. d(T) is an abbreviation of d(R, T), where R is the
root of the out-tree G. The height of T, denoted by h(T), is the maximum distance
from T to a leaf task in TS.

For a given schedule S and a task T, we use s(S, T) to denote the starting time of
Tin S,f(S, T) to denote the finishing time of Tin S, and a(S) to denote the length of
S. (S, T) denotes the set of tasks that start at or afterf(S, T) in S. We define the dual
task of T in S to be the task executing in the interval [f(S, T) 1, f(S, T)] on the
other processor in S. Internal and external idle intervals of a schedule are defined as in
7 ]. However, we call the first internal idle interval of a schedule the initial idle interval.
Given two schedules $1 and $2, the concatenation of Sl and $2, denoted by C(SI, $2),
is the schedule obtained by appending $2 to S.

Our algorithm will be called Algorithm ONE-THREE and it is mainly based on a
list scheduling algorithm called the Largest-Subtree-First (LSF) Algorithm. The LSF
Algorithm first orders the tasks in TS according to the LSF ordering, and then the list
of tasks is used by a list scheduler to construct a schedule. In the LSF ordering of TS, Ti
precedes T in the list if

w(Ti) > w(T), or
(2) w(T;) w(T) and p(T;) < p(T), or
(3) w(T) w(T), p(T) p(T.) and h(T) -> h(T).

Any remaining ties can be resolved arbitrarily. The list schedule constructed by the LSF
Algorithm will be called the LSF schedule and is denoted by St. We use s(T), f(T),
tr, and (T) to denote s(St, T), f(St, T), a(St), and (St, T), respectively.
S( T)(S+o(T)), and St( T)(So(T)) denote the LSF (optimal) schedule for the tasks in
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nsc(T) and the tasks in the subtree rooted at T, respectively. After eliminat-
ing T from St( T)(So(T)), a subschedule of St( T)(So(T)) consisting of the tasks
in suc (T) is obtained. We denote this subschedule by ST T)(S-(T)). Clearly,
C(S/ S-) is a valid schedule for the tasks in TS, where S/ { S[(T), So+ (T) } and S-
(SF(T), S;(T)).

Figure gives a LSF schedule that is optimal; the optimality can be deduced from
the fact that there is no idle interval in the schedule except the initial one caused by the
root ofthe out-tree. Figure 2 shows that LSF schedules are not always optimal. Moreover,
it may not be easy to decide if a LSF schedule is optimal. For example, the LSF schedule
in Fig. 3 has a 2-unit-long external idle interval just like the LSF schedule in Fig. 2.
However, the schedule in Fig. 3 is optimal while the one in Fig. 2 is not. As we shall see
later, Algorithm ONE-THREE can be viewed as a divide-and-conquer method. It first
constructs the LSF schedule S for the tasks in TS. If St is not clearly optimal (to be
called degenerate and is defined in 3), then the algorithm will improve it using the
methods described in 4, until at some point it either discovers that an improvement is
impossible or an improved schedule is obtained. We show that if an improvement is
impossible, then St is already optimal; otherwise, the improved schedule is optimal.

In the remainder of this section we present a fundamental result concerning LSF
schedules, and then set up a set of simple conditions under one of which LSF schedules
are optimal. Instead of assuming the execution times are of or 3 units, we derive the
results for the most general execution times. Lemma only assumes that the maximum
execution time is k units.

LEMMA 1. Suppose T is an arbitrary task executing in the interval [s(T), f( T)] in
S. If [f(T) 1,f(T)] is contained in an idle interval ofS, say [t, t2], then let T’ be
a dummy task such thatf(T’) t and w(T’) 0; otherwise, let T’ be any task executing
in [s(T),f(T)] in St. We havef(T) d(T) if w(suc(T)) >f(T’) f(T) + 2 + k,

T2/3

T5/1

T9/3(

T13/1()
T17/16

TI/I

T4/3

T8/1

T12/3

T14/1 (T15/1(T16/1
(a) The precedence tree G

T1 T2 T8 TIO
.T9

T12 T14 T16
Tll IT18 T15! 17

(b) The LSF schedule S

FIG. 1. An LSF schedule that is not degenerate.
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T4/I

T7/3

T1/I

T2/3 T3/3

T5/3 T6/I

T8/3

T9/I

T10/3

T12/1
(a) The precedence tree G

Tli/3

TI3/I

T
1 T2

T3
T T8 Tg[ TIO
T6 T5 T7

(b) The LSF schedule S

T 1 T2
T3 T5 T

7 Tll
(c) The optimal schedule C(So (X), ST(X)

FG. 2. Case-1 degenerate LSF schedule (improvable).

T13

where M is the total weight ofall those subtrees that are left unscheduled at f(T’) in St
and have a root independent with T.

Proof. Assume the lemma is not true and there is a chain of j + tasks in St,
(T+, T, ..., T), such thatf(T+) < s(T),f(Ti) s(Ti_) for 2 -< -< j and
T T. Since T is ready but not executed atf( T/), both processors must be busy in
the interval [f( Tj. / ), s(T) in St. Let 7 and 72 be the two tasks executed in the inter-
val [s(Tj.) 1, s(T) ]: Clearly, 7, 72, and T are independent of one another, and the
successors of 7 and T2 must be executed at or after s(T). Since there is a chain execut-
ing in s(Tj.), f( T ], we have

w(f)_f(T)-s(T)+f(T’)-f(T)+h71+p(f), and

w( 2 -f( Tl S(Tj) +f(T’) -f(T) + 21+p( 2).

However, w(T) -f(rl)- s(T) + w(suc(rl)) > f(rl) s(T) +f(T’) -f(T) +
+ k by the assumption of the lemma. Therefore, we have w(T) > w() and

w(T). > w(2). This is impossible since the LSF Algorithm would schedule T. be-
fore T or i"2 [[]

COROLLARY 1. S! is optimalfor equal-execution-time task systems.
Proof. For equal-execution-time task systems we may assume that k 1. We consider

two cases ofStnthe length ofthe external idle interval is more than unit, and otherwise.
In the former case, we let T be the task such that f(T) a. Applying Lemma to T,
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TI/I

T2/3

T413 0 T613

T7/1 T8/1( ) T9/I
(a) The precedence tree G

T 1
T3 T4 T6 T9

T T
(b) The LSF schedule S (also an optimal one)

FG. 3. Case-2 degenerate LSF schedule U is undefined).

we have f(T) d(T) and hence St is optimal. In the latter case, we let [h, t2] be the
last internal idle interval in St and let T be the task such thatf(T) t2. By Lemma l,
we again have f(T) d(T). Since 9(T) suc (T) and the length of the external idle
interval is no more than unit, St is clearly optimal. V1

From Lemma we can derive several simple conditions under any one ofwhich St
is optimal. We give these conditions in the following lemma. Lemma 2 assumes that the
execution times are or k units.

LEMMA 2. An LSF schedule St is optimal if one of the following five condi-
tions holds. (2.1) a p(R)

_
k. (2.2) there is a chain with length tr. (2.3) the length

of the external idle interval is more than k units. (2.4) the number of idle processor
time units in [a k, a] is no more than one. (2.5) an internal idle interval intersects
[a-k- 1, a-k+ 1].

Proof. St is clearly optimal if (2.2) holds. If (2.1) holds for St, then there are two
cases to consider: suc (R) contains at least one k-unit task, and otherwise. In the former
case, St is optimal since there is a chain of length a. In the latter case, all tasks except
possibly R have execution time unit. Therefore, suc (R) can be considered as an equal-
execution-time task system and hence St is optimal by Corollary 1. From (2.3) we can
infer (2.2) by Lemma 1. Hence, St is optimal if (2.3) holds. For (2.4) let [tl, t2] be the
last internal idle interval that begins earlier than a k and let T be the task such that
f(T) t2. Since tl < a k, we can apply Lemma to Tto obtain d(T) =f(T). Noting
that 9(T) suc (T) and that there is at most unit of idle processor time after f(T)
by (2.4), we conclude that St is optimal. For (2.5) let tl, t2 be the internal idle interval
that intersects [a k 1, tr k + and let T be the task such thatf(T) t2. Since
t < a k + 1, we havef(T) d(T) by Lemma 1. Furthermore, we have tr t2 -< k.
Since 9(T) suc (T), we have that a t2 is the optimal schedule length for the tasks
in suc (T) by (2.1). Therefore, St is optimal. V1

If the execution times are or 3 units, then Lemma 2 can be restated as follows.
COROLLARY 2. An LSF schedule St is optimal ifone ofthefollowing three conditions

holds: (C2.1) tr -p(R)

_
3; (C2.2) there is a chain oflength a; and (C2.3) the length of

the external idle interval is at most unit or at least 4 units.



SCHEDULING TREE-STRUCTURED TASKS 181

Proof. (C2.1) and (C2.2) follow from (2.1) and (2.2) of Lemma 2, respectively.
Combining 2.3 ), (2.4), and (2.5) of Lemma 2, we obtain (C2.3). D

To conclude this section, we comment on the three criteria used in defining the
LSF ordering. The results derived in this section only make use of the property of the
first criterion. The other two criteria will be used in a few places in later sections and
they are not as important as the first one.

3. Classifications of degenerate cases. In this and the next sections, we assume that
the execution times are or 3 units. In the last section we give conditions under any one
of which LSF schedules are optimal. In this section we provide better characterizations
of LSF schedules that may not be optimal. Our characterization is based on the length
of the chain executed at the end of S, denoted by L, and the length of the external
idle interval in St, denoted by N. By a chain of length L executed at the end of St, we
mean that there is a chain of length L, T, T_ , T ), such that s(Tj.) a L and
f( T a, and no chain longer than L has that property in St. We say that St is degen-
erate if a p(R) > 3, 2 _-< N _-< 3 and L < a. The LSF schedules given in Figs. 2
and 3 are examples of degenerate LSF schedules.

LEMMA 3. Thefollowing statements are true. (3.1) St is optimal ifSt is not degenerate.
(3.2) L

_
2 ifSt is degenerate. (3.3) Suppose St is degenerate; if[ t, t2] is an internal

idle interval ofSt and T is the task thatfinishes at t2, then ( T suc (T) andf(T)
d(T). (3.4) lfSt is not optimal, then the length ofan optimal schedule is a 1.

Proof. Statement (3.1) follows from the definition of St being degenerate and Cor-
ollary 2. Since the tasks scheduled in the external idle interval of St form a chain, (3.2)
follows from N

_
2. For (3.3), since a processor is idle in t, t in St, the tasks executed

after t2 must be successors of T. Therefore, q(T) suc (T). Since St is degenerate, we
have t2 < a N. By Lemma 1, we have f(T) d(T) t and hence (3.3) is proved.
For (3.4), SI must be degenerate since it is not optimal. Let t’, t’ be the last internal
idle interval (or the initial idle interval if there is no internal idle interval) of St. Then
from (3.3), there is a task Z such thatf(Z) d(Z) t’ and q(Z) suc (Z). Therefore,
to improve St, all we can do is shorten the schedule for the tasks in suc (Z). However,
since 2

_
N

_
3, the most we can shorten is unit. Thus, (3.4) is true. D

We now classify the degenerate LSF schedules into six cases. The classification is
based on the value of L: L > 3; L 3; and L 2. Note that by Lemma 3, L

_
2 for a

degenerate LSF schedule. We show in Lemmas 4, 5, and 6 that the six cases defined
below cover all possible degenerate LSF schedules.

Case 1. (A) L

_
4 and N 2. (B) There is a task X with exactly two imme-

diate successors, son and son 2, such thatf(X) d(X), q(X) suc(X), w(son 1)
w(son 2) h(son 1) h(son 2) r -f(X) 2 L and p(son 1) p(son 2) 3.
(C) There is a 3-unit leaf task Y such thatf(Y) f(X) + 2.

Figure 2 shows a Case-1 degenerate schedule. In this example, X T9, son To,
son 2 T, and Y T7, while L 4 and tr 15. Note that T7 finishes 2 units later
than T9, and the two sons of T9 are the heads of two chains of length 4.

Case 2. (A) L 4 and N 2. (B) The tasks scheduled in r 7, a] consist ofthree
independent 3-unit tasks, 7, 2, and 3, and three 1-unit tasks, , 2, and t)3. For
each =< -< 3, i is the only successor of f’;. Furthermore, 71 and 72 start at tr 7,
while 73 starts at tr 4.

An example of a Case-2 degenerate schedule is shown in Fig. 3. In Fig. 3, 7, 72,
73, , 2, and 3 mentioned above are T4, Ts, T6, T7, Ts, and T9, respectively.

OBSERVATION 1. If St is the LSF schedule of the task system G and St is Case-2
degenerate, then the length of the longest chain in G is at most tr 3.
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Case 3. (A) L 3 and N 3. (B) The tasks executing in a 6, a] consist ofthree
3-unit leaf tasks.

Figures 4 and 5 give examples ofCase-3 degenerate schedules. In the schedule shown
in Fig. 4, T4, TT, and T8 are the three 3-unit leaf tasks executed in a 6, tr].

OaSERVATION 2. If SI is the LSF schedule of the task system G and St is Case-3
degenerate, then the length of the longest chain in G is at most a 3.

Case 4. (A) L 3 and N 2. (B) The task that finishes at a is a 3-unit leaf task
and the task that finishes at a 2 is a 1-unit leaf task. (C) The two tasks that finish at
a 3 are 3-unit tasks, at least one of which is a leaf task.

We always use to denote the 1-unit leaf task that finishes at a 2 in a Case-4
degenerate schedule. An example of a Case-4 degenerate schedule can be found in Fig.
6. In this example, Tl0, Ts, and T9 are the 3-unit tasks mentioned in the above definition,
and TI is the 1-unit leaf task. Note that T8 could be a leaf task, although it is the
immediate predecessor of Tl in this case.

OBSERVATION 3. If St is the LSF schedule of the task system G and St is Case-4
degenerate, then the length of the longest chain in G is at most tr 2.

Case 5. (A) L 3 and N 2. (B) There are three 3-unit leaf tasks that start at
a 3, a 5, and a 6, respectively.

An example of a Case-5 degenerate schedule is shown in Fig. 7. In this example,
Ts, T6, and T7 are the three 3-unit leaf tasks mentioned above.

Case 6. (A) L 2 and N 2. (B) There is a chain of length 2 that starts at tr 2,
while the two tasks that finish at a 2 are 3-unit leaf tasks.

The simplest example of a Case-6 degenerate schedule is given in Fig. 8. As can be
seen from this example, there is an easy way to improve this degenerate case. That is, in.

T311

T413 T613

(C) C)
(a) The precedence tree G

(b) The LSF schedule S

(c) The optimal schedule ,
FIG. 4. Case-3 degenerate LSF schedule U can be delayed).
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(a) The precedence tree G

TI T3 T4
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(b) The LSF schedule S (also an optimal one)

FIG. 5. Case-3 degenerate LSF schedule U cannot be delayed and D 0).
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TI_ Tl T5 -T7 TIO l"x 1:8 T111’x
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(c) The schedule ,
FIG. 6. Case-4 degenerate LSF schedule U cannot be delayed andD > O. has internal and external idle

intervals. C(S+o (X), ST(X)) is optimal).
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T4/I

T713

TI/I

T2/

T5/ T6/3

(a) The precedence tree G

T3/3

(b) The LSF schedule S

FIG. 7. Case-5 degenerate LSF schedule.

terms of this example, we simply start 7"2 and 7"3 at a 5, start 7"4 when 7"3 finishes, and
start T5 when 7"2 finishes. The resulting schedule with length tr is shown in Fig. 8 (c).
We know by Lemma 3 that the improved schedule is optimal. This method can generally
be used to improve any Case-6 degenerate schedules.

In the next three lemmas we show that the six cases defined above cover all possible
degenerate schedules.

T213 T413

T5/I(
(a) The precedence tree G

T1

(b) The LSF schedule S

(c) An optimal schedule

FIG. 8. Case-6 degenerate LSF schedule.
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LEMMA 4. IfSt is degenerate andL > 3, then St is either Case- or Case-2 degenerate.
Proof. Since St is degenerate, we have L < a. Therefore, we can find a chain of

j + tasks, T/ 1, T, T ), such thatf(T) r, r s(T) L ji= P(Ti) and
s(T) > f(T+). Consequently, w(T) >= L. Since T is ready but not scheduled at
f(T+), no processor is idle in [f(T+l), s(T)]. Let T’ and T be the two tasks
scheduled in Is(T) 1, s(T) ]. Note that T’, T, and T are independent of one an-
other. Since both T’ and T start earlier than T, at least one of T’ and T has weight
no less than T. Without loss of generality, we assume w( T’ >- w(T). We consider the
following two cases separately: (a) w(T’l)

_
w(T) and w(T’2) >= w(T); and (b)

w(T’) >= w(T) and w(T) < w(Tj.).
Let M(M

_
0) denote the total execution time of the tasks that start after f( T’ ),

but are not successors of T’ or T, and are not on the chain (T, T_ 1, T ). The
existence of the chain (T, T_ 1, T implies that all successors of T’ and T and
the tasks that are counted in M should be executed in MAX, a N], where MAX
max {f( T’ ), f( T }. That is,

M+ w( T’ )-p( T’ + w( T’2)-p( T’2) tr- N-MAX.

In the following we first show that case (a) is possible only if L 4, N 2, and St is
Case-2 degenerate. We then show that for case (b) it is impossible that N 3, and when
N 2, St is Case-1 degenerate.

For case (a), we let MI w(T’)-L, ME w(T’E)-L, and MIN
min {f(T’ ), f(T) }. Note that MI - 0 and ME >---- 0. Since f(T’) >_- s(T) and
f(T)

_
s(T), we have a MIN -_< L and hence a MAX -< L. Substituting MI and

M2 into (.), we obtain M + ME + N + M + L _-< p( T’ + p(T). Since L > 3 and
N

_
2, we have L + N

_
6. Since p(T’) + p(T) _-< 6, we must have L + N 6,

or L 4 and N 2. It is also necessary that M MI ME 0 and p(T’l)
p(T’2) 3. That is, w(T’) w(T’2) w(T) L 4. Consequently, w(T’)
p( T’ w(T) p(T) and p(T) 3. Substituting the above values into (,),
we obtain a MAX 4. However, a MAX -_< tr MIN _-< L 4. Therefore,
MAX MIN and both T’ and T finish at a 4. In other words, T’ and T both
start at tr 7. From the above discussions, we see that SI is Case-2 degenerate.

For case (b), we show that it is impossible for N 3. When N 2, we show that
the following five claims hold, from which we conclude that St is Case-1 degenerate:

(1) p(T’)=p(T)=3.
(2) f(T’)- s(T)= and f(T’2) s(T).
(3) w(T’2) p(T’2) 0 and M= 0.
(4) w(T’)= w(T)= h(T’)= h(T)= L andp(T)= 3.
(5) IfX is the immediate predecessor of T’, then X is also the immediate prede-

cessor of T. Moreover, f(X) s( T’I and d(X) f(X).
For case (b), we let M w( T’ L. Since w( T’ >= L, we have M >- 0. Since
s(T) + L and since MAX

_
f( T’ ), we have from (,) that

M +N+M+ w( T’2)-p( T’2) +f( T’)-s( T) <=p( T’).

From (, and N

_
2, we see that p( T’

_
2 and hence p( T’ 3. Since T’, T, and

T are independent of one another and since w(T) > w(T), it is necessary that
s( T’ > s(T) and p(T) 3. Otherwise, T would have been scheduled before T
according to the first criterion of the LSF ordering. Therefore, f(T’) s(Tj-) and
f(T’) > s(T). Since p(T’)

_
3, we must have f(T’) s(T) 1, N 2, and M

M1 w(T) p(T) 0 for (**) to hold. Substituting the above values into (,), we
obtain w(T’) L 3 + p(T’). Since w(T’)

_
w(T) L, we have p(T’) 3 and
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w( T’ L. Furthermore, we must have h( T’ ) h(T) L. Otherwise, T. would have
been scheduled before T’ according to the third criterion of the LSF ordering. We have
thus far proved claims )-(4).

We now prove claim (5). Let Xbe the task executed in Is(T), s( T’)] in parallel
with T on the other processor. Clearly, f(X) s( T’ ). Since w( T’

_
4, X cannot be

a leaf task. That is, X must be the immediate predecessor of some tasks scheduled after
f(X). There are, however, exactly two subtrees left atf(X), namely the subtrees rooted
at T’ and T. Since they are not executed at s(T) but they both have weight more than
T, neither can be independent with X. Therefore, they are both immediate successors
ofX. Thus, w(suc (X)) 2L

_
8. By Lemma 1, we havef(X) d(X).

LEMMA 5. If St is degenerate and L 3, then SI is Case-3, Case-4, or Case-5
degenerate.

Proof. Let (T, T be the chain executing at the end of St, and 7 and 2 be
the two tasks executing in [s(Tj.) 1, s( T)]. Since L 3, j must be and T must be
a 3-unit leaf task. Otherwise, T would be scheduled before or 72. IfN 3, then both
7 and 72 finish at a 3. This implies that they are both leaf tasks. Furthermore, we
must have p( 71 p(7) 3; otherwise, T would be scheduled before 7 or 2. This
leads to St being Case-3 degenerate.

IfN 2, then let T’ be the leaftask that finishes at a 2. There are two possibilities
to consider: p(T’) and p(T’) 3. Ifp(T’) 1, then both 7 and 72 finish at a

3. Since L 3, 7 and 72 have to be independent with T and at least one of them is a
leaftask. Suppose 1 is a leaf task. We have p( 7 ) 3; otherwise, T would be scheduled
before . Therefore, St is Case-4 degenerate. Ifp(T’) 3, then there is only one task,
say 7, that finishes at a 3. 7 must be a 3-unit leaf task. Hence, St is Case-5 degen-
erate.

LEMMA 6. IfSt is degenerate and L 2, then St is Case-6 degenerate.
Proof. Since L 2, the 2-unit-long chain executed at the end of St is formed

by two 1-unit tasks. Both processors must be executing tasks, say T and T2, in
[a 3, r 2] of St. T, T and the task at the head of the 2-unit-long chain must be
independent ofone another. Since L 2 and N

_
2, we have N 2 in this case. Further-

more, p( T p(T2) 3. Otherwise, the task at the head ofthe 2-unit-long chain would
be scheduled before either T or T by the LSF ordering. But this means that St is
Case-6 degenerate.

Before we leave this section, we briefly review the operation of Algorithm ONE-
THREE. Algorithm ONE-THREE first generates the LSF schedule St. If St is not degen-
erate, then Algorithm ONE-THREE stops with St being the optimal schedule. Otherwise,
it tries to improve St depending on which degenerate case St is. For example, if St is Case-
6 degenerate, then it simply makes the rearrangement as described earlier. In the next
section we give procedures to improve the other five degenerate cases.

4. Improving the degenerate schedules. In this section we give procedures to improve
the degenerate schedules. The procedure to improve Case-1 degenerate schedules is given
in 4.1. The procedure used to improve Case-2, Case-3, and Case-4 degenerate schedules
is given in 4.2, while the procedure to improve Case-5 degenerate schedules is given in
4.3. As has been noted earlier, we do not need to consider Case-6 degenerate schedules

since there is a simple way to improve such schedules. To simplify later proofs, in the
following we give another characterization of degenerate schedules that enables us to
make further assumptions concerning degenerate schedules.

Let St be Case-/degenerate,

_
-< 5, and let t, t be the last internal idle interval

of St or the initial idle interval if St does not have any internal idle interval. We locate
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two tasks in St, say . and I?, by scanning St backward from L to t2. Let I? be the
first 1-unit task encountered in the scan such that w(I?) _-< 2, and let be the dual task
of I? in St. If I? does not exist, then we let be the task that finishes at t2. We have the
following lemma about . and I?.

LEMMA 7. Thefollowing three claims are true. (7.1) f() =f(17) if exists. (7.2)
Every task in (.) is in suc () with only one possible exception--the 1-unit leaftask
t) executed in [tr 3, r 2] when S is Case-4 degenerate. (7.3)f() d().

Proof. If 17 does not exist, then the lemma follows immediately from Lemma 3.
Therefore, we assume that I exists. If (7.1) is not true, thenf() > f(I?). Let Z be the
task executed in [f(17), f( I) + 1] on the other processor concurrently with . Then,
we have w(Z)

_
3. For otherwise, w(Z) _-< 2 and p(Z) 1, and hence Z would have

been chosen instead of Y. Consequently, Z and Y must be independent of each other.
Hence, Z should have been scheduled before I? in St since w(Z) > w(). This is a
contradiction. Therefore, we must have f( 1) f().

We now consider the tasks, other than and I, that can be ready at s(
Let be such a task. Since is independent with and I, we have w() _-< 2; other-
wise, would have been scheduled before I?. Consequently, p() 1. This implies that
s() > L; otherwise, would have been chosen instead of I?. Thus, is scheduled
in [tr L, tr]. Since we are considering Case-/degenerate schedules for _-< _-< 5,
the only time that this can happen is when St is Case-4 degenerate and . Thus,
(7.2) holds.

Finally, since (7.2) is true, we can apply Lemma to to conclude that (7.3) holds,
by noting that w(suc())

_
9 and w(I?) _-< 2.

From Lemma 7, we see that to improve a degenerate LSF schedule St, we cannot
improve on the subschedule of St beforef(). Thus, we only need to consider the sub-
schedule of St afterf(.). To facilitate later proofs, we make the following assumptions:
any degenerate LSF schedule mentioned hereafter has the following"

(A. 1) No internal idle interval, and

(A.2) No 1-unit task with weight at most 2, except those scheduled in a L, a].

Note that these two assumptions are made only to facilitate later proofs. Algorithm ONE-
THREE does not need to locate and I? in its operation.

4.1. Case-I degenerate. In this section we consider how to improve Case-1 degen-
erate schedules. For the rest ofthis section we assume that St is Case-1 degenerate. Recall
that if St is Case-1 degenerate, then there is a task X with f(X) d(X). Furthermore,
the successors ofX consist of two chains of tasks of length L a f(X) 2, headed
by two 3-unit tasks son and son 2. By assumptions (A. 1) and (A.2), we see that nsc (X)
does not contain any 1-unit leaf tasks except possibly X. Moreover, St does not contain
any internal idle intervals. We show in the next lemma that St is improvable if and only
if tr(S+o(X)) d(X) + 1.

LEMMA 8. If r(S+o(X)) d(X) + 1, then the schedule C(S+o(X), ST(X)) is one
unit shorter than St and hence it is optimal. Otherwise, St is already optimal.

Proof. If r(S+o(X)) d(X) + 1, then it is clear that C(S+o(X), S-(X)) is one unit
shorter than St. Conversely, if a(S+o(X)) 4 d(X) + 1, then we must have a(S+o(X)) >
d(X) + 1. Suppose St is not optimal. Let S’ be an optimal schedule such that a(S’)
r 1. Note that S’ does not contain any internal or external idle interval. Clearly, we
cannot have f(S’, X) > d(X) + 1; otherwise, tr(S’) > r 1. Thus, we consider the
following two possibilities: a f( S’, X d(X + 1; and (b)f( S’, X) d(X).



188 J. DU AND J. Y-T. LEUNG

For case (a), the tasks in nsc (X) must finish by f(S’, X) in S’. Otherwise, we
cannot finish all tasks in suc (X) by a(S’). But this means that there is a schedule for
nsc (X) with length d(X) + 1, contradicting the fact that tr(S+o(X)) > d(X) + 1. Thus,
case (a) is impossible. For case (b), we let Y’ be the dual task ofX in S’. It is clear that
9(S’, X) suc (X); otherwise, we cannot finish all tasks in suc (X) by r(S’). Thus, Y’
is a leaf task in nsc (X) and hence p(Y’) 3. Since w(nsc (X)) 2(d(X) + 1), we have
f(S’, Y’) =f(S’,X) + 2. But then it is impossible to finish all tasks in suc(X) by tr(S’),
since suc (X) consists of two chains of tasks each of which has length L. Thus, case (b)
is also impossible. Hence, St is already optimal.

By Lemma 8, the procedure to improve a Case-1 degenerate schedule con-
sists of recursively calling Algorithm ONE-THREE to construct an optimal schedule
for the tasks in nsc(X). If a(S+o(X)) d(X) + 1, then we output the schedule
C(So+ (X), S-(X) ). Otherwise, we output

4.2. Case-2, Case-3 and Case-4 degenerate. In this section we consider how to
improve Case-2, Case-3, and Case-4 degenerate schedules. For the rest ofthis section we
assume that St is Case-2, Case-3, or Case-4 degenerate. First, we need to define two pairs
oftasks to facilitate our discussions. Recall the pair oftasksXand Yin a Case- degenerate
schedule. X has the properties that w((X) suc (X)) 0 andf(X) d(X), and Y is
the dual task ofX. For St being Case-2, Case-3, or Case-4 degenerate, there is also a pair
of tasks with properties similar to those ofX and Y. Abusing notation slightly, we also
call them X and Y. Let K { TIf(T)

_
a L and w((T) suc (T)) -< }. Define X

to be the task in K that finishes last in St and Y to be the dual task ofX. Observe that K
cannot be empty since X is in K. Consequently, Xis always defined and it can be located
by scanning the schedule backward. However, Y does not exist ifX finishes at the end
of an idle interval. In this case, we let Y be a dummy task withf(Y) f(X).

From the definition of X we see that (X) suc (X), except in the case that
St is Case-4 degenerate and the 1-unit leaftask U executed in a 3, a 2 is not a suc-
cessor of X. In this case we have (X)= suc(X)t.J { }. Furthermore, since
w((X) suc (X))

_
and since w(suc (X))

_
6, it follows from Lemma that

d(X) f(X). From the definition of Y we see that w(suc(Y)) =< if Y exists. Con-
sequently, Y is a leaf task if it exists, except in the case that St is Case-4 degenerate and

is the son of Y. Let D =f(Y) -f(X). Then p(Y) 3 ifD > 0.
The second pair of tasks, called U and I, is defined as follows. Scan the interval

[f(X), a L] of St backward, checking at time points tr 3i L for >= 0, until a 1-
unit (nonleaf) task that finishes at the checking point is encountered orf(X) is reached,
whichever occurs first. If a 1-unit task is found, we denote it by U and say that U is
defined. Otherwise, we say that U is undefined. If U is defined, we denote the dual task
of U in St by 1/’. It is easy to see that if U is defined, thenf(U) f(l/’) and (U) consists
of an odd number of 3-unit tasks plus three, zero, and one 1-unit task for St being Case-
2, Case-3, and Case-4 degenerate, respectively. Furthermore, if U is defined and there is
a 3-unit task in 9(U) ready for execution at s(U), then we say that U can be delayed.
Otherwise, we say that U cannot be delayed. Note that 1/" could be the same as Y, but it
cannot appear earlier than Y in St.

We now consider how to improve St. We shall consider the following cases in the
order given: (a) U is undefined; (b) U can be delayed; and (c) U cannot be delayed. We
prove in the following lemma that St is optimal if U is undefined. Figure 3 shows an
example of this case.

LEMMA 9. St is optimal if U is undefined.
Proof. Since U is undefined, there exists an integerj such thatf(X) f(Y) a

3(j + 1) L, and for each 0

_ _
j, there are two 3-unit tasks in (X) that finishes at
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tr 3i L. This implies that (X) consists ofan odd number of 3-unit tasks plus three,
zero, or one 1-unit tasks, depending on whether St is Case-2, Case-3, or Case-4 degenerate.
Hence, if St is Case-3 or Case-4 degenerate, then it is optimal because: (a) (X)
suc(X) or xIt(X) suc(X) U ( ); and (b)f(X) d(X). If S is Case-2 degenerate,
then (X) suc (X). It is easy to see that r, 2, and 3 executing in
are the only 1-unit tasks as well as the only leaf tasks in suc (X). Thus, the only way to
improve St is to execute all three 1-unit leaf tasks on the same processor. However, it is
easy to see that a longer schedule will result if they all execute on the same processor.
Consequently, St is optimal.

Now, suppose U can be delayed. We show in the following that St can always be
improved. We show that a new schedule t constructed from St is one unit shorter than
St. t is constructed as follows:

Schedule all tasks except U that finish byf(U) in St in the same manner as S1.
(2) Schedule U right after V finishes on the same processor as V.
(3) Schedule the remaining tasks (the tasks in xIt(U)) by the LSF rule. See Fig. 4

for an example of
Let { U, U2, "", Uu }({ V, V2, Vv }) be the set of immediate successors of

U(V), and let { T, T2, Tt } be the set of tasks ready for execution at s(U) in St.
Without loss of generality, we may assume that Tt has the largest weight among all tasks
in { T, T2, Tt } and that it is chosen to start atf(t, V) in t. Since Tt is ready
for execution at s(U) but it is not chosen, we must have w(U) >_- w(T). Moreover, we
have p(Tt) 3 andf(t, T) f(t, U) + 1. We show in Lemma 10 that t is one unit
shorter than Sl. To facilitate our proof, let us consider the tree G shown in Fig. 9. Note
that V is treated as a 1-unit task in G, although it may be a 3-unit task in the original
task system G. Let TSI be the set of tasks in G and let St(G be the LSF schedule for
TS subject to the precedence constraints of G. Then, the schedule obtained by elimi-
nating the root ofG from St(GI is exactly the same as the partial schedule oft in the
interval s(t, V), (t) ]. Thus, we can simply consider St(G instead of t when the
discussion is restricted to the partial schedule of t. In the proof of Lemma 10 we use
them interchangeably.

LEMMA 10. If U can be delayed, then ;t is optimal.

Proof. We first show that there is no internal idle interval in the partial schedule of

t after s(t, V) (and hence in St(G)). Suppose not. Let Its,/2] be the first internal idle

interval in the partial schedule of t in the interval [s(t, V), r(t)] and let W be the
task that finishes at t2. The two tasks that start at t2 cannot both be 1-unit tasks. Thus,
w(W)

_
4 and (t, W) suc (W). By Lemma 1, there is a chain of tasks executing

continuously in the interval [s(t, V), t2]. This chain must be headed by V in G;
otherwise, we would have w(Tt) > w(U). Let this chain be (V, U, , ), where

7 W. must be an immediate successor of either U or Vin the original task system
G; otherwise, w(T) > w(U) and w(T) > w(V). Therefore, the chain T, TI must

execute continuously on one processor after U in St and the remaining tasks executed
in the interval [s(t, V), t2] in St, other than U and V, must execute on the other
processor in St. From the total execution time of the tasks executed in the interval, we
see that w( qg(W) suc (W)) -< 1. But this contradicts our definition ofXsince Wshould
be chosen instead. Hence, it is impossible to have any internal idle interval in the partial
schedule oft after s(t, V).

We now claim that ift has an external idle interval, then its length must be at most

one unit. The claim follows from the fact that t does not have any internal idle interval

after s(t, V) and the tasks that execute after s(t, V), other than U and V, consist of
an odd number of 3-unit tasks plus three, zero, or one 1-unit leaf tasks depending on
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whether SI is Case-2, Case-3, or Case-4 degenerate. Since the length of the external idle
interval of t is at most one unit, t must be one unit shorter than St. Hence, t is
optimal. [2]

We now discuss the case when U cannot be delayed. We show in Lemma 12 that
St is optimal if D 0. An example of this situation is given in Fig. 5. If D > 0, then it
can be shown that Xhas exactly two immediate successors, excluding the possibility that
may also be an immediate successor of X when St is Case-4 degenerate. We denote

the two immediate successors ofX by son and son 2 and we assume that w(son l)

_
w(son 2) and son precedes son 2 in the LSF ordering of TS. Then, we have that
s(son 1) =f(X). Furthermore, since Iw(suc(U)) w(suc(V))l

_
2 and U cannot be

delayed, we can prove that s(son2) f(Y), and that d(son 1, UV) f(UVl)
s(son 1) and d(son 2, UV2 f(UV2) s(son 2), where { UV UV2 } { U, V }.
Note that UV (UV2) may be the same as son (son 2) or it may be a successor of
son (son 2).

When D > 0, we construct another schedule St from St as follows:
Schedule the tasks in n sc (X) as in St.

(2) IfD or p(son 1) 3, then schedule son 2 right after X finishes.
(3) IfD 2 and p(son 1) 1, then schedule son right after X finishes and son 2

immediately following son 1.
(4) Schedule the remaining tasks in suc (X) by the LSF rule.

An example oft can be found in Fig. 6. In Lemma 12 we show that ift is not a better
schedule than St, then St must be Case-4 degenerate and C(S+o(X), ST(X)) must be
optimal. Note that ifD 2 andp(son 1) 1, then son has only one immediate successor,
denoted by son 11, excluding the possibility that 0 may be another successor of son
when St is Case-4 degenerate. Let J 2 ifp(son 1) p(son 2) 3 and D 2, and J

otherwise. Then, we have that s(t, son 1) s(son 1) + J if D or p(son 1) 3,
and S(l, son 11) s( son 11) + J otherwise.

To facilitate our proofs, let us consider the tree G2 shown in Fig. 10. Define TS2 to
be the set oftasks in G2 and St(G2) to be the LSF schedule of TS2 subject to the precedence
constraint of G2. Then, the schedule obtained by deleting the root of G2 from St(G2) is
identical to the partial schedule of l in the interval [f(t, X), (t)]. In the proofs of
Lemmas 11 and 12, we refer to them interchangeably. We need the following lemma to
prove Lemma 12.

LEMMA 11. Suppose that U cannot be delayed andD > O. Let t t2 be an internal
or external idle interval and let W be the task such that f(t, W) t2. Then, we have
d(W) f( St, W) J, where J is defined as above, under one ofthefollowing conditions"
(a) [t, t2] is internal; (b) [t, t2] is external and t2 t > 3; and (c) [t, t2] is external
with t2 t N, where N is the length ofthe external idle interval ofSt, and there is no
internal idle interval in St.

Proof. Let Z be son ifD or p(son 1) 3, and Z be son 11 otherwise. Let Z’
be the immediate predecessor of Z. Then, it can be seen that s(t, Z) s(Z) + J and
d(Z’) =f(Z’)= s(Z). In the following we show that W is a successor of Z and
d(Z, W) f(t, W) s(t, Z). Therefore, d(W) d(Z’) + d(Z, W) f(t, W) +
d(Z’) s(t, Z f(t, W) +f(Z’) s(Z J f(t, W) J, and hence the lemma
is proved.

Let (T/ 1, T, T) be the chain such that f(St, T/ < s(St, Tj),
f(t, Ti+ 1) s(t, T;) for

_ _
j and T W. Ifs(t, T) -f(t, Y), then one

of the three tasks son 1, son 2, or Y must be on the chain. Since w(suc(Y)) <= 1, Y
cannot be on the chain. If son 2 is on the chain, then we have w(son 2) > w(son 1)
under any one of the conditions (a), (b), or (c). This contradicts our assumption that
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X/1

Y/1

UII

(a) G2whenD=

X/1

YI/I son1

Y2/I

Û/1

(b) G2 when D 2 and p(son 1)

FIG. 10. The precedence tree G.

w(son 2)

_
w(son 1). Consequently, son must be on the chain. From the construction

of t, we can see that T son if D or p(son I) 3, and T son 11 otherwise.
Consequently, W is a successor of Z and d(Z, W) f(t, W) s(t, Z ).

To finish the proof, we show by contradiction that it is impossible to have
s(St, T) > f(St, Y). Suppose otherwise. Then, the chain (Tj.+, T, ..-, T) is also
a chain in G2. Now, let us consider St(G2). Under condition (a) or (b), this chain
must execute continuously in St(G2) by Lemma 1. This contradicts our assumption that
f(St, T+ < s(St, T). Under condition (c), if St(G2) is not degenerate, then there is a
chain in G with length as long as the length of St(G2), since the length of the external
idle interval t, t] in St(G2) is N. This means that the chain T+ , Tj., T executes
continuously in St(G2). This again contradicts our assumption. We now show that it is
impossible to have St(G:) as degenerate. Since w(suc (U)) w(suc V))I >= 2, we have
f(t, U) f(t, V)I 2J. Recall the following three facts: (1) U is the 1-unit nonleaf

task that finished last in St; (2) (U) consists of an odd number of 3-unit tasks plus
three, zero, or one 1-unit task, depending on whether St is Case-2, Case-3, or Case-4
degenerate; and (3) t has no internal idle interval. Since f(t, U) -f(t, V)I 2J
and from the above three facts, it is clear that St cannot have the same end as St. Thus,
St(G2) cannot be degenerate. Consequently, under condition (c), it is also impossible
that s(t, T)>f(t, Y).
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Suppose the set of successors
of son 2 is son 21, son 22
son 2i.

XI1

Y1/1

Y2/

U/1
oooooo

(c) G2 when D 2 and p(son 2)
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X/1

YI/1

Y2/I

U/I
(d) G2 when D 2 and p(son 1) p(son 2) 3

FIG. 10. (Continued.)

LEMMA 12. Suppose that U cannot be delayed. Then, St is optimal ifD O. If
D > O, then t is one unit shorter than St except when St is Case-4 degenerate and t has
the same length as St. In this case, C(S+o (X), S{(X)) is optimal.

Proof. IfD 0, then the following can be shown: (1) f(U) d(U) f(V) d(V);
(2) 9(U) contains an odd number of 3-unit tasks; and (3) all tasks in 9(U), except
possibly when St is Case-4 degenerate, are in suc (U) tO suc (V). Hence, St is optimal.

Now, consider that D > 0. If St has no internal and no external idle interval, then
SI must be one unit shorter than St. Thus, we may assume that St has internal and/or
external idle intervals. We consider the following two situations separately: St has internal
idle interval (s), and otherwise. We first prove that if St has internal idle interval (s), then
there is only one internal idle interval and its length is one unit. Furthermore, St must
be Case-3 or Case-4 degenerate. If SI is Case-3 degenerate, then we show that t has no
external idle interval. That is, t is still unit shorter than SI. If SI is Case-4 degen-
erate, then we show that J=2 (i.e., D=2 and p(sonl)=p(son2)=3) and
C(So+(X), S{(X)) is optimal. See Fig. 6 for an example. We then consider i having
external but no internal idle interval. In this case we show that Sl must be Case-3 or
Case-4 degenerate and that the length of the external idle interval is exactly one or
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two units, respectively. Therefore, if St is Case-3 degenerate, then t is still unit
shorter than St. If St is Case-4 degenerate, then we show that J 2, d() tr 2, and
C(So+ (X), S-(X)) is optimal.

Suppose there are internal idle intervals in t. Let [t, t2] be the last one in t and
let Wbe the task such thatf(St, W) t2. Since St has no internal idle interval, we have
t2 > f(Sl, Y) and W is in suc (X). Furthermore, since W has at least two successors
one ofwhich must be a 3-unit task, we have w(suc (W)) >_- 4 andf(W) < tr 3. Conse-
quently, the interval [f(X), f(W)] in St contains no idle interval. Let A suc(X)
suc(W) and q 2(f(W) f(X)) D. Then, we have w((W) suc(W)) <- w(A)
q. From the construction of t, we see that w(A) 2(f(t, W) -f(t, X)) M-
D, where M (M

_
1) is the total length of all internal idle intervals in t. Now, q

_
2(d(W) f(X)) D (since f(W)

_
d(W)) 2(f(t, W) f(t, X)) (2J + D)

(by Lemma 12 andf(X)= f(t, X)). Consequently, w((W)- suc(W))<- w(A)-
q<-_2J-M<- 3.

If St is Case-2 degenerate, then it is easy to see that w((W) suc (W)) >_- 4. Thus,
it is impossible that St is Case-2 degenerate. If St is Case-3 or Case-4 degenerate, then
w((W) suc (W))

_
3. Therefore, St must be Case-3 or Case-4 degenerate and

w((W) suc (W)) 3. Hence, we have J 2 and M 1. If St is Case-3 degenerate,
then it can be seen that suc (W) consists ofan even number of 3-unit tasks. Consequently,
if St has an external idle interval, then its length must be 6i for some >_- 1. However, by
Lemma 11, this implies that there is a chain in the task system G at least as long as tr.

Therefore, by Observation 2, t cannot have any external idle interval. If St is Case-4
degenerate, then it can be seen that (l) the dual task of Win St finishes at the same time
as W; (2) all tasks in (W), except one 3-unit task, are in suc W); 3 suc (W) contains

and an even number of 3-unit tasks; (4) d(W) f(W); 5 the length ofthe external
idle interval of St is one unit; and (6) the length of S(X) is a d(X) 2; i.e.,
S-(X) has no idle interval. Therefore, St has the same length as St. Using a similar
argument as in the proof of Lemma 8, it can be shown that C(S+o(X), ST(X))
is optimal.

Finally, we consider the case when t has an external but no internal idle interval.
Let the length of its external idle interval be denoted by N’. Dictated by the total execution
time of all tasks in TS, N’ must be equal to N + 2i and a(t) a + for some integer
_

-1. If

_
0, then by Lemma l, there is a chain in the task system G no shorter

than tr + J

_
a 2. By Observations and 2, this cannot hold for St being Case-2

or Case-3 degenerate. Thus, we have -1 for these two cases; N’ 0 if St is Case-2
degenerate, and N’ if St is Case-3 degenerate. Hence, t is optimal for these two cases.
If St is Case-4 degenerate, then we must have 0 and J 2 by Observation 3. In this
case it can be seen that (1) f(t, ) tr(t) a; (2) d() a 2; and (3) the length
of ST(X) is tr d(X) 2. Using the same argument as in the proof ofLemma 8, it can
be shown that C(So+ (X), S- (X)) is optimal. E]

From Lemmas 9, 10, and 12, we see how to improve Case-2, Case-3, and Case-4
degenerate schedules. We first locate the task X and then the task U by scanning St
backward. If U is undefined, then St is already optimal by Lemma 9. Otherwise, if U can
be delayed, then we produce the schedule t, which is optimal by Lemma 10. If Ucannot
be delayed and D 0, then St is already optimal by Lemma 12. If D > 0, then we
produce the schedule St. If St is an improved schedule, then it is optimal. Otherwise, we
produce the schedule C(So+(X), S-(X)), which is optimal by Lemma 12. Note that we
need to recursively call Algorithm ONE-THREE to produce the schedule So+ (X).

4.3. Case-5 degenerate. In this section we consider how to improve Case-5 degen-
erate schedules. For the remainder ofthis section we assume that St is Case-5 degenerate.
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Since St is Case-5 degenerate, we see that there exists at least one 1-unit nonleaf task in
TSthat is different from the root R. Therefore, we can apply the iterative pruning process
described in [7 ]. That is, we iteratively prune the pair of 3-unit tasks farthest away from
the root R until a 1-unit task is first exposed as a leaf. We can prove that in the pruning
process, we will never encounter the situation where the only leaf task left is a single 3-
unit task. The proofis analogous to the proofofLemma 4 in 7 ]. Let G3 be the remainder
of G after the pruning process is completed and let TS3 be the set of tasks in G3. Let
S-(G3) denote the schedule for the pruned tasks in which the pair of tasks removed at
the jth iteration of the pruning process is scheduled immediately after the pair removed
at the (j + 1)st iteration. In Lemma 13 we show that the schedule C(So(G3), S-(G3))
is optimal for the tasks in G, where So(G3) is an optimal schedule for the tasks in G3.
Thus, the procedure to improve a Case-5 degenerate schedule consists of recursively
calling Algorithm ONE-THREE to produce an optimal schedule So(G3) for the tasks in
G3 and then concatenate So( G3 with S-(G3) to obtain an optimal schedule for the tasks
in G. Let St(G3) denote the LSF schedule for the tasks in G3.

LEMMA 13. The schedule C(So( G3 ), S-(G3)) is optimalfor the tasks in G, where
So(G3) and S-( G3 are defined as above.

Proof. By the same technique as in the proof ofLemma 5 in 7 ], we can show that
SI(G3) has no internal idle interval. Consequently, if St( G3 has an external idle interval,
then its length must be a multiple of two. If St( G3 is not degenerate, then either St( G3
has no external idle interval or there exists a chain of length a(St(G3)) in G3. In the
former case, So(G3) has no internal or external idle interval. Hence, C(So(G3), S-(G3))
is optimal. In the latter case, we can show that C(So(G3), S-(G3)) is optimal by the
same technique as in the proof of Lemma 5 in 7 ]. If St(G3) is degenerate, then St(G3)
must be Case-1, Case-4, or Case-6 degenerate since it has no internal idle interval and
the 1-unit task exposed as a leafin the pruning process must finish last on some processor.
Therefore, if St(G3) is improvable, then So(G3) has no internal or external idle interval
and hence C(So(G3), S-(G3)) is optimal. If St(G3) is not improvable, then it must be
Case-1 or Case-4 degenerate. From the proofs of Lemmas 8 and 12, we see that there
are only three situations in which Case-1 and Case-4 degenerate schedules cannot be
improved. Combining the methods developed in the proofs of Lemma 5 in [7] and
Lemma 8, we can show that C(So(G3), S-(G3)) is also optimal in any of these three
situations.

5. Conclusions. In this paper we show that Algorithm ONE-THREE constructs an
optimal 2-processor schedule for a set ofn tasks with a tree-structured precedence relation
and execution time of or 3 units. Algorithm ONE-THREE first constructs an LSF
schedule. If the LSF schedule is not degenerate, then it is already optimal. Otherwise,
Algorithm ONE-THREE attempts to improve it using the procedures given in 4 until
either an improvement is obtained or it reaches the conclusion that the original LSF
schedule is already optimal. Algorithm ONE-THREE can be implemented to run in
O( n2 log n) time. This follows from the observations that a LSF schedule can be obtained
in O(n log n) time and that Algorithm ONE-THREE needs to construct at most n LSF
schedules.

It is interesting to observe that Algorithm ONE-THREE can also be used to solve
the case studied in 7 ]; the degenerate case described in 7 is actually Case-3 degenerate
defined in this paper. We believe that the LSF algorithm defined in this paper can be
quite useful in solving the case of execution time being or k units, where k > 3. The
characterizations of LSF schedules given in 2 are applicable to any k. For k > 3, we
need to systematically classify the degenerate schedules and devise procedures to improve
them. For future research efforts, it will be interesting to see how far this idea can go.
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ON FACTORABLE EXTENSIONS AND SUBGRAPHS
OF PRIME GRAPHS*

JOAN FEIGENBAUMf AND RAMSEY W. HADDAD

Abstract. Cartesian-factorable extensions and subgraphs of prime graphs are investigated. It is shown that
minimal factorable extensions and maximal factorable subgraphs are not unique and that finding them is NP-
hard even, in the case of minimal factorable extensions, if the prime graph in question is required to be a tree.
Tight bounds on the density ofa prime graph’s minimal factorable extension are derived. A dynamic programming
algorithm is given for finding factorable extensions of certain types of trees.

Key words, product graphs, NP-completeness, dynamic programming
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1. Introduction. The cartesian product G G [-q G2 of undirected graphs G and
G2 is an undirected graph with node set V(G) V(G V(G2) and edge set E(G)
{ (Xl, y) (x2, Y2): (Xl x2 and y Y2 e E(G2)) or (y y_ and x xa E(G)) }.
More concretely, form the product G [-q G2 by substituting a copy of G2 for each node
in G and drawing in the trivial isomorphism between each pair of copies corresponding
to adjacent nodes. Figure shows the cartesian product of a three-node chain and a
triangle.

Cartesian multiplication is commutative (i.e., G E] G2 G2 [3 GI and associative
(i.e., (G E] G2) G3 G (G2 [q G3)). Every connected graph has a set of irreducible
factors that are unique up to order [9 ]; hence, irreducible graphs are called primes.
Graphs that are not prime are calledfactorable. A simple counting argument shows that
almost all graphs are prime [4 ]; more precisely, the fraction oflabeled graphs on n nodes
that are factorable tends to 2-"n2, for some positive constant c, as n tends to infinity. The
prime factors of a finite, connected graph can be found in polynomial time 5 ], 11 ].

Here, we consider the following question. Given a prime graph G, find a graph H
such that we have the following"

(a) G is a subgraph ofH (G
_
H);

(b) His factorable;
(c) Among all graphs satisfying (a) and (b), H has the fewest nodes; and
(d) Among all graphs satisfying (a), (b), and (c), H has the fewest edges.
Such an H is called a minimal factorable extension of G. Similarly, we define a

maximalfactorable subgraph H of G as a graph H
_
G such that H is factorable, has at

least as many nodes as any factorable subgraph of G, and has at least as many edges as
any factorable subgraph with that many nodes. Figure 2 shows a prime graph G, a
minimal factorable extension H, and a maximal factorable subgraph J.

These questions arise in the design of computer networks and multiprocessing ma-
chines. It is easy to construct factorable graphs that have low diameter and a large number
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FIG. 1. The product ofa three-node chain and a triangle.

of alternative paths between any pair of nodes; both ofthese characteristics are desirable
in networks, the first for fast communication and the second for fault tolerance. Of
course, real computer networks are not always built according to a systematic design,
but often take shape gradually, in response to ad hoc demands for service. In order to
improve communication rates or fault tolerance in a network represented by an arbitrary
graph G, it may suffice to find a factorable graph H that is "close" to G (e.g., a small
factorable extension or a large factorable subgraph), determine an optimal strategy for
H, and then modify it to obtain a nearly optimal strategy for G. See, e.g., 2 for an
application of these ideas to the construction of (static) routing tables.

Multiprocessors, on the other hand, are built according to systematic designs.
Therefore, a great deal of effort goes into designing multiprocessor architectures that are
sufficiently flexible to allow common programs that were originally written for a unipro-

H

FIG. 2. A prime graph G, its maximalfactorable subgraph J, and its minimalfactorable extension H.
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cessor to be decomposed and run on the multiprocessor in a way that exploits locality
in the original program. If the original program is represented by a graph G, then the
nodes of G can be thought of as local computations (i.e., computations that can be run
on a single processor) and the edges of G can be thought of as requirements for com-
munication between these local computations. If the structure of the multiprocessor is
represented by a graph H, then the assignment of local computations in the original
program to individual processors in the multiprocessor is modeled by a homomorphism
of G into H. Special kinds of product graphs, e.g., hypercubes and their generalizations,
have achieved wide acceptance as multiprocessor architectures. Therefore, considerable
attention has been paid to the question offinding mappings (ifpossible, homomorphisms)
from (usually prime) graphs that represent programs into product graphs that represent
multiprocessor architectures; see 10 for a thorough discussion ofthis issue. Our problem
of finding smallest factorable extensions of arbitrary graphs is a further abstraction of
this line of research.

We show that minimal factorable extensions and maximal factorable subgraphs are
not unique and that finding them is NP-hard, even, in the case of minimal factorable
extensions, ifthe prime graph in question is required to be a tree. We derive tight bounds
on the density of G’s minimal factorable extension as a function ofthe density of G. We
show how to use dynamic programming to find a factorable extension H with IV(H)
as small as possible in the special case in which G is a tree and H has one factor of size
two or three. Finally, we show that any binary tree T on more than four nodes has a
minimal factorable extension H K2 E] H’, where IV(H) 2 "[I V( T)I/2].

2. Nonuniqueness. The existence ofa minimal factorable extension for every prime
graph G is self-evident:

(1) GcK2VqG,

where En Kn is the graph with n nodes and no edges. In fact, (1) gives us the upper
bound

V(H)I-21V(G)I,

which is tight, because the complete graph K, has no factorable extension smaller than
K: t3 K,,.

In general, a prime graph may have more than one minimal factorable extension
and more than one maximal factorable subgraph. To see this, we construct infinite families
of examples of nonuniqueness.

For each prime integerp

_
7, there is a prime graph Gp with at least two nonisomorphic

minimal factorable extensions H and H. Suppose that p 2k-1. Let l/(Gp)
(1, 2,...,p} andE(Gl,)= {i-- (i+ 1)" <-i<-k ork+ <-i<-p l}
{ (i + k)" _-< _-< k 2 }. To obtain l/(Ho) or I/(H) from l/(Gp), just add one
new node labeled 2k. The graph Ho is just the product ofK2 and a path on k nodes; the
edge set E(H) is E(Gt,) t.J { (k 1) (2k 1), k 2k, (2k 1) 2k }. The graph
H is the product of K2 and a tree consisting of a path on k 2 nodes and two leaves
both adjacent to the (k 2)nd node in the path; the edge set E(H,) is E(Gp)
( (k 2) 2k, k (2k 2), (2k l) 2k }. Obviously, Ho and H are factorable
and nonisomorphic. To see that they are minimal, observe that any factorable extension
of G has to be connected, and that the sparsest connected factorable graphs on p +
nodes have p + (p + 1)/2 edges, as do both Ho and H. (Any such graph is of the
form K2 [-1 T, where T is a tree on (p + 1)/2 nodes.) Figure 3 shows G7, H, and H.
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5

G7
-5 1 5

2, ,6

III-t7
FIG. 3. A graph G7 and two nonisomorphic minimalfactorable extensions H’7 and H.

Prime graphs may also have two or more nonisomorphic maximal factorable
subgraphs. For each k

_
4, let JEk be the prime graph on 2k nodes { 1, 2, ..., 2k } with

edge set

{i---(i+ 1)" <=i<=k lork+ <-i<-2k 1}

U{i--(i+k)" _-< _-< k} U {1-- (k + 3), 3 (k + 1)}.

5

4 8

J8

;5

-’6

"-8

FIG. 4. A graph G8 and two nonisomorphic maximalfactorable subgraphs H’ and H’.
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(The primality of J2 can be demonstrated quite straightforwardly using the factoring
algorithm in [4 ]; we leave this proof to the reader, because the machinery used in the
algorithm is considerable and not necessary for the rest ofthis paper.) Two nonisomorphic
maximal factorable subgraphs are H and H, which have the same structure as the
factorable extensions described above. Specifically V(H) V(H) V(J2),

E(H’2,) E(J2)\ {1 (k + 3), 3 (k + 1)},
and E(H) E(Jg)\{1 2, (k + 1) (k + 2)}. Figure 4 shows J8, H,
and H.

3. NP-completeness. In this section, we prove that the computational problems of
finding smallest factorable extensions and largest factorable subgraphs are NP-hard. In
yes/no form, the first problem is the following:

SMALLEST FACTORABLE EXTENSION (SFE).
Input: A graph G and positive integers N and E.
Question: Is there a factorable graph H such that G__ H, IV(H)[ _-< N, and

E(H)I - E?

Suppose that IV(H) N and H H [3 H2, where V(HI)I k. We can view
the process of extending G to H as follows. First, add N- V(G)I isolated nodes to G
and call this enlarged node set V(H) { x,..., Xv}. Next, find an optimal, legal
partition of V(H) into k pieces, each of size Nk, and number the vertices (i, j), =<

<= k, <-j <= Nk. Finally, add edges within the pieces so that they form isomorphic
copies of the right factor H2, and add edges between pieces so that their connection
pattern is given by the left factor H.

The partition that corresponds to the numbering of V(H) by ordered pairs Xl
il j ), Xv ik, jv/g), is legal if

i,j)( i’,j’)- E(G) = i’ or j=j’,

and it is optimal if it minimizes

N
i’ i’IE(H)I =--U{{i, }’(i,j)( ,j)eE(G)}

(2)

+k. U { {j,j’}" (i,j’}" (i,j)--E(G)}

The first condition says that the edges inherited from G are a subset of the edges of a
cartesian-product graph. The set { { i, i’} (i, j) (i’, j) e E(G) } represents H-edges
that go between copies and i’ of H2, whereas the set { { j, j’} (i, j) i, j’) e E(G) }
represents the contribution of the th piece in the partition to the edge set E(H2).

If Xl (i, j), x (ik, j/k) is an optimal, legal partition of V(H) into k
pieces of size Nk, then x (j, i ), x (jv/k, ik) is an optimal, legal partition
into Nk pieces of size k---this is to be expected, because the first partition yields the
extension of G to H V1H2, where V(H)[ k, and the second yields the extension to
H2 [2] H. These graphs are isomorphic; hence either both extensions are minimal or
neither is. Therefore, we assume for the rest of this section that

(3) k_-< l/-.

The NP-completeness proof for the SFE problem proceeds in two stages. First we
prove the NP-completeness of the parameterized SFE problem, in which we ask about
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the existence of an extension with factors of specified sizes. We then reduce this specific
version of the problem to the general version.

PARAMETERIZED SMALLEST FACTORABLE EXTENSION (PSFE).
Input: A graph G and positive integers N, E, and k.
Question: Is there a graph H such that G

_
H, H H ff] H2, [V(H)[ k,

V(H)[

_
N, and E(H)[ _-< E?

LEMMA 3.1. The PSFE problem is NP-complete, evenfor the values N V(G)I,
E (N/2)2, and k 2.

Proof. Note first that the problem is certainly in NP: given a graph H, and a one-
to-one mapping of G into H, we can verify in polynomial time that H has the required
properties and that G

_
H.

For the special case in which N V( G)[ and E (N/2)2, we are asking whether
G can be extended to any graph with a 2-node factor without adding new nodes. The
parameter E (N/2)2 imposes no restriction, because it is the maximum number of
edges that an N-node cartesian-product graph with a 2-node factor can have; the maximum
is achieved by K2 KN/2. Thus all we ask is whether G admits a legal partition into two
pieces of size N2--i.e., can we divide V(G) into equal-sized sets S and T such that, for
any s e S, there is at most one T such that s e E(G) and vice versa? If there is
such a partition, then the sets S and T can be filled out to the copies ofH2 and the edges
connecting S to T can be viewed as part of a one-to-one correspondence between the
copies.

The NP-hardness part ofthe proof is by reduction from one-in-three 3SAT with no
negated literals [6]. Given an instance (C x V x2 V x3, C2 x2 V x22 V x23, "’",

Cn xn V x,2 V xn3) of this problem, we constructan instance of PSFE as follows:
V(G) contains one node xij for each literal and three nodes, say Ci, C, and C,2. for each
clause. For each pair 4: j, draw in the edge Ci C, and for each i, draw in C xj,
for j { 1, 2, 3 }, and x,..j C for j e { 1, 2 }. In addition, if literals xi and x,/are the
same variable, draw in edge x,.- x;,/. (See Fig. 5.)

Suppose there is a satisfying assignment that gives the value TRUE to the literals
xj, x2j2, ’", x,j,; all the other literals must be assigned FALSE, by definition of one-
in-three 3SAT. Then we get. a legal partition of V(G) by putting the TRUE literals
and the "padding nodes" C in one set and the FALSE literals and "clause nodes" Ci in
the other.

X44

FIG. 5. Instance of PSFE corresponding to the one-in-three 3SAT instance C x V y v z, C2 x V
y V w, Ca w v z V v), as in the proofofLemma 3.1.
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Conversely, suppose that S II T is a legal partition of V(G). Any clique in G of
size three or more must lie completely in S or completely in T. The clause nodes
C,, ..., Cn form a clique; hence we can assume without loss of generality that they
are all in S. For each i, at most one of the neighbors xi,, xi2, and xi3 of Ci can be
in T. Because S has the n members C, ..., Cn, the only way it can have size 3n
IV(G)I/2 is if, for each i, exactly two of the xo’s are in S and the other is in T. Con-
sider the assignment that gives the value TRUE to all of the literals in T and FALSE
to all of those in S. We have just argued that there is exactly one TRUE literal in each
clause. Might the assignment be inconsistentmin other words, ifliterals x0 and xi,j, repre-
sent the same variable, could one of the corresponding nodes, say xo, be in T and
the other in S? This could not happen with a legal partition S II T, because x0 e T
would have two neighbors in S, namely Ci and xi,/. Hence, each legal partition corre-
sponds to a satisfying one-in-three assignment. V1

Our original SFE problem, which is also obviously in NP, asks for less information
than the parameterized version, and hence it is conceivable that the unparameterized
version could be easier. The following argument, however, shows that this is not the case.

We give a simple method of reducing an instance (G, N IV(G)[, E (N/2)2,
k 2) of PSFE to an instance (G’, N’, E’) of SFE. Let H K2 Iq Ku+, and G’ be
the disjoint union G ld H. Let N’ N + V(H)I 3N + 2 and E’ E + [E(H)I
(N/2) 2 + N2 + 2N.

If G, N, E, 2) is a yes-instance of PSFE, then G K2 [2] J, where V(J) N2.
This implies that G’ K2 (J II KN+ ); therefore, (G’, 3N + 2, E’) is a yes-instance
of SFE.

Now suppose that (G’, 3N + 2, E’) is a yes-instance of SFE. Suppose that H’
H’ H is a factorable extension of G’ that witnesses this fact. Consider the nodes of
one of the large cliques Ku+ in G’. As in the proof of Lemma 3.1, either all of these
nodes lie within one copy of H or each of them lies in a different copy. In either
case, the fact that V(H’)I V(G’)I 3N + 2 implies that one of V(H’)I and
V(H)I is two, because the other is at least N + 1; say V(H’ )l 2. Since each ofthe

copies of Ku+ must lie in a different copy of H, the only way to complete a partition
of V(H’) into two copies ofH is to put N/2 nodes ofG into each copy, which can only
be done if (G, N, E, 2) is a yes-instance of PSFE.

This completes the proof of the following theorem.
THEOREM 3.1. The SFE problem is NP-complete.
Wagner has obtained several related results in which restrictions are placed on the

classes ofproduct graphs considered 10 ]. Recall that the k-dimensional hypercube is the
cartesian product ofk graphs, each ofwhich isjust K2; Wagner uses the term k-dimensional
B-cube to mean the cartesian product of k graphs, each ofwhich is isomorphic to B. He
proves that the following problems about extending prime graphs to product graphs are
also NP-complete. Given a graph G and an integer k, is G a subgraph ofthe k-dimensional
hypercube? Given a graph G, is it a subgraph of any hypercube (see also 3])? Given a
graph G and an integer k, is there a graph B such that G is a subgraph of the k-dimen-
sional B-cube?

We turn now to the problem offinding large factorable subgraphs. The yes/no form
of the problem is the following.

LARGEST FACTORABLE SUBGRAPH (LFS).
Input: A graph G and positive integers N and E.
Question: Is there a factorable graph H such that H__ G, IV(H)[

_
N, and

E(H)I - E?
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THEOREM 3.2. The LFS problem is NP-complete.
Proof. LFS is obviously in NP. To prove completeness, we reduce an instance

(G, k) of CLIQUE [6] to an instance (G’, N, E) of LFS.
Let n equal V(G)[. Construct graphs A, B, and C, where A - Kk, B , and

C Kk. Next construct a graph D, where V(D) is V(A) tA V(B) tA V(C) t3 V(G), and
E(D) consists of all edges internal to the subgraphs A, B, C, and G, plus all edges
x y such that x V(A) and y V(G), all edges x y such that x V(B) and y
V(C), and n edges that present a bijection between V(G) and V(B). The total number
of edges in D is therefore

IE(D)I--IE(G)I 4-
2

+2kn+n.

Let b be the smallest integer greater than E(D)I such that n + k + b is prime; we know
by a theorem of Chebyshev [8] that the size of b is polynomial in n, and thus we can
find b in polynomial time by trial division of successive odd integers. Let F be a graph
isomorphic to the product K2 E] Kb. The graph G’ in our target instance of LFS is the
disjoint union of D and F. The parameter N is lZ(G’)l 2(n + k + b), and the
parameter E is

b k

(See Fig. 6.)
This construction of G’ is rather complicated, but it can be analyzed easily. The

goal is to show that any factorable subgraph of G’ that is large enough must induce a k-
clique that is completely contained in G.

First assume that G, k) is a yes-instance ofCLIQUE. We will construct a factorable
subgraph H of G’ to show that (G’, N, E) is a yes-instance of LFS. H will have the form
K2 [-] H’; to do this, we have to partition V(G’) into two sets S and T that form the
vertex sets of the copies of the fight factor H’ and show that E(G’) contains edges that
give a one-to-one correspondence between S and T.

Start by putting V(G) and the nodes of one ofthe b-cliques ofF into S and putting
V(A) and the other b-clique ofF into T. The two b-cliques will correspond to each other
in H, and they can be ignored during the rest of the construction of S and T. Let the

G B=Kn

FIG. 6. Instance of LFS corresponding to the CLIQUE instance G, k), as in the proofofTheorem 3.2. All
possible edges are present between subgraphs A and G and between subgraphs B and C. Each node in G is
adjacent to a unique node in B and vice versa.
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nodes of A correspond to those of a k-clique X in G; we know that such an X exists,
because (G, k) is a yes-instance ofCLIQUE, and that E(G’) contains a bijection between
V(A) and V(X), because it contains all possible edges between V(A) and V(G). Each
of the n k nodes in V(G)\V(X) is adjacent to exactly one node in V(B). Put those
n k nodes of V(B) into T. The remaining k nodes of V(B) and the k nodes of V(C)
induce a subgraph of G’ that contains K2 ["l Krk/21,tk/2j. There may be more than one
way to identify the two copies of the complete bipartite subgraph grk/21,1k/2.1, but they
all have the property that one copy contains [k2] nodes ofB and [k/2j nodes of C and
the other contains [k/2] nodes of C and [k/2J nodes of B (see Fig. 7). We can choose
any partition into two copies ofgrk/E,tk/2 and put the nodes ofone copy into S and the
nodes of the other copy into T. E(G’) will contain edges that give a bijection between
the two copies, because it contains all possible edges between B and C.

It is clear that we have identified a factorable subgraph H of G’ that has V(G’)I
nodes and has the form K2 U] H’. The only additional fact to check is that E(H) is large
enough. The subgraph F of G’ is completely contained in H, and it contributes 2(2b) +
b edges. The subgraph A, the clique X of G, and the edges between them contribute
2(2) + k edges. There are n k edges between G\Xand B, and the subgraph isomorphic
to K2 i-1 grk/2-1,1_k/2. contributes 2[ k/2qlk/2J + k edges. Summing these contributions,
we get that E(H) is exactly equal to the parameter E ofour LFS instance. This completes
the proof that if (G, k) is a yes-instance of CLIQUE, then (G’, N, E) is a yes-instance
of LFS.

Now suppose that (G’, N, E) is a yes-instance of LFS. The factorable subgraph H
is such that V(H)I V(G’)I N. Because N 2(n + k + b), and n + k + b is
prime, H must be of the form H" U] H’, where V(H")I 2. Our first goal is to show
that H" K2.

T

FIG. 7. Subgraph, isomorphic to K2 [] Ktk/2j,rk/zl, of the part ofthe instance induced by B and C. Here
k V(C)I 7. A//such subgraphs must have one copy ofKtk/zj,rk/zl that hasfk/2] nodes ofB and[k/2J of
C and another copy that has [k/2J nodes ofB and[k ofC, because there are no edges internal to B or C.
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H" is either K2 or K2. If H" K2, then the partitions of V(G’) into two sets S and
T that maximize the size of [E(H)[ all have one of the large cliques Kb in S and the
other in T. The total number of edges we can achieve in this case is at most

This is not enough to make (G’, N, E) a yes-instance of LFS. Hence, the left factor of
the subgraph H is K2.

The proof that (G, k) is a yes-instance of CLIQUE can be completed by showing
that E(H)[ will be less than E unless the subgraph G contributes a clique of size k to
one ofthe copies S and Tofthe fight factor H’. E(H) has to contain a bijection between
S and T. None of the nodes ofF can correspond to a node outside of F, because there
are no edges between F and G’\F. So F contains a factorable subgraph of H’. This
subgraph can contribute at most 2(2b) + b edges to E(H).

Each of the nodes in C must correspond to a node in B. The factorable subgraph
ofH made up of k nodes from C and k from B can contribute at most 2[ k/2q[k/2J /
k edges to E(H). This maximum contribution is achieved by the graph in Fig. 7.

The n k nodes of B that do not correspond to nodes in C must correspond to
nodes in G. Because each node in B is adjacent to exactly one node in G and there are
no edges internal to B, no assignment of these 2 (n k) nodes to S and T can produce
a factorable subgraph that contributes more than n k edges, the bijection edges,
to E(H).

The remaining k nodes of G must correspond to nodes in A K. So far, we have
at most m 2() + b + 2 k/2ql_k/2J + k + (n k) edges in E(H). The difference
between E, the third parameter of the LFS instance, and m is 2() + k. We can only
make up this deficit if the entire clique A is contained in H and the corresponding
subgraph of G is a k-clique, vq

4. Density. The NP-completeness results of the previous section show that it is
computationally difficult to find, for an arbitrary prime graph G, the exact size of its
minimal factorable extension H. In this section, we derive bounds on [E(H)[ in
terms of E(G)[--that is, how much "filling in" is really needed to extend G to a
factorable graph?

Let n v(a)l, e IE(G)I, N V(H)I, and E [E(H)[. IfH H IN HE,
where V(H )1 k, then (2) yields an upper bound on E, namely,

I,.J { { i,i’}" (i,j)-(i’,j)eE(G) }
J

+ k. I..J { { j,j’}. (i,j) (i,j’)eE(G) }

<N I,.J { { i, i’ } i,j) i’,j)e E( G) }
J

k

+ k. 1{ {j,j’}" (i,j)-(i,j’)eE(G) }1
i=l

-. +k. IE(G)I <-Nk+ke.
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FIG. 8. Prime graph requiring maximum possiblefill-in.

First consider the case in which G has only linearly many edges. By (3), we can take
k =< f

_
2-. Thus we have the upper bound

e <- cn =E <- c2n 3/2,

where c and c2 are constants.
To show that this bound is tight up to constant factors, we construct an infinite

family of prime graphs Gn with E(Gn)I O(n) whose minimal factorable exten-
sions H have E(H.)I f(n3/2). Let n p2, where p is prime, and take V(G,)
{(i,j)" <= i,j<=p}.LetE(G,) {(1,j)--(1,j’)’jqj’} tO {(1,j)-(i,j)" i4 1}.
Thus e [E(G,)[ () + p(p 1) < 2p2 O(n). Figure 8 shows G25.

By drawing in edges (i, j) (i, j’), j 4: j’, > 1, we can fill out Gn to the product
Kp U] K,p_ ofthe p-clique and the p-node star (see Fig. 9 ). This does not require adding
any new nodes; so N n p2. The number of edges in Kp [3 Kt,,- is p(p 1) +
()p (p3)= (n3/2).

Is the partition of V(Gn) given by the original node-numbering optimal? Because
N p2, all legal partitions must consist ofp pieces each of size p. The nodes (1, 1), ...,
(1, p) of G, form a clique; hence, in any legal partition, either all of these nodes are in

FG. 9. Minima!factorable extension, K,4 [] K, ofthe graph in Fig. 8.
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the same piece or they are each in a different piece. Ifthey are all in the same piece, then
the fight factor of the corresponding factorable extension is Kpmthis means that the p
copies of the right factor contribute p() fl(n 3/2) edges to E(Hn). On the other hand,
if each ofthe nodes (1, 1), ..., (1, p) is in a different piece ofthe partition, then the left
factor of the corresponding extension is Kp; once again, this gives a lower bound of
p() on E(H,,)I.

These results can be generalized to graphs with e <-_ c (n2 l/m), where C is a constant
and m is any positive integer. Let G be such a graph, and let H H D HE be a minimal
factorable extension of G, where k V(H)[. Recall that k _-< N 2/. Let E be
the number of edges of H that go between copies of HE, and let E2 be the number of
edges internal to copies of HE. First observe that

Next observe that

E
_

<kNN(2n)3/2

E2 k lE(H2)l -k( N/k) N2
2 k"

If k

_
N 2m, then E2 N N2/N/2m N2 2m, and so

(4) E= El + E2 N (2n) 3/2 + (2n) 2 l]2m c,2n 2 l]2m.

Now suppose that k < Nl/2m. As in the linear case, E2 N ke. So we have immediately
that E2 - N/2m’cln2-/m

_
Cl(2n)2-/2m. Thus

(5) E=E +E2N(2n)3/2 + c(2n)2- /2mNc’n2- l]2m.

Together (4) and (5) give the desired upper bound e -< cn2- l/m E N c2n
2- l/2m.

To show that this bound is tight, we generalize the family Gn given in the
proof of the linear case. This will give us prime graphs with e O(n2- l/m) whose
minimal factorable extensions have E fl(n2- l/2m). Let n p2m, where p is prime, and
let V(Gn)= {(i, j)" <=iN p, <= j <= p2m- }. Once again, let E(Gn)= {(1, j)m
(1,j’)’j 4:j’} t.J { (1, j) i, j)" 4: 1}. So

p2m-1)e=
2

+pEm-l(p_ 1)=O(p4m-2)=O(nE-l/m).

An argument,completely analogous to the one for the linear case shows that the minimal
factorable extension ofG is K,,_ V1 Kp2m-, which has E fl(n2- /2m).

The preceding discussion gives us the following theorem.
THEOREM 4.1. For all integers m

_
1, ifG is a prime graph with minimalfactor-

able extension H, V(G)I n and IE(G)I cl(n2-/m),for some constant c, then
IE(H) - c2n

2- /2m, for some other constant c2. There is an infinite class ofgraphs G,
with IV(G,)[ n and IE(G,)[ O(n2-/m),for which [E(H,)[ (n2-1/2m).

5. Factorable extensions of trees. In this section, we consider a simplified version
of the PSFE problem and obtain a polynomial-time dynamic-programming solution in
two special cases.

PARAMETERIZED FACTORABLE EXTENSIONS OF TREES (PFET).
Input: A tree T and positive integers k and m.
Question" Is there a factorable graph H H El H2, such that T c H, V(HI )l

k, and V(H) m?
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Note that the analogous special case ofthe LFS problem (i.e., the case in which the
input graph is required to be a tree) does not make sense, because it is impossible for a
tree, which is acyclic, to have a factorable subgraph.

The PFET problem generalizes the following question considered in and 10 ]:
given a tree, what is the dimension ofthe smallest hypercube in which it can be embedded?
Wagner has shown that the following decision problem is NP-complete 10 ]" given a tree
T and an integer k, is T a subgraph of the k-dimensional hypercube? His proof uses
the fact that the 3-partition problem is NP-complete, even if the input is expressed in
unary 6 ].

3-PARTITION.
Input: A setA { a, a3n) of 3n distinct elements and an integer weight s(a)

for each a A, satisfying the conditions that aS(a) nB and B/4 <
s(a) < B/2, for all a A.

Question" Is there a partition ofA into disjoint sets { aio, ai, ai2 },

_
-< n, such

that s( aio + s( ai + s( ai2 B, for each i?

We also use 3-partition to prove the following.
THEOREM 5.1. The PFET problem is NP-complete.
Proof. The PFET problem is obviously in NP. We exhibit a many-to-one reduction

from 3-partition to PFET. Let (A { al, "., a3n }, s, B) be an instance of 3-partition,
expressed in unary. For notational convenience, let j j2 3n. To construct the tree
T in the corresponding instance of PFET, we start by constructing 3n + disjoint stars.
Let S0 be a star with Bjl + 3j2 + (n / 1) nodes and, for _-<

_
3n, let S be a star with

s(ai)j + j2 + (n + 1) nodes. The vertex set of T is just the disjoint union of the vertex
sets V(S) and the edge set of T is the disjoint union of the edge sets E(S), together
with an edge from the root of So to one leaf of each of the Si, > 0. (See Fig. 10.)

FG. 10. Instance of PFET corresponding to the 3-partition instance (s(a) s(a2) s(a3) s(a4) 1,
s(a s( a6 2, B 4), as in the proofofTheorem 5.1.
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To finish the specification of the PFET instance, let k n + and m V(T)I
(Bj + 3j2 / 3n / 1).(n / 1). It should now be clear why it is important that the
numbers in the 3-partition instance be expressed in unary; otherwise, this reduction
would entail an exponential blow-up in the size of the instance.

It is easy to see that, if (A, s, B) is a yes-instance of 3-partition, then T, k, m) is
a yes-instance of PFET. Let { ao, a, a2 }, { ano, a,, an2 } be a partition ofA that
satisfies s(aio) + s(ai) + s(a2) B, -<

_
n, and consider the following n + equal-

sized, disjoint subgraphs of T. Start by putting So into one subgraph and the triples So,
S, S2 each into a separate subgraph; then take the one leaf that is adjacent to the root
of So from each of So and S, =< =< n, and move it to the subgraph containing So, in
order to make all of the subgraphs the same size. These subgraphs can be filled out so
that they are all isomorphic, and the edges between them can be filled out so that they
present isomorphisms that are consistent. Thus, T can be filled out to a product graph
in which one factor has n + nodes.

Conversely, suppose that T, k, m) is a yes-instance of PFET. Let H H U] H2 be
a factorable extension of T with V(H )[ k n + 1, and fix a particular partition of
T into n + copies of H2. To each star Si in T, we associate a home copy of H2the
copy that contains the root of S. In any product graph, a node in a particular copy of
the right factor is adjacent to at most one node in each other copy. Thus, at most n nodes
of S can lie outside of S;’s home copy. This, together with the fact that each copy has
Bj + 3j2 + 3n + nodes, implies that no S, where > 0, shares a home copy with So
and that each S;, where > 0, has at least s(a)jl + j2 + nodes in its home copy.

If four stars Sio, Si, S2, and Si3 have the same home copy, then we must have

, (s(aip)jl +j2 + 1)<-Bj + 3j2 + 3n+ 1,
p=0

because there are Bj + 3j2 + 3n + nodes in each copy. This cannot be, however,
since 0___p_3 s(aip) ). B and 4j2 + 4 > 3j2 + 3n + 1, because j2 3n. Hence each copy
of H2 is associated with the distinguished star So or with exactly three undistinguished
stars. To finish the proof, we show that, if S0, S, and S2 share a home copy, then
s(ao) + s(a) + s(a2) B, which implies that there is a 3-partition that corresponds
to this product graph.

It suffices to show that, for any three such stars, s(a0) + s(a, + s(a2 =< B, because
the sum over all n triples has to be nB. Suppose that s(ao) + s(a,) + s(ai2) > B, and
that the associated stars share a home copy. Then the number of nodes in this copy is
at least

2, (s(ap)jl +j2+ 1)_(B+ 1)j + 3j2+ 3=Bj + 3j2+j + 3.
p=0

We now have a contradiction: this number is greater than Bjl + 3j2 + 3n + 1, the size
of H2, because jl + 3 3n + 3 > 3n + 1. E]

Note that the PSFE problem and the problem of deciding whether a graph is a
subgraph of the k-dimensional hypercube are unusual in that they are NP-complete
graph problems that remain NP-complete when the input graph is constrained to be a
tree 7 ].

For the rest of this section, we assume that our trees are arbitrarily rooted. T will
always denote a tree on n nodes. T can always be extended trivially to a product graph
on 2n 2 nodes: divide V(T) into two sets VI and V2 by putting one leaf into V and
the rest of V(T) into V2, then fill out V so that it is isomorphic to the subtree induced
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X D E

FIG. 11. Extending a tree on n 6 nodes to a product graph on 2n 2 10 nodes.

by V2 and draw in an isomorphism between the two copies (see Fig. 11). There are trees,
e.g., the n-node stars, for which this is the smallest factorable extension. In what follows,
we assume that all factorable extensions have at most 2n 2 nodes.

5.1. Factorable extensions with k 2. Let H HI H2 be a factorable extension
of T with V(H 2. Our assumption that V(H) - 2n 2 implies immediately
that H1 K2. So we can view the process of extending T to H as follows. Divide V(T)
into two sets VI and V2 such that no node in VI is adjacent to more than one node in
V2 and vice versa. Then add isolated nodes to the smaller of V and V2 so that V,
IV21 IV(H) l/2, add edges to both node sets so that they induce isomorphic graphs,
and draw in the isomorphism edges that were not already in E(T). This is a simplified
version of the process described in 3 for general graphs.

Let V II V2 be any partition of V(T). We call the set of edges of E(T) with one
endpoint in each Vi the cutset. The following remark summarizes the principle we use
in our dynamic programming algorithm.

Remark 5.1. A tree T has a factorable extension of the form T c K2 [3 H2 with
V(H2)I m if and only if the tree can be partitioned into two vertex sets V and V2

such that the cutset is a matching and rn

_
max (I VI, vl).

Thus we can solve the PFET problem ifwe can determine all possible pairs ofvalues
(I v I, Vl) achievable by partitions for which the cutset is a matching.

The algorithm proceeds bottom-up. We associate with the root ofeach subtree a set
of labels of the form (x, y)Z, where x and y are integers and z is one of the letters c and
u, for constrained and unconstrained, respectively. If node v has the label (x, y)C, then
we can partition the subtree rooted at v into sets V and V2 such that v e V, IVy[ x,
V2I y, and there is an edge incident to v in the cutset. If v has the label, (x, y)", then

there is a partition that satisfies the same conditions except that there is no edge incident
to v in the cutset. In both cases, there may be more than one such partition. Our algorithm
computes the set of labels for v from the sets of labels of its children by combining the
partitions of its children’s subtrees in all possible ways (as explained below). The sig-
nificance of the constraint is that if an edge from v to one of its children is in the cutset,
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then the edge from v to its parent cannot be in the cutset, because this would violate our
requirement that the outset be a matching.

We now show how to construct the labels for v given the labels for its children.
Each leaf is labeled (1, 0) u. Let L(vi) be the set of labels for the subtree rooted at vi. If
v, , Vd are the children of v0, then there are two ways to form partitions for Vo out
of those for vi. First, if(x, y)Z, L(v), (Xd, Yd)zd - L(1)d), X + x + +
Xd, and y y + + Yd, then (x, y)U L(vo) (see Fig. 12). Second, if (x, y)Z,
L(v), ..., (Xd, yd)za L(Vd), X + X + + Xd-- Xs + Ys, Y y + + Yd--
y + X, and z u for some s, then (x, y)C L(vo) (see Fig. 13). No other labels are
in L(v0).

Hence, it is clear that we can compute L(Vr), where Vr is the root of our tree, in a
bottom-up fashion. It remains to show that the computation can be performed in poly-
nomial time. Note that the number of labels in any set L(v) is trivially bounded above
by 2 (n 1); so we never have to store more than polynomially much data. We use the
following notation to complete the proof:

C(vi) {(x,y)l(x,y)CL(vi)},

U(v) {(x,y)l(x,y)UeL(v)},

A(v) C(v) U U(v),

UR(v) { (Y,X)I(x,Y)"eL(vi) }.
IfA and B are sets of ordered pairs, then we denote by A + B the sum of the sets, i.e.,

A +B= { (xa +x,,y + yt)I (xa, y)eA, (x., y.) eB }.

Vovv
/ Vo \ / \

\

// /V \

./
\

/,’ ’,,
+...+ Ya

//\\ I \
i /

\ ./ \ I

FIG. 12. Combining the partitions corresponding to the children’s labels (x, y)Z into a partition corre-
sponding to (1 + x + + xa, y + + ya) u. The cutset is the union ofthe cutsets in the subtrees.
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// \ / \

v:v+...+Ye

x: +x +...

x / k /
/ NNN i

G. 13. Combining the partitions corres?ondin& to (x, y)’, ..-, (x:, y:)", ..., (x, y)’ into the
partition (I + x + + x- x, + y,, y + + y- y, + x:). Te eutset is te union olive cutsets in the
subtrees ?ls te edge o .

(6)

If v, .., vd are the children of Vo then
d

U(vo) {(1,0)) + A(v),
i=l

(7) U(v0) { (y,x)l(x,y) U(vo) }.
When we let

(8) C2(vo) {(1,0)} + U(va)+

it follows that

(9) C(v0) U C(vo).
J

Because we can compute A + B in time O( A l" BI ), we can compute C(v), U(v), and
Ua(v) in time polynomial in the number of labels associated with v’s children. By our
remark that there are only polynomially many labels in the whole tree, we know that we
can find A(v) in polynomial time. A tree Twith 2n nodes can be extended to a product
graph K ffl Gz without adding any new nodes if and only if (n, n) A(v). Thus we
have the following theorem.
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THEOREM 5.2. The PFET problem can be solved in polynomial time ifk 2.

5.2. Binary trees. The method of 5.1 lets us decide for any tree T on 2n
nodes whether T has a factorable extension of the form T c HI V1 HE with H1 K2 and
V(HE)[ n. In this section, we show that if T is a binary tree other than the four-node

star K1,3, then the answer to this question is yes. Our proof of this implies an O(n)
algorithm to find the right factor HE of such an extension.

As noted above, an algorithmic statement of this problem is as follows: Given
a binary tree with 2n nodes, partition its vertices into two sets V1 and V2 such that

11/’21 n and the cutset is a matching.
For this proof, we use a modification of the labels used in 5.1. Instead of(x, y)c,

we use the label wc, where w x y; similarly we use the label wu instead of (x, y)U.
As above, define the notation

Cfv,)=

Ufv,) { wl wU-Lf v,) },

A(v) C(v)t.J U(v),

uR(1)i) {-wl w"mL(vi) }

and the sum of two sets of numbers, ,4 and B

A +B= { WA + WBIwA-A, wB-B}.

We can rewrite equations (6)-(9) as follows (where v0 is the root of a binary subtree
and vt and v, are its left and right children):

U(vo) { 1} +A(v)+A(Vr),

u(v0) {-wlwU(vo)},

C(v0) ({ 1} +A(vt) + UR(Ur))I,.J({ } + UR(1)i)+A(1)r)).

Let B T, T2) be the tree with a root whose left child is the rooted tree T and whose
fight child is the rooted tree T. Then the set S of rooted binary trees can be defined as
follows. The empty tree (that is, the tree with no nodes and no edges) is in S; B( T,, T)
is in S for every T and T (not necessarily distinct) in S, and nothing else is in S. We
wish to classify each T in S according to the set L(root (T)) of labels achievable by the
root of T. We identify a class with a set of labels. Our goal is to place each tree with an
even number of nodes (except K,3) in a class that has the label 0.

The set of classes we define must be complete, by which we mean that each rooted
binary tree must belong to a class, and it must be closed, by which we mean that if TI
and T2 both fall into one of our classes, then so does B( T, T2). The set of classes we
use is SI {0c}, $2 {lU}, $3 {0 c, 2u}, 84 {0c, 2 u, 4u}, $5 {1 c, 3"}, S6

{+2 c, 4u}, $7 {-1", +3c}, S {_+1c,_+3}, $9 {0c, +2c}, andS,0 {+lC, 3u}.
We limit the number of classes to ten by dropping and downgrading labels. Dropping w
from a class S simply means that w is achievable by L(root (T)) for some T S, but
we choose to ignore it. Thus, we are making a weaker statement about the set of legal
partitions of trees in S than we might, but we have a set of classes that is easier to prove
dosed. Similarly, we downgrade a label wu by replacing it with wC--if a subtree can
achieve the label wu, then we can certainly impose an unnecessary constraint on the
edge from its root to the parent of its root and say that the subtree has achieved the label
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wc. A rooted binary tree T is of type if Si is the highest-numbered class that can be
obtained by computing L(root (T)) and dropping and downgrading labels.

We use the table Tab below to verify that our set of classes is both complete and
closed. Interpret the table entries as follows: Tab (r, c) is the table entry in the row labeled
by class r and the column labeled by class c; the table is symmetric, i.e., Tab (r, c)
Tab(c, r); if the children of the root of a tree T are themselves roots of trees in classes r
and c, then T is in class Tab (r, c).

The proof that our set of classes is closed (that is, that Table entries are correct)
is straightforward, but tedious; we give two examples ofthe types ofcalculations that are
necessary.

For L(vt) { 0 c }, and L(vr) { 0 c, 2" }, we compute L(vo) as follows:

u(v ) {},

C(v ) { 0 ),

U(vr) {2},

c(v ) (o),

U(vo) {1}+{0}+{0,2}

{1,3),
C(vo) ({1) + (0} + {-2})U({1} + {} + {0,2})

This gives us L(v0) {-1 c, U, 3U}. After downgrading the u, we get L(vo)
{ + c, 3"}. Note that this proof of correctness of one specific table entry also yields a
proof for all other table entries where { 0 } L(vt) and { 0, 2" }

_
L(v,) or vice versa.

TABLE

I"
0, 2"

0, 2", 4"
c, 3"

+1c, 3"
0c, 2", 4"
+1 c, 3"

2", 4"

+_1 c, 3"
0c, _+2

+_1 c, 3"
_+1 c, 3"

___2c, 4"
+1c, 3"
0c, ___2

0c, +2
+1c, 3"

I"
0c, 2"

0c, 2", 4"
c, 3"

___2, 4
I", ___3

Ic, ___3

0c, ___2

+1 c, 3

+2c, 4"

-I" +_3

0c, +_2

_+l c, 3"
_+l c, 3"
0c, +_2
+_1 c, 3"

", _+3

0c, +2
+1 c, +3
0c, _2
0c, ___2

+1 c, 3"
0c, +__2

+_.1 c, 3"

+1c, +3

0c, +2
__.1 c, 3"
0c, +2
0c, +2
+1c, 3"
0c, +2
+1 c, 3"
+1c, 3"

0c, _+2

+_1 c, 3"
0c, _+2

+1 c, 3"
+1c, 3"
0c, +2
+1c, 3"
0c, _+2

0c, +2
+1c, 3"

+1c, 3"

0, +2
+1c, 3"
0c, +2
0c, _+2

_+1 c, 3"
0c, _+2

+1 c, 3"
_+I c, 3"
0c, _+2
_+I c, 3"
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I 2 3 4

5 6 7 8
FIG. 14. The eight binary trees that do not belong to $9. Number is the empty tree.

For L(vt) L(Vr) { c, 3 u }, the calculation goes as follows:

U(vt) { 3 },

C(v )

U(vo) {1}+{1,3}+{1,3}

{3,5,7},
C(v0) {1}+{1,3}+{-3}

{-1,1},
yielding L(v0) { + ’, 3 u } after dropping some labels.

Our proof of closure, along with the recursive definition of S given above, also
provides a proof of completeness: to classify a tree T, construct it recursively, looking
up the appropriate table entry every time a new root is created (the empty tree is oftype
1). A legal partition can also be created in linear time with this recursive algorithm.

Classes S-Ss each contain only one tree (see Fig. 14). Intuitively, this is because
all larger trees attain the additional flexibility of classes $9 and S0. Only one of the 10
classes has no label 0c and also contains a tree with an even number of nodes--that is,
class $6 contains Ki.3. Aside from the trees in Fig. 14, all other trees with an even number
of nodes belong to $9, which has the label 0 c. Therefore, we have the following theorem.

THEOREM 5.3. Every binary tree T = K,3 with an even number of nodes has a
factorable extension H K2 [2] H2, with V(H) V( T)I.

Each binary tree with an odd number of nodes belongs to a class that contains one
of the labels _+ c, + u. Thus we have an analogous result for this case.

THEOREM 5.4. Every binary tree T with an odd number ofnodes has a factorable
extension H - K2 [:] HE, with IV(H) V(T)I + 1.
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5.3. Factorable extensions with k 3. The dynamic programming algorithm for
PFET with k 3 has the same structure as the one for k 2; that is, we compute the
set of triples of sizes (x, x2, x3) achievable by legal partitions of V(T) into three sets
(V, V2, V3). We do this bottom-up by combining, at each node, the legal partitions of
the subtrees rooted at its children in all legal ways. The total amount of information
stored at each node is polynomial and can be computed etficiently; thus the bottom-up
traversal of the tree can be completed in polynomial time.

In the k 2 case, the only requirement on the cutset was that it be a matching.
Here we have more requirements, and the algorithm is accordingly more complicated.
Let V II V2 II V3 be a legal partition of V(T) that corresponds to the node-numbering
{ (i, j)}, where

_ _
3. (If this partition corresponds to a factorable extension H,

where [V(H) V( T)l, then, for each value of i, the second coordinate j takes on
the values one through IV( T)I/3. Otherwise, there will be a different number ofj’s for
each i.) The cutset is the set of edges (i, j) (i’, j’) e E(T) in which i’. The first
fact to observe is that the cutset cannot contain any paths of length three. Suppose it did
contain such a path, say (i, j (i2, A) (i3, j3) (i4, A). Because this is a legal
numbering, we know thatjl j2 j3 j4. At least two of i, i2, i3, and i4 must be equal,
thus creating a cycle, which cannot occur in a tree.

We partition the cutset C into P II P2 II P13 II P23. The set P contains all paths of
length two both of whose edges are in C. By definition of a cutset, each path in P has
one node from each of the vertex sets V. The set P12 contains all edges e v v2 in
C such that v Vi and e is not half of a path in P. Similarly, P3 { e v v3"
vi V,. } and no path in P contains e, and P23 is defined analogously. Note that, by
the definitions ofP and the properties of a cutset, no node can lie on two paths in C;
e.g., if v w is in P2, then there is no u for which v u is in P13. Let p [P[ and
Pij P,[. Then the counterpart of Remark 5.1 for the k 3 case is the following.

Remark 5.2. A tree T has a factorable extension of the form T c K3 I-q G2, with
V(G2)I m, if and only if V(T) can be partitioned into three sets V II V2 II V3

such that the induced cutset C P II P2 II P3 II P23 has no paths of length three and
m

_
p + P2 + P3 -I- P23.
As in the algorithm for the k 2 case, we keep track of the legal partitions of the

subtree rooted at a node v with a set of labels L(v), this time of the form (x, x2, x3; p,
PIE, Pl3, P23) z. If L(v) contains this label, then there is a legal partition of the subtree
rooted at v with Vii xi and cutset C PII PiE II Pl3 II P23, PI p, and [PoI P.
If z u, then there is no path in C that contains v; if z o, then there is a path in some

P that contains v; if z t, then v is contained in a path in P. Without loss ofgenerality,
we assume that the root v of the subtree is in V and that if there is a node w such that
v w is in Piy, then w is in V2.

Let U(v) { (Xl, .X72, -93; P, P2, PI3, P23): (Xl, X2, X3; P, Pl2, PI3, P23) u Z(v)}.
Define O(v) and T(v) analogously. IfA

_
U(v) I,.J O(v) t.J T(v), then we use So(A ) to

denote the set obtained by taking each label in A, exchanging x and x and changing
the Pkt’S appropriately; for example, (x, x2, x3; p, PiE, Pl3, P23) in A corresponds to
(X2, X1, X3; P, P12, P23, PI3) in S2(A). The sumA + B of two sets of labels is {(x + x’,
X2 -- X, X3 "" X; p " p’, PIE + P12, PI3 + P13, P23 + P3)" (X1, X2, )173; p, PIE, PI3, P23) C
A and (x’, x, x; p’, P12, PI3, P3) B }. Note that any subtree that can achieve a
partition corresponding to (x, x2, x3; p, p2, P3, P23) u can also achieve one corresponding
to (Xl, X3, X2; P, PI3, PIE, PE3)U; hence S23(U(1)j)) U(1)j).

It remains to give the recurrence equations corresponding to (6)-(9). As in the
k 2 case, the total number of labels that may be stored at each node and the time to
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perform the + and L/operations are polynomially bounded; hence the set L(root (T))
can be found in polynomial time. Let vl, "", va be the children of Vo. Then

A (vi) U(vi) L O(vi) L T(vi)) L $23(U(vi) LI O(vi) IJ T(vi)),
d

U(vo) ((,o,o;o,o,o,o)} + Z A(v,),
i=l

Oj(vo) {(1,0,0;0, 1,0,0)} +S2(U(vj))+ .,A(vi),
i4:j

O(vol= U OAvo),
J

The equation defining T. counts partitions represented by (Xl, X2, X3; p,/912,/913,

/923)t that are formed by choosing a child vj of v0 that can be the endpoint of a cut edge
vj w, placing w in V3, placing v in V2, drawing in a cut edge from v0 to vi, and
combining it with all the partitions achievable by the other children of Vo. Similar inter-
pretations of the other equations are left as an exercise. Together with the previous dis-
cussion, they give this theorem.

THEOREM 5.5. The PFET problem can be solved in polynomial time ifk 3.
We conjecture that PFET can be solved in polynomial time using a similar algorithm

for any fixed value ofk. For successively larger values ofk, the description ofthe allowable
cutsets becomes much more complicated. This approach will not work for general graphs,
because there is no simple way to combine partitions of subgraphs as there is to combine
partitions of disjoint subtrees.

6. Acknowledgment. We are very grateful to our referee, who introduced us to the
results of Wagner and suggested a way to simplify the proof of Theorem 3.1.
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RECURSIVE SOLUTIONS FOR THE GENERALIZED ERLANG
QUEUEING SYSTEMS*
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Abstract. An algorithm to compute the steady-state probabilities for the generalized Edang queueing systems
is presented. The algorithm is linear in the order of the number of states. The approach is based on applying
the Matrix Tree Theorem to Markov Processes. The recursion is developed by considering the relationships
between intrees to adjacent states. First, this is done for the generalized Edang arrival system. The algorithm
for the generalized Edang service system follows easily by directional duality of the transition diagrams.

Key words, matrix tree theorem, intrees, semi-Markov processes, queueing
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1. Introduction. Many queueing systems may be described with either deterministic
or exponentially distributed interarrival and service times. These are the types ofsystems
for which performance measures are most easily computed. Deterministic systems have
input distributions that have a coefficient ofvariation ofzero. The exponential distribution
has a coefficient of variation that is equal to one. Many systems, particularly production
systems, have input distributions that have a coefficient of variation between zero and
one. The process times are not truly deterministic; yet, they are not as variable as the
exponential. The Erlang distribution gives a method for modeling systems with inputs
(interarrival or service times) that have coefficients of variation in this range.

Erlang distributions are also useful in modeling batch production, where a customer
moving through a stage of an Edang server corresponds to the service of a single item
in a batch, or a customer moving through a stage ofan Edang arrival process corresponds
to an arrival of an item in a batch that must wait for the whole batch to arrive before
service starts. From these applications it is clear that it may often be convenient to allow
the rate in each stage to depend on the stage and the number in the system. This will
allow more flexibility in approximations, greater ability to explicitly model batch pro-
duction where each item in a batch has a different processing time, and the ability to
make the rates depend on the number of items already present. We consider such a
generalization of the Erlang distribution. We also consider the case where the waiting
space is limited. This is often more realistic than the assumption of unlimited
waiting space.

This paper presents a recursive method for computing the steady-state probabilities
for systems involving generalized Erlang distributions. The method has computational
complexity that is linear in the order ofthe number of states ofthe system. The recursion
is developed using the transition diagram of each system, the Matrix Tree Theorem for
Directed Graphs, and certain kinds ofsubgraphs ofthe transition diagram called intrees.
More will be said about this in the literature review. This recursive formulation may also
be treated as a difference equation from which parametric solutions may be obtained.
The effort involved will be related to the variability ofthe parameters and the size ofthe
state space. The next section presents a formal statement of the model.

2. Problem statement. This paper derives the steady-state distributions for two
queueing systems. The first system is called the Generalized Erlang Arrival System, denoted
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FIG. 1. Network diagram for the Generalized Erlang Arrival System.

GEt(a, b)/M(a, b)/./N + 1, where the interarrival times are generalized Erlang, while
the service times are exponential. A network diagram is given in Fig. 1. Note that the
rates in the arrival process and the server depend on both the stage of the customer in
the arrival process and the total number ofcustomers in the system. In the arrival process
this gives the potential for modeling systems with balking or blocking ofarrival customers,
systems requiring service to start only after a batch of customers arrive where the inter-
arrival times for each item of the batch are independent exponential with rates that
depend on which item in the batch it is and how many batches are already present, and
greater flexibility in approximating systems whose interarrival times have coefficients of
variation between zero and one. The service rate allows for the possibility of modeling
multiple servers, and many other variations of state-dependent service rates where the
rate depends on the state ofthe system, which is why the space for the number of servers
has been filled with a period.

The second system considered is called the Generalized Edang Service System, de-
noted M(a, b)/GE(a, b)/./N / 1. The interarrival times are exponential, while the
service times are generalized Erlang. A network diagram of this system is contained in
Fig. 2. Note the analogous state-dependence of the rates as in the generalized Erlang
arrival system. The state-dependent arrival rate gives the potential for modeling systems
with balking or blocking or many other features. The Generalized Erlang Service System
may arise when processing a batch of customers with nonidentical service demands,
where the rate also depends on the number of batches present. It is possible to model
the presence of multiple servers by allowing the service rates to increase as the number
in the system increases, but this will not be as exact as it was for the Generalized Edang
Arrival System. Both of these systems are finite-state, continuous-parameter Markov
chains, and their steady-state distributions may be found by solving the steady-state
equations.

The transition diagram of the Generalized Erlang Arrival System, GEt(a, b)/
M(a, b)/./N / 1, is given in Fig. 3. The states ofthe system are denoted by the ordered
pair (a, b) where 0 _-< a _-< K and 0 _-< b _-< N. K denotes the number of stages, and
N denotes the system capacity. In the ordered pair (a, b), the first entry stands for the
number of stages of the arrival process that the arrival has completed, and the second
entry represents the number in the system not in the arrival stages.

The Generalized Edang Service System, M(a, b)/GEt(a, b)/./N + l, is represented
by the transition diagram in Fig. 4. The states of the system are denoted by the ordered
pair (a, b) where 0

_
a

_
K- and 0

_
b

_
N. The first entry represents the number

FIG. 2. Network diagram for the Generalized Erlang Service System.
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X(K-2.N) (K-l

(2.1)

(0.0) .(0.0)
(K-2.0) (K-1-0)

u(K-2,1)

X(K-2.0)

FIG. 3. Transition diagram for the Generalized Erlang Arrival System.

of service stages left to traverse for a customer in the service stages. The second entry
denotes the number in the system that have not completed any service stages. The state
(0, b + 1) is the same as (K, b). As in the previous system, the rates of the next event
depend on both the number in the system and the stage of the system.

An interesting correspondence appears between the two transition diagrams, which
will be called directional duality. By reversing the directions on the arcs of one of the
transition diagrams and interchanging the weights ), and for each other, the transition
diagram ofthe other system is obtained. Due to this directional duality, once the recursive
solution is developed for one of these systems, the recursion for the other can be easily
derived by a reverse substitution of the parameters.

,(K-I .N) (K-l .N)

x(o,o)

(0,0) (2,0)
.(1,0)

X(K-2,0)

K-l.O)

FIG. 4. Transition diagram for the Generalized Erlang Service System.



222 D. R. FOX AND S. K. GNANENDRAN

3. Literature review. Kleinrock [11] contains a discussion of the basic Erlang
queueing systems. It contains a treatment that relies on transform analysis, but it is not
usually possible to re-invert these transforms to obtain steady-state probabilities. Chaudhry
and Templeton [3 also contains transform analysis of some generalizations of these
systems as they relate to bulk queues.

A matrix method that works with the Erlang systems where the rates depend only
on the stage and not on the number in the system is contained in Fox [6 ]. Fox 6 is a
generalization of Disney 5 and makes use ofeigenvalue decomposition ofthe matrices
to get closed form solutions. In general, eigenvalue decomposition is less amenable to
numerical computation than matrix inversion that has been used in more recent papers.

A fairly general method that treats the usual Erlang systems as a special case ofthe
phase distributions is given in Neuts [12 ], [13 ]. This matrix-geometric approach will
work on the usual generalization of the Erlang systems where the rates depend on the
stage, but it will not allow the rate to depend on both the stage and the number in the
system as in this paper. This eliminates some ofthe modeling capability from the problem.
The approach exploits the block tridiagonal structure ofthe infinitesimal generator, and
it is often more useful than Gaussian elimination because ofits applicability when dealing
with infinite queue lengths. As we have described the problem there are K(N + 1) states.
The technique requires the construction and inversion ofa K Kmatrix for the M/E:/
1/N + case, and the inversion of c different K K matrices for the E:/M/c/N + c.
These inversions are also required for the systems with unbounded buffers. Matrix in-
versions have a number of multiplications that are on the order of the cube of the size
of the matrix. The first, second, Nth powers of a K K inverse for the M/E:/1 /
N + case is required, which is on the order ofK at each step. The sequence ofinverses
obtained in the E:/M/c/N + c case must also be multiplied sequentially. This is most
of what must be done to find an unnormalized solution to the steady-state equations.
The method presented in Neuts 13 for normalization would require taking the sum of
these sequential multiplications and multiplying them with some other vectors to obtain
an initial probability vector, which must then be multiplied by the sequence of multi-
plication of matrices performed earlier to obtain the normalized probabilities. It is difficult
to give a complete assessment of the order of magnitude of the computation because
there are many different steps that must be combined; neither is one given in Neuts 13
where these results are presented.

The results in this paper build on the work contained in Solberg [14 ]. Solberg [14]
gives a way to compute steady-state probabilities for a Markov process using the transition
diagram of the process. This enhances the possibility of exploiting the structure of the
Markov process directly without trying to mimic the structure in matrices, which may
be impossible. This approach is an application of what is known as the Matrix Tree
Theorem for Directed Graphs. A good reference containing results about this theorem
is Harary and Palmer [10]. The papers by Chaiken and Kleitman [1] and Chaiken 2]
contain alternative statements of the theorem and graph theoretic and combinatorial
proofs. Because the theorem is usually used in studying Markov processes (for example,
in Solberg [14 or Fox [8 ]), it requires the enumeration and sum of the weights of all
the intrees to each state. Fortunately, we are able to avoid directly enumerating the intrees
to any state. We develop a recursion that relates the sum of the weights of the intrees to
one state to those surrounding it to get a more efficient solution. Using this approach we
are also able to avoid the computational complexity and potential roundoff errors as-
sociated with matrix inversion and multiplication, and obtain maximum generality in
the rate specifications.
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4. A recursive solution. This section will start with a presentation ofrelevant theory
and proofs. A series of results will first be developed that lead to the main result of the
computation ofthe steady-state probabilities. An intree to root i, denoted Ti, ofa strongly
connected digraph D is a subgraph ofD for which every vertex but has exactly one arc
emanating from it, has none, and the underlying nondirected graph is circuit-free.
Strong connectivity of a transition diagram is equivalent to irreducibility of the corre-
sponding Markov process. The queueing systems studied here are irreducible and ape-
riodic, and since they are finite, we know the limiting distribution exists. One important
consequence of this definition is that an intree rooted at must include a path from any
vertex to i.

INTREE PATH LEMMA. An intree to a root of a strongly connected digraph D
contains a unique directed pathfrom any point to i.

This lemma is a direct result of a standard equivalent definition for an intree; thus,
the proof will be omitted. Harary [9] and Fox [7] contain other consequences of the
definition and equivalent definitions for intrees. These references also contain definitions
of the more basic concepts used above to define intrees. The weight w(Ti) of an intree
Ti rooted at is defined as the product of the weights of its arcs. Let

’i { TilTi is an intree to i}

be the collection of all intrees to state i.
MATRIX TREE THEOREM FOR MARKOV PROCESSES. An unnormalized solution

for state to the steady-state equations of a Jnite, irreducible, continuous-parameter
Markov process is given by

u= w(T)
Ti qr

where the sum is over all intrees to the vertex in the transition diagram ofthe Markov
process.

This theorem is proved in Solberg 14 with a different but equivalent definition
for intrees. This theorem will be the basis for the approach taken in this paper. Also
remember that, since we are dealing with finite-state Markov processes, the steady-state
probabilities may be easily obtained by normalizing the solution obtained from the
theorem.

A subgraph of a transition diagram will be called afunction if the subgraph is such
that every state ofthe subgraph has exactly one emanating arc. A subgraph ofa transition
diagram will be called an/-function if the subgraph is such that every state other than
in the transition diagram has exactly one emanating arc and has none. Note that a
function may be defined over part of the transition diagram, while the /-function is
defined over the whole transition diagram. From the definition ofan intree stated earlier,
it is apparent that an intree rooted at is the same as a circuit-free/-function. An equivalent
statement of the Matrix Tree Theorem for Markov Processes is given in the following
theorem, but first we define some notation.

wi is the weight on arc (i, j) in the transition diagram.
ci { CilCi is an./-function that contains a directed circuit } is the collection of all

/-functions containing directed circuits.

wt is the weight on arc (j, l) in some/-function containing a directed circuit.
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CIRCUIT-FREE/-FUNCTION THEOREM.

Ui=jIi(k Wjk)--citgi(jIi Wjlj)
where ui is the unnormalized solutionfor the steady-state equationsfor state i. In thefirst
term, theproduct term is over all states other than i, and the summation is over all states.
In the second term, the summation is over all i-functions that contain a directed circuit,
and the product is over all states other than i.

Proof. This theorem takes the sum ofthe weights of all/-functions ofthe transition
diagram and cancels out those containing a circuit to get the unnormalized solution, or
the sum of the weight of the intrees to state i. The first term in the proposed solution is
the sum of the weights of all/-functions. This term is a generating function where each
term in the product is the sum ofweights ofthe arcs emanating from a vertex other than
the root i. The overall product then gives the sum of the weights of all the/-functions.

However,/-functions are intrees rooted at onlywhentheydo not contain adirected circuit.
By subtracting from this quantity all the terms that contain directed circuits, we are left
with the sum ofthe weights ofthe intrees. The second term is the one required to negate
the presence of the/-functions that contain circuits. V1

When stating the definitions and theorems previous to this point we have assumed
that a state could be represented by a single variable i. Because the Generalized Erlang
Systems require an ordered pair (i, j) as the state to model the system as a Markov
process, we will use (i, j) as the state specification from now on. Due to the directional
duality of the two Generalized Erlang Systems, all of the results that follow can be easily
applied to either system. We will develop the results for the Generalized Erlang Arrival
System and then use directional duality to get solutions for the Generalized Edang Service
System.

Given a state (i, j) of the Generalized Edang Arrival System, the level of the state
is j. The state (i, j) is below state (h, k) ifj < k, or ifj k and < h. This amounts to
a reverse lexicographic ordering of the states, so that the states of the process are totally
ordered. If the state (i, j) is below (h, k), then there is a unique path from (i, j) to
(h, k), and the path contains all the states between them. The state (h, k) is above
(i, j) if (i, j) is below (h, k). Any state that is above (i, j) is separated from the states
below (i, j) by (i, j), in the sense that if (i, j) is removed there is no path from
states below (i, j) to states above (i, j). This is not necessarily true for separating states
below (i, j) from states that are above. The unique path that connects the states below
(i, j) to the state i, j) is called the arrival path.

GENERALIZED ERLANG ARRIVAL SYSTEMS CIRCUIT LEMMA. For the transition
diagram of the Generalized Erlang Arrival System, all of the circuits are of length
K + 1, there are KN distinct circuits, andfor each state (i, j), ( i, j) is lowest on no circuit

if it is on the top row ofthe transition diagram.
Fox 7 contains a formal proof, but the result is fairly obvious from looking at the

transition diagram of the system.
GENERALIZED ERLANG ARRIVAL SYSTEM INTREE COMPOSITION LEMMA. In the

transition diagram ofthe Generalized Erlang Arrival System, a subgraph H is an intree
rooted at state ( i, j) ifand only ifH can beformedfrom the superposition ofthe arrival
path below i, j) and a circuit-freefunction on the states above i, j).

Proof. . The superposition of the arrival path to (i, j) and a circuit-free func-
tion on the states above (i, j) is a circuit-free (i, j)-function and, therefore, an intree
to (i,j).
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. Assume there is an intree rooted at (i, j) that is not of this form. This implies
there is a circuit-free (i, j)-function that is not of this form. Any circuit-free (i, j)-
function may be looked at as the circuit-free superposition of a function on the states
below (i, j) and a function on the states above (i, j). Since the superposition of these
functions is circuit-free, each of the components must be circuit-free. The construction
process allows for any circuit-free function on the states above (i, j); thus, the intree that
does not fit the desired form must contain a circuit-free function on the states below
(i, j) that is not the arrival path. Since state (i, j) separates the states above (i, j) from
the states below (i, j), none of the emanating arcs from states below (i, j) can enter a
state above (i, j). But from the Intree Path Lemma, there must be a path from each state
below (i,j) to (i,j), so that this circuit-free function on the states below (i,j) must have
such a path for each state. There is, however, only one such path, the arrival path;
therefore, this circuit-free function on the states below (i, j) cannot exist.

Given state (i, j) in the transition diagram ofthe Generalized Erlang Arrival System,
the triple (i,j, k), k

_
O, denotes the state that is k states above (i,j) on the arrival path.

Thus, (i, j) and (i, j, 0) are the same state. T(i, j, k) is the sum of the weighted intrees
to the state that is k states above (i, j) on the arrival path. T(i, j)= T(i, j, 0) is
an unnormalized solution to the steady-state equations of the queueing system.
SW(i, j, k) denotes the sum of the weights of functions on states above (i, j, k).
SWCF(i, j, k) denotes the sum of the weights of the circuit-free (i, j, k) functions.
SWCFA (i, j, k) denotes the sum of the weights of the circuit-free functions on states
above i, j, k). WA i, j, k) denotes the weight ofthe arrival path to state i, j, k). States
(i, N) where 0, 1, K and the state (K 1, N 1) are called upper boundary
states in the transition diagram. The states (i, 0) where 0, 1, ..., K- 2 are called
the lower boundary states. All of the other states are called interior states.

RECURSION FOR THE STEADY-STATE PROBABILITIES OF THE GENERALIZED ER-
LANG ARRIVAL SYSTEM. A set ofunnormalized solutions to the steady-state equations

ofthe Generalized Erlang Arrival System is:
Recursion for the upper boundary states:

(I) T(K- 1, N)= 1;
(II) T(K- 2, N) t(K- 1, N)/X(K- 2, N)
(IXI) T(i,j)=((X(i,j, 1)+#(i,j, 1))/?(i,j))T(i,j, 1).
Recursion for the interior states:

(IV) T(i,j)
X(i,j, 1)+#(i,j, 1)

T(i,j, 1) -I(i’j’K+
1)

T(i,j,K+ 1).
X(i,j) X(i,j)

Recursion for the lower boundary states:
X(i,j, 1) #(i,j,K+ 1)

(V) T(i,j) T(i,j, 1)- T(i,j, K+ 1).
X(i,j) X(i,j)

Proof. In general, for all of the equations given above, we know from the Circuit-
Free/-Function Theorem that an unnormalized solution to the steady-state equations
for state (i, j) can be obtained by taking the sum ofthe weights of all the (i, j)-functions
and subtracting the weights of the (i, j)-functions containing circuits. Alternatively, we
can find these unnormalized solutions by taking the sum of the weights of the intrees to
(i, j), from the Matrix Tree Theorem for Markov Processes. From the Generalized
Erlang Arrival System Intree Composition Lemma, we also know that any ofthe intrees
to a state (i, j) can be formed from the superposition of the arrival path to (i, j) and a
circuit-free function on the states above (i, j).

Equation (I). Since we are dealing with an unnormalized solution we choose to set
the unnormalized value for the highest state equal to one.
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Equation (II). For the state (K- 2, N) there is only one intree to the state since
there is only one (i, j)-function on the state above it. The weight of this intree
differs from the weight of the intree to the state above it by replacing #(K- 1, N) for,(K 2, N). Thus we get

T(K- 2,N)=
(K- 1,N)
X(K- 2,N) T(K-2,N, 1).

However, T(K- 2, N, 1) T(K- 1, N) and (II) is proved.
Equation (III). This reeursion is for the remaining upper boundary states. From

Fig. 5 and the Generalized Erlang Arrival Systems Circuits Lemma it is apparent
that all ofthe functions on states above an upper boundary state are circuit-free. Because
ofthe Generalized Erlang Arrival System Intree Composition Lemma and the preceding
observation

(III. 1) SWCF( i,j) WA i,j)SW( i,j).

The weight of the arrival path to (i, j) is

WA(i,j, 1)
(III.2) WA(i,j)

X(i,j)

since it has one less arc than the arrival path to (i, j, 1). The sum of the weights of the
functions on the states above (i, j) is

(III.3) SW(i,j)=[X(i,j, 1)+u(i,j, 1)]SW(i,j, 1),

since one of the arcs with weight u(i, j, 1) or ,(i, j, 1) must be included with each
function on the states above (i, j, 1). Substituting (III.2) and (III.3) into (III.1),
we obtain

h(i,j, 1)+l(i,j, 1)
(III.4) SWCF( i,j) WA i,j, 1)SW( i,j, 1).

X(i,j)

x(i,j,l)
states above (i,j)

(i ,j,o) ’---

arrival path

possible in function above (+/-,j)

arrival path

FG. 5. Diagram illustrating the decompositionfor the upper boundary. possible arcs infunction
above i, j); arrival path.
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However, the left-hand side of the equality is T(i, j), and the product of the last two
terms on the fight-hand side is T(i, j, 1); therefore,

(i,j, 1)+t(i,j, 1)
T( i,j) T( i,j, 1).

(i,j)

Thus, starting with the topmost state, we are now able to compute the unnormalized
solution for each ofthe upper boundary states by working down from the top recursively.

Equation (IV). For the interior states we must account for the presence of circuits
in the construction process. We continue with the approach ofworking recursively down
the arrival path. Assume we have T(i, j, 1) and all of the other unnormalized solutions
for states above (i, j). Remember that

(IV.l) T( i,j) WA (i,j)SWCFA ( i,j).

The second term in the product in (IV. 1) is

(IV.2)

X i,j, 1) + t.t(i,j, 1)]SWCFA (i,j, 1)

i,j, Sum of weights of circuit-free functions above i,j,

for which including are with ), i,j, 1) forms a circuit)

u( i,j, Sum of weights of circuit-free functions above i,j, 1)

for which including arc with t( i,j, 1) forms a circuit).

However, including the arc with weight #( i, j, 1) will not form any circuits with a circuit-
free function on the states above i, j, 1). Thus the third term in (IV.2) is zero. Including
the arc with weight ,(i, j, 1) will cause exactly one circuit to be formed when it is
included with many ofthe circuit-free functions on the states above (i, j, 1). This circuit
is formed whenever a circuit-free function on the states above (i, j, l) contains the arcs
with weights ,(i, j, 2), ,(i, j, K) and t(i, j, K + 1), regardless of the other arcs
included in the function. This is illustrated in Fig. 6. Thus the second term in (IV.2) is
the same as

X( i,j, 1)...)(i,j,K)tz(i,j,K+ 1)SWCFA i,j,K+ 1).

Putting this back into (IV.2) and then substituting (IV.2) into (IV. 1), we obtain

T(i,j)= WA(i,j)[X(i,j, 1)+u(i,j, 1)]SWCFA(i,j, 1)

(IV.3) WA(i,j)(Weight of arrival path from (i,j, 1) to(i,j,K+ 1))

SWCFA(i,j,K+ 1)l.t(i,j,K+ 1).

For the first term in the first product in (IV.3) we have

(IV.4) WA(i,j)
WA(i,j, 1)

X(i,j)

Putting this back into the first product in (IV.3), we obtain

(IV.5)
X( i,j, 1) + u( i,j, 1)

T( i,j, 1)
X(i,j)
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States above (i,j)

(i ,j ,K+l)

Arrival path

possible function above (i,j)

Arcs in circuit created by superposition

FIG. 6. Diagram illustrating the decomposition for the interior states. possible arcs in function
above i, j); arcs in circuit created by superposition.

as the first term in (IV.3) by the Generalized Erlang Arrival System Intree Composition
Lemma. The second product in (IV.3) is

(IV.6)
WA(i,j,K+ 1)

k(i,j)
SWCFA(i,j,K+ 1)(i,j,K+ 1).

This is true, since the first two terms in the product would compose the arrival path to
(i, j, K + 1), except for the arc with weight ,(i, j). However, this is the same as

(IV.7)
#(i,j,K+ 1)

T(i,j,K+ 1)
X(i,j)

due to the Generalized Eflang Arrival System Intree Composition Lemma. Putting (IV.5)
and (IV.7) into (IV.3), we obtain (IV).

Equation (V). The lower boundary states are the same as the interior states except
that the sum of the weights of the functions on the states above (i, j) are not going to
have any arcs with weight t(i, j, 1). Thus the recursion and the proof is the same as for
the interior states, but tt(i, j, 1) 0. [3

Note that the most complicated recursion is for the interior states and that the
recursions for the upper and lower boundaries are simplifications of this. These unnor-
malized solutions can readily be normalized by accumulating the values at each step of
the recursion and then using this finite sum as the normalizing constant.

To obtain results for the Generalized Erlang Service System we need only exploit
the directional duality between the two systems. The states of the Service System are
ordered as they are for the Arrival System. The idea of separation is used differently in
that now any state below (i, j) is separated from a state above it by the removal of
(i, j). The unique path connecting any state above (i, j) to those below (i, j) is called
the departure path. The triple (i, j, k’) denotes the state that is k states below (i, j) on
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the departure path. The lower boundary states ofthe Service System are the states i, 0)
for 0, 1, K- and (0, 1). The upper boundary states are (i, N) for 1,
K- 1. The rest are interior states.

RECURSION FOR THE STEADY-STATE PROBABILITIES OF THE GENERALIZED ER-
LANG SERVICE SYSTEM. A set of unnormalized solutions to the steady-state equations
ofthe Generalized Erlang Service System is:

Recursion for the lower boundary states:
(I) T(O, O)= 1;
(II) T(1, 0) (0, 0)/t(1, 0);
(III) T(i,j)= ((lz(i,j, 1’)+ ,(i,j, l’))/#(i,j))T(i,j, 1’).
Recursion for the interior states:

lz(i,j, 1’) + X(i,j, 1’)
(IV) T( i,j) T( i,j, l’)-

iz(i,j)

Recursion for the upper boundary states:

(V) T( i,j)=
lz( i,j, 1’)

T( i,j, 1’)-
lz( i,j)

X(i,j,(K+ 1)’)
( i,j)

,(i,j,(K+ 1)’)
T(i,j,(K+ 1)’).

I( i,j)

T(i,j,(K+ 1)’).

Note that the recursion worksfrom the bottom to the top, the reverse ofthe recursionfor
the Arrival System.

Proof. Take the transition diagram of the Service System, and rotate it r radians
in the plane. Substitute the weights on the arcs of the Service System for weights that
correspond to the arcs in the Arrival System. The rotation implies that (i, j, k’) is used
instead of i, j, k).

5. Conclusions. Many useful special cases are immediate consequences of the re-
cursions for the Arrival and Service Systems. To obtain results for the Erlang queueing
systems studied in elementary queueing texts let ,(i, j) K, and t(i, j) =/z for the
Arrival System, and let X(i, j) X and tt(i, j) Kt for the Service System. By letting
,(i, j) K, and t(i, j) j/z for j =< m, the steady-state probabilities for the multiple
server case ofthe Arrival System described above may be obtained. One obvious advantage
of the recursions given for the Generalized Edang Queueing Systems is the generality
available in the rate specifications.

The recursions may be altered to allow for enumerating the intrees to each state.
They may also be used to get closed-form solutions in cases where the rates have some
regularity. Essentially the same proof technique could be used with even more general
distributions. For example, if one of the input distributions is Coxian and the other is
exponential, then the same style of recursion and proof will work, though it will require
more bookkeeping. Although this particular proofwill be restricted to transition diagrams
with special connectivity structure, the limits of this graph theoretic method have yet to
be explored. Finally, although the results have been developed for the case of finite
waiting spaces, it is apparent that, at least in the case of the Generalized Erlang Service
System, closed-form solutions could be developed for systems with infinite waiting space
where the transition rates are regular.
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DETERMINING RESISTANCES FROM BOUNDARY MEASUREMENTS
IN FINITE NETWORKS*

GREGORY F. LAWLERf:[: AND JOHN SYLVESTERf

Abstract. Small perturbations from a fixed resistance 7 in a finite electrical network can be determined
from boundary measurements if every function on edges in the network is a linear combination of products of
gradients of " harmonic functions. This condition holds for any finite subgraph of the cubic lattice /d and

3’--1.

Key words, electrical networks, inverse problems, discrete harmonic functions
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1. Introduction. The current flow through a resistor and the voltage drop across
the resistor are related by Ohm’s Law:

(1.1) Vt- Vr IR.

Vt and V are the voltage potentials at the left and fight leads, respectively; I is the current
flow from left to fight; and R is the resistance. If we measure both the voltage drop and
the current, we may use (1.1) to determine R.

Now suppose we are given two resistors, wired in series and encased in a black box
with only one lead from each resistor accessible (see Fig. 1). It is easy to check that we
cannot determine the individual resistances R and R2 experimentally (i.e., from voltage
and current measurements at the accessible leads). Indeed, only the sum, R + R2, can
be computed.

However, for the two-dimensional analogue ofthis circuit (see Fig. 2), it is possible
to find all the resistances experimentally. It requires two experiments. If, for example,
we set the voltages VI= 1, VI=V=V=0 in the first experiment and set
V2 1, V21 V V42 0 in the second, labeling the measured currents I] and I2
(i 1, ..., 4), respectively, we find the six equations:

(1.2) =RI(I+I+I4)+IJR, j= 2, 3,4

and

(1.3g) I=R(I+I+I4)+I]Rg, j= 1,3,4.

We can easily check that the four equations (1.2g) and (1.31) are linear and independent,
thus determining the Ri 1, ..., 4).

In this paper we consider the problem ofdetermining the individual resistance values
in a fixed network of resistors from direct current voltage and current measurements at
certain accessible sites. This is a discrete version ofthe problem of determining the con-
ductivity ((resistivity) -I) of a bounded region in N from steady state direct current
measurements at the boundary proposed by Calderon in C (see KVI1, KVII 1, KVIII 1,
and SU ], SUII ], and SUIII for some results). Indeed, we follow this approach here
and use it to prove a local uniqueness result for certain networks (i.e., small deviations
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:  VW,- ’VVW-

FIG.

from a known configuration can be distinguished by experiment). We outline the ap-
proach below.

If we fix the voltages at all boundary points (henceforth we shall refer to accessible
sites as boundary points), then all the voltages are uniquely determined. Ifwe letf denote
the voltages at the boundary, then the interior voltages F solve the Dirichlet problem

(1.4) L.F(x)’= , 3,(x,y)(F(y)-F(x))=O, x V,

(1.5) F(y)=f(y); y.OV

where we represent our network as a finite simple graph with vertices V VU 0Vwith
at least one boundary point (y e 0V) in each connected component; x y means that
x and y are vertices connected by the edge (resistor) { x, y} with conductance 3"(x, y)"
Q,(f) represents the total power necessary to maintain the voltage potentialf on 0Vand
is given by

(1.6) Q.,,(f):= "y(x,y)(F(y)-F(x)) 2.
{x,y}

This can be rewritten (see Lemma 2.1), using summation by parts:

(1.7) Q(f)= ] ] f(x)"g(x,y)(F(y)-F(x))
xOVy,--,x

FIG. 2
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or

(1.8) Q(f) , f(x)I(x,y)
x.ovy.x

where I(x, y) "(x, y)(F(y) F(x)) is the current flow through {x, y}. From (1.8),
we draw the conclusion that Q is computable from voltage and current measurements
at boundary points. (We assume that we can measure the current flow through each edge
which borders a boundary vertex.)
Q is a quadratic form; the polarized form is

(1.9) Q(f,g)= (x,y)(V(x)-F(y))(G(x)-G(y))
{x.y}

where G and g are also related by (1.4) and (1.5).
Still following Calderon’s approach, we consider the mapping ,I,, from conductivities

(functions which assign a conductivity to each edge) to quadratic forms, given by

(1.10) , -- Q(.).We differentiate to obtain the linearized map DI (at ,). Setting

we have

di-y-I/iQ= ee =o
The computation yields (Lemma 2.2)

(1.11) 6Q(f,g)= ., 6T(x,y)(F(x)-F(y))(G(x)-G(y)).
{x,y}

Let E denote the vector space of functions on the edges of I7 and let 6’, be the
linear span of the functions paired with 6, in (1.11), that is,

{ linear span offunction ofthe form (F(x) F(y))(G(x) G(y)) where(1.12) S’ F and G satisfy (1.4) }.
+/- (the set of functions that are l2 orthogonal toIf 6Q(f, g) 0 in (1.11), then

5’); hence Do{ is injeetive if and only if S’ { 0 } (equivalently, 5t’ RE). Ap-
plication of the implicit function theorem (injeetive version) yields the local injectivity
of and therefore Theorem 1.1.

THEOREM 1.1. IfSt’ , then small deviationsfrom " can be determinedfrom
measurements at boundary points.

Next we restrict to special graphs, namely subsets of the graph whose vertices are
the integer lattice zd with nearest neighbor edges (x y if Ix Y 1). Let E be a
finite subset of the edges in the lattice and define I? by
(1.13) y" if {x,y}Eforsome x

and

(1.14) yV if{x,y}eEforallxwith lx-y]

(hence 0V V\ V). For such V, we show (in 3) that S’ (6’, for , E 1) e and,
hence, via Theorem 1.1, we have Theorem 1.2.

THEOREM 1.2. For V defined as above, small deviationsfrom the constant conduc-
tivity can be determinedfrom measurements at boundary points.
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For more general networks, the problem of local injectivity reduces to determining
when 6a E. One bound can be given:

dim (Aev)_-< 1/2(lOvl)(lOVl I).

To see this, for z OV, let Fz be the function satisfying (1.4) with boundary values
Fz(z) 1, Fz(W) O, we OV, w 4 x. Then iff and gare any functions satisfying (1.4),
we have

f(x) Fz(x)f(z),
zOV

g(x) Vw(x)g( w)
weOV

and

(f(x)-f(Y))(g(x)-g(Y)) Z f(z)g(w)(Fz(x)-Fz(y))(Fw(x)-Fw(y)).
zeOVweOV

Therefore { (VFz)(VFw): z, w OV} spans 5’. Also note that V(YwoV Fw) 0, and
hence (VF)(VFz) -(VF)( Zw/z VFw); therefore { (VFz)(VFw): z, w OV, z 4: w}
spans S’ and this set contains 1/210vl(]0vI 1) functions. These functions are not
necessarily independent, however. It is an open, apparently difficult problem to decide
when 5’ for a given network.

2. Proofs of lemmas. Let f (V, E) be a finite simple graph where the set of
vertices I? is divided into V and 0V, where x V are called the interior and x 0V the
boundary vertices. We assume that each connected component of f has at least one
boundary point (vertex). Let

and for F: V- , define

"t’: E-’* (0, c)

LF(x)= ., ",/(x,y)(F(y)-F(x))

where y x means the edge { x, y } E. For anyf: 0V-- , the unique solution to the
Dirichlet problem

(2.1) L,F(x)=O for xe V, F(x)=f(x) for xeOV

is given by

F(x)=Ex(f(Xt))

where Xt is the continuous time Markov chain with symmetric rates "(x, y)=
,(y, x) and

r=inf {t_O:XteOV}.

Recall the bilinear form Q(f, g) as defined in (1.9); to see that Q is determined by
boundary measurements, we need the following lemma.

LEMMA 2.1. IfF satisfies (2.1), then

E (x,y)(F(x)-F(Y))(G(x)-G(Y)) , , T(x,y)a(x)(F(x)-F(y)).
{x,y}eE x-OVy"x
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Proof. , 3,(x,y)(F(x)-F(y))(G(x)-G(y))
{x,y)V

=2 , 3"(x,y)G(x)(V(x)-V(y))
{x,y}E, G(x)L.F(x)+ , , 3"(x,y)G(x)(F(x)-F(y))
x V x.OVy x

but the first term is zero by (2.1) and the lemma follows.
We next turn to the question of identifying 3" from Q. We recall (1.10) that the

mapping applied to is Q so that we may write, for anyf, g

(3")(f,g)=Q,(f,g).

We compute the derivative of the map at 3’ in the direction 63" by letting

and computing d/del,=oQ,. We have Lemma 2.2.
LEMMA 2.2.

d
Q,(f,g)D . i3" f g e, 63"(x,y)(V(x)-V(y))(G(x)-G(y))

{x,y}eE

where F and G satisfy (2.1).
Proof
d

Q’’(f’g) e , (3"+e63")(x,y)(F,(x)-F,(y))(O,(x)-G,(y))e=0 r=0 {x,y}E

where Fr, G solve (2.1) with 3", in place of 3" (Fo F, Go G)"

d
Q,(f,g)= , 63"(x,y)(F(x)-F(y))(G(x)-G(y))"e 0 {x,y} E

d
(G,(x)-Gr(y))+ ’ 3"(x’y)(F(x)-F(Y))--e

o{x,y}-E

+ Z, (x,y)(G(x)-G(y))
o{x,y}eE

Now, by Lemma 2.1, the second term can be replaced by

., ., 3"(x,y)(Fo(x)-Fo(y))-
ox.OVy’-..,x

and, for x 0V

d
G,(x) _.

e
g(x)= 0

r=O

so that the second term vanishes. The third term vanishes just as the second, and the
lemma is proved.
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3. Subnetworks of the cubic lattice. In this section we prove Theorem 1.2. As has
been pointed out in 1, this is an immediate consequence of the following proposition.

PROPOSITION 3.1. ’1 E( oq { 0 } ). The vector space 6’ 5’for "r 1) is
the subspace ofq defined in (1.12) and E is a finite subset ofthe edges in the lattice
Za(d’ {{x, Y}llx- Yl 1}).

It will be convenient to note that can be put in one-to-one correspondence with
the set zd (R) { 1, "", d} via the map that sends

{x,x+ej} --(x,j)

where ej is the jth unit coordinate vector. Hence, for functions on $, we have

d

(3.1)
j=l

(i.e., a function on d’ can be regarded as a d-dimensional vector-valued function on ’ a).
IfF(x) is a function on vertices we shall denote by VF the function on edges defined by

VF( { x,x+ ej } F(x+ ej) F(x).

Using (3.1), we may consider VFto be a vector-valued function on V, with components

(VF(x)h=F(x+ej)-F(x), j= 1, ,d.

In this notation,

6a span { (VF)(VG) F, G are laarmonic (satisfy 1.1 with on U}.

We turn now to the proof of Proposition 3.1, which we divide into the following
two lemmas.

LEMMA 3.2. Let T { V d lo < l)j < "1’ l)j :# Irk I, j k } then

$" := span { we’lv T,

Proof. If ff e we will also write k for the compactly supported function on b:
Zd .. d:

k(x, x+ ej) { x, x + ej } e E,
[(x) j

0 otherwise.

Assume ,if" 4 R e. Then since Re is a finite-dimensional vector space, there exists a
nonzero ff e ,1 such that /. f 0 for everyf e ’, i.e.,

(3.2) , ((x).w)eiX’v=O, weir d, veT.
xZd

The left-hand side of (3.2) is the Fourier transform bw ofkw k" w, which is compactly
supported. If iF is the periodic extension of T, i.e., ]F { v + 2r(ji, "-’, jd)" V e T,
ji e 7/}, then the Lebesgue measure of ]F is zero and ffw(V) 0 for v e ]r. But since ft. w
is compactly supported, ffw is continuous. Therefore, w 0 and by uniqueness of the
Fourier transform, . w - 0. Since this is true for every w e d, k 0, which is a
contradiction.

LEMMA 3.3. S/’ ’.
Proof. We shall show that for any v e T, there exist d complex vectors

zieC d, i= 1, ,d
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such that

(3.3) ex’z’ and e-x’’ are harmonic,

(3.4) (Ve’Z’)(Ve-’’) wiei’v,

(3.5) w , wd span C d.
The lemma is then a direct consequence of (3.3)-( 3.5 ).

To establish 3.3)-( 3.5 ), we shall treat separately the cases d > 2 and d 2.
(d > 2). If z C d, then ez’ (and e-’x) is harmonic if

d

(3.6) cosh zj d.
j=l

Ifv e T, and zj a + i(v/2), (3.6) becomes
d

(3.7) f(a)= oljj=O,
j=l

d

(3.8) f2(a) Z (1 + a])’/2(1 -/3])’/2-d=0
j=l

where

aj. sinh a, /3j sin
2

(we have used here cos v/2 > 0).
Fix v, and hence/3, and let rt (n, d) be any unit vector with 7] ja.= rtj/3j.

0. If we let a rr/where r > 0, then

where

f2(a)=G(r)-d

d

(3.9) G(r)= , (1 + r2r/)’/2(1 -/3) ’/2

j=l

Because G(r) increases to infinity and G(0) < d, there is a unique positive ro with
G(ro) d. Let a rot/so that a satisfies (3.7) and (3.8) and if we let z (Zl, Zd)
with

(3.10) zj sinh- (aj)+ 2’

then z satisfies (3.6). A computation yields that
x ).e-iV.x eiVj/2 1/2 1/2)wj(aj) (Ve )(Ve-Z ((1 + aj2. (1 -/3])(3.11)

Hence,

(3.12)

where

w(a w, wj) diag ei’/2.., ei/2 if( a

v(a) (1 4- aj2.)’/2- (1 -/3j2. ’/2.

We claim that only the zero vector is orthogonal to if(a) for every a satisfying (3.6) and
(3.7). According to (3.12) this will imply the same conclusion for w(a), and hence we
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may choose d vectors a , ..., ad such that w(a), "’, w(ad) span Cd. If we define
z , zd by (3.10) we will then satisfy (3.3)-( 3.5 ).

To establish the claim, suppose that there exists a v e Ca such that for every a

satisfying (3.6) and (3.7), we have

(3.13) f3(a)= ff(a).v=O.

Now the components of if(a) are positive so v must have both positive and negative
components. Say that v > 0 and v2 < 0. Let & (a,, a2, 0, "", 0) be the unique
solution to (3.7) and (3.8) with aj 0 forj

_
3. (We can find such a solution by starting

with the unit vector n (32 + /322)-/2(/3, /32, 0, 0).) If we differentiate at &
we obtain

d

df,(&) 3jdaj, =/=0, j= 1,... ,d,
j=l

O/1 1/2 2df2(&)
(1 + a2),/2(1-/321) dc, +

(1 +a) ’/2(1 -13)/2dt2’

0/11) 0/21)2
df3(&)=(1 4"’) ’/2dal + (1 -I- a22) ’/2da2

and note that df (&), df2(&), and df3(&) are linearly independent (use v > 0 and

v2 < 0). Therefore, we may perturb &, remaining on the manifoldf(a) f2(a) 0,
and changingf3 to be nonzero, contradicting (3.13).

(d 2). Let v (v, v2) and assume that 0 < Ivl < Io,_1 < r (Io1 > Iv=l is
similar) and hence that

1)2
(3.6) 0 < cos < cos-< 1,

(3.7)

Since

1)1 1)2
0 < sin 2 _-- < sinE _-- < 1.

2 2

1)1 1)2
0 < cos +__ cos < 2,

(3.5), (3.7), and the intermediate value theorem imply that them exist unique positive
solutions r+ and r_ to

( 1)2) 1/2 1)1( 1)1) 1/2 1)2
(3.8) + r2 sin 2 cos -+ + r2 sin 2 cos 2.

If we set

and

z ( sinh ( r+ sin ) sinh ( r+

z2= sinh- r_sin ,sinh- -r_sin +t ,-+r
(3.3) and (3.4) can be checked directly, and the computation gives

w} (eJ- 1)(e-g- 1)
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and

det { w’ w2 } 2 exp ( i(v + )) +

l+r2+sin2 + l+r2+sin2
which cannot be zero. Thus (3.5) follows.

[Cl

[KVII

[KVII]

[KVIIII

[SUII

[sun]

[SUIII]
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A ROBUST NONCRYPTOGRAPHIC PROTOCOL
FOR COLLECTIVE COIN FLIPPING*

MICHAEL SAKS’

Abstract. A new protocol for global coin flipping in the model of Ben-Or and Linial is presented. In this
model, global coin flipping is considered to be an asynchronous perfect information game among n players,
some of whom are dishonest. Each player possesses a fair coin and they wish to agree on the value of a single
bit, which the honest players want to be random. A protocol is e-robust for dishonest players if no set of
dishonest players can bias the bit by more than e. The protocol given here is e-robust against 0(n/log n) dishonest
players for any fixed e, improving on the 0(n "63"’’ robust protocol given by Ben-Or and Linial.

Key words, collective coin flipping, perfect information games

AMS(MOS) subject classifications. 68R05, 90D99, 05A05

1. Introduction. A set of n players wish to agree on a single bit value (0 or 1) which
they will all accept as random. Each player possesses a fair coin that he flips privately.
One obvious way to do this is to have one of the players flip his coin and announce the
outcome. If, however, the designated player is dishonest, he may announce whatever bit
value he chooses. The problem of collective coin flipping is to design a procedure for n
players to agree on a bit which is robust in the sense that even in the presence ofdishonest
players who conspire to bias the bit, the outcome is unbiased or nearly unbiased.

The precise formulation ofthe coin flipping problem depends on assumptions about
how the players communicate and the computational power of the players (see [BLS]
for a survey). In this paper, we consider a model first formalized by Ben-Or and Linial
[BL], in which collective coin flipping is an asynchronous perfect information game. In
such a game, the players take turns announcing bits which are supposed to be obtained
from fair coins, and the output bit is the value of some prespecified function of the bits.
(We will give a more precise definition of these games in 2.) A simple example is the
majoritygame in which each player supplies a bit, and the outcome is the majority value.
Players who are dishonest may try to influence the outcome by supplying nonrandom
bits. We assume that the set of dishonest players may collude to achieve their desired
outcome; thus, it is convenient to view them as being under the direction of a single
adversary, whose aim is to bias the bit in one direction or the other.

A given collective coin flipping game is said to be e-robust against t cheaters if no
subset of cheaters can bias the outcome by more than e. For instance, the asymptotic
behavior of the binomial coefficients implies that for any positive e the majority game
on n players is e-robust against c(e)n /2 cheaters for some positive constant c(e). A basic
question about collective coin flipping games is: What is the maximum number t(n, e)
such that there exists a collective coin flipping game that is e-robust against t(n, e) cheaters?
The majority game shows that for any e, t(n, e) f(n/2). Ben-Or and Linial, who
posed the question, described a game that is e-robust against fl(n "63"’" cheaters. In this
note, a game that is e-robust against fl(n/log n) cheaters is described, proving the following
theorem.

THEOREM 1.1. t(n, e) ft(n/log n’).
There are no known nontrivial upper bounds on t(n, e). An elementary argument

shows that t(n, e)< n/2 for any e < 1, but, for instance, it is not known whether
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t(n, e) is sublinear in n (or even whether t(n, e) -< n/3). Recently, Kahn, Kalai, and
Linial [KKL have found a beautiful proof that, for collective coin flipping schemes in
which each participant supplies exactly one bit, no scheme can be e-robust against more
than O(n/log n) cheaters. The scheme described in this paper is not of this restricted
form; the best-known scheme of this form is the above-mentioned scheme in [BL that
is robust for f(n"63’’’ cheaters.

The original motivation for this problem was the problem of Byzantine Agreement
([Ra]; see the survey by Chor and Dwork [CD] for a survey and references). In this
context, players represent communicating processors that, for some distributed com-
putation, need to generate random bits, and these bits should be random (or nearly
random) even if some ofthe processors are faulty (these correspond to dishonest players).
Most of the papers dealing with this problem use cryptographic techniques to perform
the global coin flip. Such techniques are precluded in the model studied here, because
the computation power of the participants is unrestricted.

2. Definitions. A collective coin flipping game G on player set { 1, 2, ..., n } is a
rooted tree Twith labels on the nodes as follows. Each internal node v is labeled by some
player Po (who is said to own that node) and by a discrete probability distribution Do
on its children. Each leaf is labeled by either zero or one. The game is played by starting
at the root and traveling down to a leaf. At each internal node, the owner announces
which branch to take. The outcome of the game is the label of the leaf reached.

For a game G, and e { 0, }, we define p to be the probability that the outcome
of the game is if at each internal node v the owner selects the branch according to the
distribution Do. The game G is unbiased ifp p 1/2.

To play such a game, each player must be able to generate random variables according
to the distributions Do. In the introduction, we said only that each player possesses a fair
coin. However, it is easy to see that using a fair coin, any discrete distribution can be
approximated to any desired accuracy. Furthermore, it is well known that any discrete
distribution can be generated exactly in bounded expected time using a fair coin (for
instance, to generate the uniform distribution on three items, associate them to 01, 10,
and 11, and generate two random bits. If one of these outcomes occurs, then the corre-
sponding item is selected; if 00 appears, then repeat). For more details, see vN]. Thus,
we will assume that players can generate arbitrary discrete distributions.

Now let us consider the effect on the outcome of the game if some subset S of the
players is dishonest. At each internal node owned by a dishonest player, the branch taken
is chosen by the player. Thus a strategy for the set S ofplayers specifies, for each internal
node owned by a member of that set, which branch is to be selected. For the outcome
i, we define p(S) to be the maximum over all strategies for S of the probability that
the outcome is i.

As an example, consider the majority game described in the introduction. For any
set of dishonest players, if they want to bias the outcome to (respectively, 0) then they
should all announce (respectively, 0) at their turn, and for S of cardinality s, p;(S)
is equal to the probability that, out of n s random bits, at least n/2 s are equal to i.

A game G is said to be e-robust against cheaters if, for any set S ofat most t players,
and { 0, }, p/(S) -< 1/2 + e, i.e., no set of more than t cheaters can bias the outcome
by more than e away from 1/2 in either direction. The function t(n, e) is defined to be the
maximum number such that there exists a game which is e-robust against t(n, e) cheaters.

The game described in the next section, which achieves the result of Theorem 1.1,
is based on the idea of a different kind of game, called an election game. An election
game E is defined similarly to a coin flipping game, except the outcome (i.e., each leaf
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label) is a number from to n, identifying a player, who is said to be elected. For an
election game E, the influence Ir(S) of a set of dishonest players is the maximum prob-
ability over all strategies for S that a member ofS is elected.

Associated to any election game E is a coin flipping game G(E), obtained by having
the elected player flip his coin. It is easy to see that ptv)(S) (1 + Iv(S))/2, for all
sets S. Hence, ifE is an election game with IW(S) _-< 2e for any set of size t, then G(E)
is e-robust against cheaters.

3. Pass the baton: A robust leader election game. In this section we present a simple
n-player leader election game that is e-robust against 0(n/log n) cheaters, for any e. The
game, called pass the baton, works as follows. Initially the baton is held by Player 1.
Player randomly selects one of the other players and gives that player the baton. The
selected player then gives the baton to a randomly selected player from among the players
who have not yet had the baton. This is repeated until each player has held the baton.
The leader is the last player to receive the baton.

It is clear that if all players are honest, then each player, except the starting player,
is elected with probability /(n 1). The relevant question is, how many cheaters can
there be so that the probability that a cheater is elected remains small?

THEOREM 3.1. For any e > O, there exist constants c(e) and d(e) such that
the algorithm pass the baton is e-robust against c(e)n/log n cheaters, but not against
d(e)n/log n cheaters.

Proof. For purposes ofanalysis all players, except for the initial player, are equivalent.
Thus given the right to select t dishonest players, the only choices that the adversary has
are (i) whether the set of dishonest players includes the initial player, and (ii) whenever
a dishonest player holds the baton, does he give it to an honest or dishonest player?
Intuitively, since the adversary wants to maximize the chance that the last player selected
is dishonest, the obvious strategy is not to include Player in the set of cheaters and
always have a cheater pass the baton to an honest player. This can be established formally
as follows. Letf(s, t) denote the probability that with s unselected honest players and t
unselected dishonest players a dishonest player is elected (under the optimal strategy by
the dishonest players) given that the baton is currently owned by an honest player. Let
g(s, t) denote the corresponding probability given that the baton is currently owned by
a dishonest player. Then since a dishonest player can decide who next holds the baton,
while an honest player chooses the next player uniformly at random, we have the following
recurrences forf(s, t) and g(s, t):
For s,

_
1,

(3.1) g(s,t)=max {f(s- 1,t),g(s,t- 1)}

(3.2)
s

f(s,t)=-tf(s- 1,t)+tg(s,t- 1),

with the initial conditions f(0, 0) 0, g(0, 0) 1, g(s, 0) f(s, 0) 0 for all s

_
1,

and g(0, t) f(0, t) for all

_
1.

To establish that the optimal strategy of the adversary is as claimed, it suffices to
show thatf(s, /

_
g(s / l, t) since then, for a fixed number ofplayers and dishonest

players, it is preferable for the adversary that the baton holder be honest. This follows
by induction (on s and t) using the following chain of relations:

s t+l
f(s,t+ l)=f(s- l,t+ l)+

s+t+l’ s+t+l
g(s,t)_g(s,t) >- f(s,t)=g(s+ 1,t).
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The first equality is (3.2). The induction hypothesis implies f(s 1, / l)

_
g(s, t),

which implies the first inequality. The next inequality follows from (3. l) and (3.2), since
g(s, t) is the maximum of two quantities, while f(s, t) is a convex combination of the
same two quantities. Finally, by the induction hypothesis, f(s, t)

_
g(s + l, 1); thus,

by (3.1), g(s + 1, t) f(s, t).
Hence, (3.1) reduces to g(s, t) f(s l, t) and (3.2) becomes

s t
(3.3) f(s,t)=-tf(s- 1,t)+tf(s- 1,t- 1),

for s, t

_
1.

It is useful to think of the behavior of the algorithm in terms of a procedure for
removing balls from an urn. Consider an urn containing s white balls and t red balls.
Remove balls from the urn according to the following rules: select a ball uniformly at
random. After that, if the last selected ball is a white ball, then select the next ball at
random from the urn. If the last selected ball is red, then the next ball to be selected is
a white ball (unless no white balls remain).

The recurrence (3.3) does not appear to have a dosed form solution but the following
bounds do hold.

LEMMA 3.2. For

_
and s

_
O,

( s )<f(st)tln(t+l)(3.4) 1-21n2
(t+ l) ln (t+ l) -(s+l)ln2"

From this lemma, it is easy to conclude that for < es/log2 s, f(s, t) < e and for
s < e(t + 1) In (t / 1)/2 In 2, f(s, t) > e, from which the theorem follows.

Proof of the Lemma. The upper bound is proved first using induction on both s
and t. The basis step or s 0 are immediate. The induction step has two cases.

Case i. s

_
In /(ln (t + l) In t). Then the right-hand side is greater than or equal

to log2 (1 + /t), which is at least for

_
l, and the inequality holds trivially.

Case ii. s > In t(ln (t + l) In t). Applying (3.3) and the induction hypothesis
yields:

f(s’t)--t s In 2 s In 2(3.5)
t (ln(t+l)+(t-1)lnt)(s+ t) In 2 s

We need to show that this is less than the right-hand side of (3.4), i.e.,

s+tl (ln(t+l)+(t-1)lnt) s+l

which is equivalent to the case assumption.
The lower bound is also proved by induction on s and t; again the basis, s 0 or
1, is trivial. If the term on the left-hand side of (3.4) is negative, the inequality is

immediate, so assume that it is positive, i.e.,

(3.6) 2s In 2_-<(t+ 1) In (t+ 1).

Applying the induction hypothesis to (3.3) yields:

_f(s,t)
(s-1)21n 2 ( s 1-t)(s+t) (t+ 1) In (t+ 1)

+
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We want to show that the right-hand side is less than or equal to (2 In 2)s/
(t + 1) In (t + 1). An elementary calculation shows that this is equivalent to In (t + 1)/
(In (1 + /t)

_
s, which follows (with a little calculus) from (3.6).
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Abstract. Given two geometric sets A and B, it is said that A is containable in B provided A is isometric
to a subset of B. Containability induces a partial order on any set ofgeometric figures, such as rectangles in the
plane. A recent result states that for the set of rectangles in the plane, the containability partial order is of
countably infinite dimension. In this paper the rectangle result is extended to other families ofgeometric figures
and to a partial order obtained from quadratic polynomials.

Key words, partial order, rectangle containment, posset dimension
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1. Introduction. In recent years, the study of relationships between geometry and
partial orders has attracted the attention and the interest ofmany researchers from different
fields, as witnessed by the large number of results on the subject published in the last few
years (for a survey, see [16]). Depending on whether the geometric objects under con-
sideration are fixed in the plane (the "static" case) or can be moved in the plane through
translation, rotation, or even reflection (the "dynamic" case), different problems arise
and have been studied. The majority ofthe investigations in both cases have focused on
"simple" geometric figures such as rectangles ], 7 ], 11 ], 12 ], 16 ], polygons 3 ],
[13], [15], [16], circles [2], [14]-[16], and angular regions [5]-[7], [13], [16].

In this paper, we continue the investigation of the dynamic case started in 12 ].
Our focus will be on the containability relation. Given geometric sets A and B, we say
that A is containable in B provided A is isometric to a subset of B; in this case we write
A E_E_ B. Note that containability defined on a set of objects defines a partial order called
the containability partial order.

The following question will be of interest:

Given a set of geometric figures, what is the dimension of the containability partial
order? In particular, when is the dimension finite?

In the case of finite dimension, containability can be reduced tofinite-dimensional
vector dominance using the standard product order

_
for k: X (Xl, "’", Xk) <- y

(Y, Yk) if and only if x;

_
Yi for _-<

_
k. The problem of determining whether a

figure is containable in another is of principal interest in computational geometry; thus
an answer to the above questions would be of immediate practical relevance due to the
existence of efficient computational methods for determining dominance relationships
among vectors [8], [9 ]. Furthermore, reduction to vector dominance has already been
successfully employed to solve other basic geometric problems 4 ], 10 ], [17 ]. Also, it
is not hard to envision applications of positive results to packing problems as well as
others.

For some families H of figures, this reduction can be easily accomplished. For ex-
ample,f(A defined as the area ofA will work for the family ek of regular polygons with
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k

_
3 sides, as well as for the family C ofcircles. A more interesting example is the family

E of ellipses: for each Ei E, definef(Ei) (xi, Yi) where xi and Yi denote the length of
the minor and major axis of Ei, respectively; it is easy to show that Ei is containable in
Ek if and only iff(Ei)

_
f(Ek). Similarly, two parameters (namely, the lengths of the

diagonals) suffice for rhombi.
In the opposite direction, it has been shown that finitely many parameters do not

suffice for plane rectangles 12 ]; this result also implies that a finite reduction does not
exist for convex polygons with at least k

_
4 sides. On the other hand, in the same paper

it is also shown that a reduction is possible using a countable number of parameters.
Many families of figures commonly considered do have "natural" finite parame-

terizations, but these may not faithfully reflect the containability relation. Typically these
parameterizations do possess natural monotonicity and homogeneity properties (example:
length and width for rectangles).

In 2 parameterizations with these properties (denoted (M) and (H)) are studied
and used to prove an abstract version of the rectangle theorem, namely that a certain
partial order has nonfinite dimension. In 3, it is shown how the proof of the infinite
dimensionality of rectangular containability [12 can be formulated as an instance of
the abstract theorem; and these results are extended to the classes offight circular cylinders
and ofisosceles triangles. It is also shown how low-dimensional results (e.g., for rectangles)
can be extended to higher dimensions (e.g., rectangular solids). In 4 the abstract theorem
is used to show that a certain natural algebraic partially ordered set cannot be faithfully
represented by finitely many parameters. Finally, 5 echoes 4 of 12 ], displaying a
representation of the family of (congruence classes of) nonempty compact sets in k
by countably many parameters that are continuous in an appropriate sense. From this
result, it follows that the dimension of several previously discussed partial orders are
countably infinite.

2. Preliminaries and the abstract theorem. Let _.P (P, E__) be any partially ordered
set (or poser). Thus P is a nonempty set and _E is a transitive binary relation on P such
that for elements a, b of P, a E__ b and b E_. a if and only if a b. Any injectionf" P --i induces a partial order f on f(P) {f(a) a P} by the rule f(a)rff(b) if and
only if a _E b. If rf coincides with the restriction of

_
tof(P), we say thatf reduces E__ to

vector dominance in I. It is easy to see that any partial order can be reduced to vector
dominance in for some (possibly infinite) index set I. Indeed, if__P (P, E_E_) is any
poser, take I P and define f" P - { 0, } z

_
z by f(a)i 0 if a E_E_ and f(a)i

otherwise; clearly a _E b impliesf(a)

_
f(b), while if a E__ b is false, thenf(a)b while

f(b)b 0, sol(a)

_
f(b) is false. Note that the same construction off will work ifinstead

of I P we take I S for any subset S of P which is separating in the sense that a =/: b
implies { S" a _E } 4" { S" b E }; this observation will be of some use later.

We now state the abstract theorem. Let k+ { X (X, "’, Xk) k X > O,_ _
k }. A subset K of n is a cone ifK 4: and tx K whenever x e K and t is a

positive (greater than zero) real number.
THEOREM 1. Suppose that K is a cone in 1+ and E__ is a partial order on K that

satisfies the monotonicity M homogeneity H and convergence C properties below:

(M)

(H)

(C)

(2.1)

For all x, y K, ifx
_
y then x E__ y.

For all x, y K, if > 0 and x E__ y then tx E__ ty.

There exist distinct points z, w K and sequences { xtn)}, { yt")} in K such that

For all n,xt")E__ wandzE_E_yt")E__ w;
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(2.2) For all n it isfalsethatxt")E_yt"); and

(2.3) xt")-- zandyt")-- w as n-- .
Then dim K, E_E_) is notfinite.

Proof. Suppose, to obtain a contradiction, thatf (f ..., fm) K" reduced
E__ to vector dominance in m for some finite m. Each of the 2m functions t -- f(tz),-- f(tw) is nondeereasing for 0 < t < by (M), so they have a common point of
continuity to. By (H) we may replace xt"), yt"), z, w by toX"), toy"), toZ, toW, respectively,
without affecting the hypotheses, so we may suppose to 1. Given a positive number e,
there is a positive number 6 < such that It 11 --< 6 implies f(tz) f(z)l < e and
If(tw) f(w)l < e for all i. Thus by (M)

and

U {x tk’(1 6)Z_X_(1 +6)z}

V={yX:(1--6)w_y<--(1 +6)W}

are neighborhoods of z and w, respectively, in k such that x e U N K implies
If(x) f(z)] < e for all i, and ye Vf Kimplies If(Y) f(w)[ < e for all i. In other
words, z and w are points of continuity of each f as a function of a (k-dimensional)
variable from K.

By (2.1) and the properties off,

f(x"))
_
f(w) and f(z) <= f(yt,))

_
f(w)

for all and n. Since z w, f(z) 4 f(w), so there is a nonempty set A of indices in
{ 1, m } such that

f(z)< f(w) ViA,

f(z)= f(w) Vi{1, ,m} \A.

By this and (2.1)

(2.4) f(xt"))_f(w)=f(yt"))=f(z), i{1, ,m} \A

holds for every n. Let 2e rain {(f(w) f(z)) A } > 0. By (2.3) and continuity
of each f at z and at w, if n is large enough we have

If(xt"))- f(z)] <e and If(yt"))- f(w)l <e Vi,

so if A then

f(x")) f(yt")) < (f(z) + e) (f(w) e) 2e (f(w) f(z)) <-_ O,

so f(x")) < f(yt")); with (2.4) this shows thatf(xt")) <-_f(yt")), that is, xt") if__ y") for
large n, contradicting (2.2). [3

3. Applications to geometric figures. In this section we show how to apply Theorem
to obtain results about the classes of rectangles, fight circular cylinders, and (isosceles)

triangles. We also show how to "lift" our results from low to high dimensions.
Let ," { Fi" I} be a family of nonempty geometric objects in r, and let

IFi] { Y r y is isometric to Fi }. As before, Fi [7_ F, or [Fi] [7. IFj], means Fi is
containable in F. We consider three cases of families of geometric objects:



248 N. SANTORO, J. SIDNEY, S. SIDNEY, AND J. URRUTIA

Rectangles. Define R(W, L) ( (x, y) E 2 X W/2, Y =< L/2 }, and let
R) {R W, L)" 0 < W

_
L }. Let if__(R) denote the containability partial order for

R), as well as the induced partial order on the cone

defined by (W, Ll) if__ (R)(W2, L2) if and only if R(W, L) if__ (R)R(W2, L2). The
meaning of(R) will be clear from its context.

Right circular cylinders. Define C(W, L) { (x, y, z) 13 x2 + y- <= (W/2)2,
zl - L/2 and let ,"(C) { C( W, L) 0 < W =< L }; note that "(C) represents only

a subset of the set of right circular cylinders. Let ff__(C) denote the containability partial
order on "(C), as well as the induced partial order on K, with W, L C)(W2, L2)
if and only if C(W, LI) _ff (C)C(W2, L2). The meaning of_if(C) will be clear from its
context.

Isosceles triangles. Define

T(W,H)= { (x,y)e 2"O <= y<=H, Ixl-<(W/2)(1-y/H)}

and let (T)= { T(W, H)’O < W, 0 < H}. Let ff__(T) denote the containability
partial order on ,’(T), as well as the induced partial order on the cone 2+
{(W, H) 2.0 < W, 0 < H} defined by (W, L) if_if_ (T)(W2, L2) if and only if
T(W, L if__ (T) T( W2, L2). The meaning of if_(T) will be clear from its context.

We shall now outline the proof of the rectangle containability theorem in 12 in
such a way that Theorem is the central device; this will provide a model for some of
the later proofs. Clearly, (K, ff__(R)) satisfies (M) and (H). It only remains to provide
points in Kthat satisfy (2.1)-(2.3). This is accomplished by analyzing the "containability"
curve of the square with W L 1, this curve being defined as the graph off(W)
max {HI(W, H) _ff (R)(1, 1)}. The shaded portion of Fig. along with its boundary
can be shown to correspond exactly to those rectangles that are containable in the unit

(o,2)

(1,1)

FIG.
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square. Let z (/ 1, 1) and w (1, 1); the containability curve consists of two line
segments, the first joining (0, f) to z and the second joining z to w. It is shown in 12
that (2.1) to (2.3) are satisfied for this z and w and for { xin) } -- z a sequence of points
on the left-hand line segment of the containability curve and { y(") } --* w a sequence of
points on the right-hand line segment of the containability curve. Thus, the dimension
of the rectangular relation is nonfinite.

To obtain the desired result for cylinders, we first prove Theorem 2.
THEOREM 2. The partial orders K, E__ R and k, E__(C)) are identical.
Proof. Let (IV,., Li) K be given (i 1, 2). We shall now demonstrate that

(W, L) E_E_ (R)(W2, L2) if and only if (W, L) E__ (C)(W2, L2).
First, suppose (W, L)_E (C)(W2, L2). Let 3’ and 3’2 be isometric copies of

C(W, L) and C(W2, L2) such that 3’ 3’2, and let r be a plane parallel to the central
axes of both "r and 3’2. Let be the projection of 3’ onto r(i 1, 2). Then is an
isometric copy ofR(W/, Li) and 01 c/)2, SO (WI, LI) (R)(W2, L2).

Conversely, suppose R(W, L) E_ (R)R(W2, L9_). Without loss of generality we
may suppose that (W1, L is _-maximal in K with respect to the rectangular contain-
ability property, that is, that the conditions (W, L) K, R(W, L) V__ (R)R(W2, L2), and
R(WI,L)E_(R)R(W,L) imply (W,L)= (WI, L). From [12], W _-< WE. If(W, L)=
(W2, L2) there is nothing to prove, so we may assume (W, L d: (WE, L2). Hence, _-<-
maximality of(W1, L) implies that L > L2 and W < WE. /92 R(W2, L2) is drawn
on the xz plane as the outer rectangle (see Fig. 2). Reference [12] implies that the
contained rectangle #1, which is an isometric copy ofR(W, L ), will be tilted at some
angle a and will have its vertices on the interiors of the four sides of R(W2, L), as
illustrated. Noting that

(3.1) L sin a + W cos a L2 >= W2 L cos a + W sin a

iL2/2

W2/2

FIG. 2
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we obtain (L Wl ) sin a

_
(L1 W cos a, and hence that

(3.2) sin a

_
cos a,

an observation that will be used later.
Let be the isometric copy of C(W, L) obtained by rotating p about its longer

central axis. To show that l E_ (C)2, it suffices to show that each point of is a distance
no greater than (WE/2) from the z-axis. Since is the convex hull of its circular "top"
and "bottom" (and here circles do not contain their interiors), it suffices to show that
each point on these two circles is not more than a distance of (W2/2) from the z-axis.
By symmetry we need only treat the top circle. The reader may verify that this top circle
consists of precisely the points

(3.3)
(x,y,z)

=(( W1 LI-) 0sin +(--)cosa,-(-)sin0,-(Wlcos a --) cos 0 cos a+(-L) sin ct)
for 0 _/9 < 2r. Hence it suffices to show that for each such (x, y, z) we have

(__)2 ( L, cosa+ Wl sin a)2(3.4) xE+y2--
2

the equality in (3.4) resulting from (3.1). When we multiply and use trigonometric
identities and algebra, (3.4) reduces to Wl sin 2 O cos a -< 2Ll sin a (1 cos a), and
hence to (1 + cos O)Wl cos a =< 2L1 sin a; using (3.2), this inequality is true, so we
conclude that C(WI, Ll) E_ (C)C(W2, L2), thus concluding the proof. E]

An immediate corollary of Theorem 2 is Theorem 3.
THEOREM 3. The containability partial orderfor right circular cylinders in 3 is

ofnonfinite dimension.
For the case of triangles, we have Theorem 4.
THEOREM 4. The containability relationfor isosceles triangles in 2 is ofnonfinite

dimension.
Proof. Clearly, the partial order 2, E__(T)) satisfies (M) and (H), so it remains

to find points z, w, { xtn } and { y(n } to satisfy (2.1)-(2.3). The proof will be similar
to that for rectangles.

It can be shown by simple geometrical arguments that for a given W, 0 < W _-< 1,
the largest height h(W) for an isosceles triangle containable in the unit equilateral triangle
(all sides of length one) is assumed by one of the triangles illustrated in Fig. 3. (Angles
will be assumed to be measured in degrees for the remainder of this proof.) In the case
of (a) Vertical Orientation, the height is lf/ 2), while for (b) Co-lateral Orientation,
lengthy but unenlightening computations show that the height is equal to V/2) cos /
cos (30 2fl) where fl is illustrated in Fig. 3(b), and can be shown to satisfy W
f sin//cos (30 2/). Setting h(W) equal to the maximum for these two candidate
heights, we obtain the following"

(3.5) If W<ftan(lO),thenh(W)=(lf/2)cos[3/cos(30-2[3)where[satisfies
the two relationships 0 </ _-< 10 and W lf sin//cos (30 2/).

(3.6) If W_ V tan (10), then h(W) (/r/2).
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(a) Vertical orientation (b) Co-lateral orientation

(Shares side with equilateral triangle)

Fro. 3

The function h is monotonically decreasing over the open interval (0, / tan(10)),
after which it assumes a constant value (see Fig. 4), and the two segments defined by
3.5 and 3.6 meet at the point z r tan (10), r/2 ).

Define the point w (1, V/2) that corresponds to the unit equilateral triangle. Let
(xin) } --* z be a sequence of points in the curved segment of the containability curve
defined by (3.5), and let (ytn)} ._, w be a sequence of points on the line segment of the
containability curve defined by (3.6). We can verify that xt) E_ (T)x E_E_ (T)w if and
only ifx xt) or x w, and yt) V__ T)y E_E_ T)w if and only ify is on the line segment
connecting yt) to w. From these observations, it follows that (2.1)-(2.3) hold for { xin) },
(yt)}, with z and w as defined above. E]

We shall close this section with some remarks on lifting negative results from low
dimensions to higher dimensions. For example, does the fact that containment of
rectangles is not reducible to vector dominance in any m imply a corresponding result
for rectangular boxes in 3? The simplest approach to the box problem seems to use
the "local" character of Theorem and the rectangle result: only a small portion of the
cone K { (W, L) 2+. W =< L } is actually needed, and the widths Win this portion
are bounded away from zero.

THEOREM 5. Let { 1} be a nonemptyfamily ofgeometric objects in
for somefinite k. Suppose that there is a positive number such that, for every line

].0

.95

.90

.85

w)

Containabi] ity Curve

FIG. 4
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L in 1k, every member of, contains a segment oflength 6 parallel to L. Fix d, 0 <
d < 6, and let , { ffi Fi [0, d] k+ Fi lk}. Then ifF and F2 , we
have F is containable in F2) ifand only if F is containable in F2).

The point here is that a rectangle with sides d and i can be placed in one with sides
d and > 6 only with the sides of length 6 lying along those of length ,. This forces any
isometry ofF into F2 to be induced in the obvious way by an isometry ofF into F2. It
is clear how the proposition permits one to prove the box result from the rectangle
theorem.

4. An example: quadratic polynomials. Not all interesting consequences ofTheorem
involve geometric containment. A natural partial order E__(P) is given on the set

of all polynomials with real coefficients by declaring that P (P)P2 provided P(x) <-
P(x) for all nonnegative real numbers x. It is easy to see that the restriction of E__(P)
to the class of linear polynomials is reducible to vector dominance in
(P)A2X + B2 if and only if (A, B) _-< (A2, B2). It is perhaps surprising that this result
does not extend one step further to the class Q of quadratic polynomials P(x)=
Ax + 2Bx + C with real coefficients A, B, C.

THEOREM 6. The restriction of the partial order U_(P) to the set Q of quadratic
polynomials with real coefficients is ofnonfinite dimension.

Proof. We prove the stronger result that E__(P) restricted to the set Q/ ofpolynomials
in Q with strictly positive coefficients A, 2B, C is of nonfinite dimension.

Let E__(P) denote the containability partial order on Q/, as well as the induced partial
order on the cone 3+ { (x, y, z) X > 0, y > 0, z > 0 } defined by

(A,B, C)ff__(P)(A2,B2, C2)

if and only ifAX2 + 2BIX + C E__ (P)A2X2 + 2B2X + C2. The meaning of__E(P) will
be clear from its context.

Clearly, 3+, _E(P)) satisfies (M) and (H). The reader can easily verify that
(A1, B, C1 _E (P)(A2, B2, C2) precisely if the following two conditions hold:

(4.1) A
_
A2 and C

_
C2.

(4.2) Either B -< B2 or (B B2) 2 =< (A2 A)(C2 C).

Now let z (1, 1, 1), w (2, 1, 1). Let e tn) be a sequence of positive numbers such
that e (") < 1/2 and e (") - 0, and let 6 () (e(n)(1 e()))
+ 6 ("), e(")), and y(") (2 e ("), 1, 1). A short computation shows that (2.1)-

(2.3) hold for z, w, x("), and y(") as defined above.
This theorem can be interpreted as a result about the inclusion relationship for the

family of plane sets EA,a,c { (X, y) 2 X >= O, y <= Ax2 -k- 2Bx + C } it says that
this inclusion partial order is of nonfinite dimension.

5. Containment for compact sets. In 4 of[12] it is shown that the family of
congruence classes of plane rectangles can be mapped into u, the space of infinite
sequences of real numbers, in a manner that converts containability to vector dominance,
and that this can be accomplished continuously if convergence in U is taken coordinate-
wise. We now extend this result substantially.

Let (X, d) be any metric space and let " denote the family ofall nonempty compact
subsets ofX. If El and E2 are nonempty bounded subsets ofX define

o(E,E2) sup inf d(x,y)],
xE yeE2

o(E,,Ez)=max {o,(E,,Ez),o(E2,E,)}.
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Thus 01 (El, E2) 0 ifE is contained in the closure ofE2, and (r, 0) is a metric space.
0 is a good measure of closeness of compact sets.

Suppose the topology of (X, d) has a countable base (equivalently, (X, d) is sepa-
rable), as is the case for k (k a positive integer). Let (Ln)n

_
be an enumeration of all

finite unions of members of a fixed countable base for the topology ofX which consists
of bounded open sets. Then

f=(f,,f2,’" "): ’--u
given by

f(F)=o,(F,L.)

converts cont,lnmentmnot containabilitymto vector dominance in a continuous manner.
To deal with containability, let denote the relation "is isometric to" on the family

of all nonempty bounded subsets of X and let [E] { E" E’ E} for a nonempty
bounded subset E ofX. Define

k ([E, ,E2]) inf { o(E’ ,E’2)"E Ei }
for El, E2 bounded and

f.([V]) inf {o,(F’,L’)’F’ F,L’.
for F compact, k is not in general a metric on the set of isornetry classes of compact
subsets of X, although it is if (X, d) is k with the usual metric. Nonetheless, is a
reasonable measure ofthe "distance" between two isornetry classes, andf (,f2,
converts containability to vector dominance; that f(F _-< f(F2) implies F if__ F2 is a
somewhat subtle exercise. In general f is not "continuous," but again if (X, d) is
k then

Ifn(F)-f,(F2)l =<k ([F], [F2]),

so in this case f is continuous. The central feature of k involved here is that any
isometry of one subset of k onto another extends to an isometry of k onto itself.
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A k-TREE GENERALIZATION THAT CHARACTERIZES CONSISTENCY
OF DIMENSIONED ENGINEERING DRAWINGS*

PHILIP TODDy"

Abstract. In the one-dimensional case (vertical or horizontal dimensioning of a parallel-sided object) a
consistent engineering drawing is one whose graph is a tree.

To extend this work to two dimensions, we define a new generalization ofthe k-tree, by relaxing the mutual
adjacency condition on vertices adjacent to the new vertex in the usual inductive definition of the k-tree. We
call these graphs r-trees. We also define a generalization of the cyclic property of graphs. A graph is r-cyclic if
it contains a subgraph, all of whose vertices have degree greater than r. We prove that r-trees are maximal r-
acyclic graphs.

The graph theory yields an algorithm for detecting consistency in dimensioned drawings.

Key words, k-trees, constraint propagation, dimensioning

AMS(MOS) subject classification. 05C10

1. Introduction. Symbolic dimensions imposed on an engineering drawing serve
two purposes. First, they should determine a unique geometry. Second, by selecting those
of the measurements in a figure that are to be explicitly toleranced, they constrain the
order of manufacture of the object depicted. Further, if a part is to be manufacturable
using a given tool set, it must be possible to apply a sequence ofdimensional and implicit
structural constraints of the type appropriate for that tool set. For example, while a
triangle dimensioned by the length ofits sides is uniquely defined, it would not be possible
to manufacture it from these dimensions using a machine tool that is only able to measure
distance along a line and angle at a point.

Given a set T of dimension types, we formally define a dimensioned diagram over
T as follows.

DEFINITION. A dimensioned diagram over T is the pair (G, t), where G is a mul-
tigraph (V, E) and is a function E -- T.

The correspondence between this formal definition and an engineering drawing is
illustrated in Fig. 1. In this case T { incidence, angle, distance }; V is the set of lines
and points labeled 1-6 in the drawing; and Econtains one edge el { I)2, 1)6 ) representing
the angle, two edges e2 ( vt, v3 } and e3 { vi, v5 } representing the two distances, and
six further edges e4 e9 representing the incidence relationships "point lies on line
2, point lies on line 6," etc. t is defined as follows: t(el angle; t(e2) t(e3)
distance; and t(ei) incidence for > 3.

For a dimensioned diagram where V is a set of vertical lines, and T { parallel
distance }, Requicha [6 states that such a dimensioned diagram is consistent if G is a
tree. In this paper, we define graph theoretical concepts, which serve an analogous role
in characterizing the consistency of more general dimensioned diagrams.

Notation. Let G (V, E) be a graph, and let U be a subset of V; denote (U) as
the subgraph of G induced by U, that is (U) has vertex set U, and edge set consisting
of all edges of G with both end vertices in U.

If v is a vertex of G then denote dG(v) as the degree of v in G, and denote EG(v)
as the set of edges of G that have v as one endpoint.

Received by the editors May 5, 1986; accepted for publication (in revised form) September 22, 1988.
f Computer Graphics Department, Computer Research Laboratory, Tektronix, P.O. Box 500 ms 50/321,

Beaverton, Oregon 97077.
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7_ 3

6

FIG. 1. The graph corresponding to a triangle dimensioned by two sides and the included angle. Labeled
vertices ofthe graph correspond to labeled points and lines ofthe triangle. Edges ofthe graph correspond to the
six implicit point-lies-on-line relationships and three explicit dimensions.

DEFINITION. Given a symmetric binary relation C over Twe define the dimensioned
diagram D to be (2, C)-constructible if and only if there exists an ordering vl, v2, -’-,

v. of V such that we have the following"
(i) {v,, v2} E.
(ii) For 2

_ _
n, d((o,,...,o,)(vi) 2, and if E<(v,,...,v,)(vi) {el, e2}, then

(t(e), t(e2)) C.
If V comprises points and lines in the plane (each of which has two degrees of

freedom), and each edge of E represents a constraint comprising of a single equation,
then the formal notion of (2, C)-constructibility can correspond to geometric construct-
ibility using elementary construction steps combining pairs ofconstraints from C. Suitable
choice of C will allow our formal definition of (2, C)-constructibility to correspond to
the engineering property that the part described by the dimensioned diagram is unam-
biguously manufacturable from the diagram using a given tool set.

For example, if T { incidence, angle, distance between points }, C might contain
the following pairs: (incidence, incidence), (incidence, angle), (angle, incidence), (in-
cidence, distance), (distance, incidence). This would reflect a manufacturing setup where
it is possible to construct the following"

(i) A line through two points or a point through two linesmthis corresponds to
the (incidence, incidence) pair.

(ii) A line at a given angle to another line through a given pointmthis corresponds
to the (incidence, angle) pair.
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(iii) A point on a line a certain distance from another point--this corresponds to
the (incidence, distance) pair.

A different manufacturing setup might include (distance, distance) in addition, but
as two angles do not specify a line, (angle, angle) would never be an element of C.

In 2 we develop some graph theoretical results that yield necessary conditions for
a dimensioned diagram D (G, t), to be (2, C)-consistent for any C, in the case where
G is a graph (rather than a multigraph).

2. r-Trees. A higher-dimensional analogue of a graph theoretical tree, called a k-
tree, is inductively defined 3 ], 5 as follows. The complete graph on k vertices is a k-
tree, and a k-tree with n + vertices is obtained from a k-tree with n vertices by adding
a vertex adjacent to k mutually adjacent old vertices.

We define an r-tree similarly, but relaxing the condition that the old vertices adjacent
to our new vertex be mutually adjacent.

DEFINITION. The complete graph on r vertices is an r-tree, and an r-tree with n +
vertices is obtained from an r-tree with n vertices by adjoining a new vertex adjacent

to r old vertices.
Figure 2 shows the smallest r-tree that is not a k-tree.
A necessary condition that a dimensioned diagram whose representation is a graph

(rather than a multigraph) be manufacturable is that its graphical representation is a 2-
tree (in the r-tree sense).

We define a graph to be r-cyclic if it contains a subgraph whose vertices are all of
degree greater than r. We define a graph to be r-acyclic if it is not r-cyclic. Clearly, 1-
cyclic is equivalent to cyclic. We now prove that an r-tree is a maximal r-acyclic graph.
We use the following results.

LEMMA 1. A graph with n

_
r vertices and more than rn r( r + 1)/2 edges is r-

cyclic.
Proof. The proof is by induction on the number of vertices. The result is clearly

true for graphs with at most r + 2 vertices, as the only such graph with enough edges is
the complete graph on r + 2 vertices, which is r-cyclic. Now assume the result for graphs
with n vertices and let G be a graph with n + vertices. If all vertices of G have degree
greater than r, then G is r-cyclic; otherwise look at the subgraph generated by removing
a vertex of degree at most r. This subgraph has one less vertex and no more than r fewer
edges, so is r-cyclic by the induction hypothesis. The result follows.

FIG. 2. This graph is an r-tree but not a k-tree (where k r 2).
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LEMMA 2. If G is r-acyclic with at least r + vertices and has rn r(r + 1)/2
edges, then all vertices ofG have degree at least r.

Proof. IfG has r + vertices and the required number ofedges, then it is isomorphic
to the complete graph on r + vertices. This has no vertices degree less than r. For
graphs with more than r + vertices, the subgraph generated by removing a vertex of
degree less than r is r-cyclic by Lemma 1; hence there can be no such vertex.

THEOREM 3. IfG has at least r vertices, thefollowing are equivalent:
G is an r-tree.

(ii) G is r-acyclic with rn r( r + 1)/2 edges.
Proof. (i) = (ii). Clearly, if G is an r-tree then G has rn r(r + 1)/2 edges. Now

if there is some subgraph of G, all of whose vertices have degree greater than r, look at
the last vertex ofthe subgraph added in the inductive construction of G. This must have
degree no greater than r in the subgraph, which is a contradiction from which the result
follows.

(ii) (i). We prove by induction on the number of vertices. The result is true for
a graph with r vertices, as this graph is complete. We assume the result for a graph with
n vertices and let G be a graph with n / vertices satisfying (ii). By definition and
Lemma 2 there is a vertex of degree r. The graph generated by removing this point is an
r-tree by the inductive hypothesis, and hence so is G.

COROLLARY 4. Ifwe remove a vertex ofdegree rfrom an r-tree, the subgraph gen-
erated by the new vertex set is also an r-tree.

We thus have the following simple algorithm for deciding whether a graph is an r-
tree: First ensure there are the required number ofedges, then successively remove vertices
of degree r until a subgraph with no such vertices is encountered. If this subgraph is the
complete graph on r vertices, the original graph is a tree; otherwise it is not. The algorithm
is depicted in Fig. 3.

FIG. 3. A consistently dimensioned quadrilateral and the algorithm applied to its graph.
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THEOREM 5. Ifwe remove a vertex ofdegree less than or equal to rfrom an r-cyclic
graph, then the subgraph generated by the new vertex set is also an r-cyclic graph.

Proof. If G is r-cyclic, there exists a subgraph G’ of G such that all vertices of G’
have degree greater than r in G’. Any vertex v ofG with degree r or less is not a member
of G’, and hence G’ is a subgraph ofH ( V\ { v } ); hence H is also r-cyclic.

Thus we have a simple algorithm for deciding whether a graph is r-cyclic: successively
remove vertices of degree less than or equal to r until no such vertices remain. If the
remaining vertex set is nonempty, the original graph is r-cyclic; otherwise it is not.

As sub r-trees are simply r-acyclic graphs, the above algorithm gives us a method
of determining whether a graph can be built into an r-tree by adding edges.

3. (2, C)-constructibility. In this section we develop an analogous theory to the
graph theory ofthe previous section for (2, C)-constructible dimensioned diagrams, still
with the assumption that the underlying multigraph ofthe dimensioned diagram should
be strictly a graph.

DEFINITION. Let D (G, t) be a dimensioned diagram over T, and let C be
a symmetric binary relation on T; then an element v of the vertex set of G is
(2, C)-eliminable in G if do(v)< 2 or riG(v)= 2 and if EG(v)= {el, e2}, then
(t(e), t(e2)) C.

DEFINITION. A dimensioned diagram D (G, t) is (2, C)-cyclic if G contains a
subgraph H, none of whose vertices are (2, C)-eliminable.

DEFINITION. A dimensioned diagram that is not (2, C)-cyclic is (2, C)-acyclic.
Lemmas 6 and 7 follow immediately from the definitions.
LEMMA 6. IfD G, t) is a dimensioned diagram and G is 2-cyclic, then D is

(2, C)-cyclic.
LEMMA 7. IfD G, t) is (2, C)-constructible, then G is a 2-tree.
LEMMA 8. If V is (2, C)-eliminable in G and H is a subgraph of G, then v is

(2, C)-eliminable in H.
Proof. v has degree two or less in G and therefore has degree two or less in H. If v

has degree two in H, then En(v) E(v); thus v is (2, C)-eliminable.
THEOREM 9. IfD G, t) is a dimensioned diagram and G has at least r vertices,

then thefollowing are equivalent:
D is (2, C)-constructible.

(ii) D is (2, C)-acyclic with 2n 3 edges.
Proof. (i) (ii). IfD is (2, C)-constructible, then G is a 2-tree by Lemma 7; thus

G has 2n 3 edges. As D is (2, C)-constructible, there is an ordering v, v2, "", vn of
the vertices of V such that for 2 <

_
n, vi is eliminable in { v, v2, vi } ). Now

assume there is some subgraph H of G, none of whose vertices is (2, C)-eliminable,
and let vk be the last vertex of the subgraph to appear in the above ordering. As H c

({ v, v2, "’, vk } ), v, must be (2, C)-eliminable in H by Lemma 8, a contradiction
from which the result follows.

(ii) (i). We prove (ii) (i) by induction on the number of vertices. The result
is trivially true for a dimensioned diagram with two vertices. We assume the result for a
diagram with n vertices and let D be a diagram with n + vertices satisfying (ii). By
definition, Lemma 6, and Lemma 2, D contains a (2, C)-eliminable vertex of degree
two. The diagram generated by removing this point is (2, C)-constructible by the inductive
hypothesis, and hence so is D.

COROLLARY 10. Ifwe remove a (2, C)-eliminable vertexfrom a (2, C)-constructible
diagram, then the diagram generated by the new vertex set is also (2, C)-eliminable.

THEOREM 1. Ifwe remove a (2, C)-eliminable vertexfiom a (2, C)-cyclic diagram,
then the diagram generated by the new vertex set is also (2, C)-cyclic.
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Proof. IfD is (2, C)-cyclic, then there exists a subgraph G’ ofG such that no vertex
of G’ is (2, C)-eliminable in G’. Any (2, C)-eliminable vertex v of G is not a member
of G’, and hence G’ is a subgraph ofH ( l\ { v ) ); hence the diagram generated by
H is also (2, C)-cyclic.

As a result ofthe above theorems, we have algorithms for detecting (2, C)-construct-
ible and (2, C)-cyclic dimensioned diagrams. To detect (2, C)-cyclic diagrams, remove
eliminable vertices until there are no more. Ifwe are left with a nonempty vertex set, the
original graph is (2, C)-cyclic; otherwise it is (2, C)-acyclic. To detect (2, C)-constructible
diagrams, check there are 2n 3 edges, and then make sure the graph is (2, C)-acyclic
as above.

4. Multigraph 2-trees. In 2 and 3 we restricted our discussion to dimensioned
diagrams whose underlying multigraphs are strictly graphs. In this section we identify
those multigraph dimensioned drawings for which the algorithms developed above
still work.

Multigraphs arise naturally in dimensioned diagrams in representing the parallel
distance dimension type. Parallel distance represents a pair of constraints between two
lines, and is most appropriately represented as a pair of edges between a single pair of
vertices of the underlying graph.

Figure 4 shows that our 2-tree detection algorithm does not extend intact to mul-
tigraphs. If point B is removed first the algorithm runs through to completion; if point
A is removed first, the algorithm sticks.

In this section, we constrain the definition ofa multigraph 2-tree in such a way that
our algorithm still works. Fortunately, the constraint is a natural one from the dimensioned
diagram viewpoint.

We define a multigraph 2-tree inductively as follows. A graph comprising two vertices
and one edge is a multigraph 2-tree. A 2-tree with n + vertices may be obtained from
a 2-tree with n vertices by adding one vertex and two edges adjacent to that vertex, with
the constraint that if two old vertices are adjacent to the new vertex then there is no
chain of double edges joining the two old vertices.

THEOREM 12. A multigraph with more than two vertices is a 2-tree ifand only ifit
has a legal vertex ofdegree two and the graph generated by removing any vertex ofdegree
two is a 2-tree.

Proof. Sufficiency is obvious. To prove necessity we do the following. If G is a
multigraph 2-tree, there exists a vertex ordering Vl, rE, "", vn where each vi for > 2
is the new vertex added to subgraph Vl, ",vi_ in a way consistent with the inductive
definition.

FIG. 4. This example graph shows some care is necessary in applying our algorithm to multigraphs. If
vertex B is removedfirst, the algorithm runs through to completion; ifvertex A is removedfirst it sticks.
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Clearly v is a legal vertex of degree two. Now let v be a general vertex of degree
two, and consider the subgraph generated by removing it. There are three possible cases,
in each case we display an ordering of the vertices of the subgraph that satisfies the
inductive definition:

(i) If n, then the subgraph is a 2-tree by construction.
(ii) If 2 < < n, then the sequence v, ..., v_ , v+ , ..-, v gives a legitimate

2-tree construction for the subgraph.
(iii) or 2 (without loss ofgenerality assume 1): IfG has only three vertices,

then the result is trivial. Otherwise v is adjacent to v2 and one v for 2 < j -< n.
(a) Ifj 3, then v2 and v3 are joined by a single edge and v2, v3, v gives a

legitimate 2-tree construction for the subgraph.
(b) Ifj > 3, then a simple inductive argument using the requirement that a new

vertex may not be joined to two vertices in a chain of double edges shows that v2, "’,

v must be connected by a chain of double edges. Hence the order v, v_ , ..., v2,

l)j+ 1, 1)/gives a legitimate 2-tree construction for the subgraph.
In the systems we have discussed, double edges only appear representing parallel

distance dimensions, from a dimensioning point of view the restriction in the definition
of a multigraph 2-tree prevents construction of a line or point from dimensions relating
its position to that of two parallel lines. This restriction is geometrically natural.

5. Conclusion. We have defined a new class oftreelike graphs by relaxing the mutual
adjacency condition on vertices adjacent to the new vertex in the usual inductive definition
of the k-tree. We call these graphs r-trees. We have also defined a generalization of the
cyclic property ofgraphs. A graph is r-cyclic ifit contains a subgraph, all ofwhose vertices
have degree greater than r.

The problem of identifying partial k-trees is hard [1 ], [2 ]. By contrast partial r-
trees are simply r-acyclic graphs and may be identified by the algorithm given at the end
of 2.

For r 2, r-trees correspond to consistently dimensioned engineering drawings.
The maximal r-acyclic graph property yields an algorithm for detecting consistency and
manufacturability of a dimensioned drawing. The algorithm also gives an ordering of
the graph vertices that may be interpreted (in reverse as a geometric construction sequence
for the drawing.
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THE RADON TRANSFORM ON

JAMES ALLEN FILL

Abstract. The Radon transform on Zn that arises in the analysis of directional data and
circular time series replaces each value f(k) of a function jr by the average value of f over the
translate of a set S by k. For general S the discrete Fourier transform is used to characterize the
null space and range of the transform and to calculate a (generalized) inverse transform. Explicit
forms of the coefficients in the inversion formula are obtained in the two cases S {-r, +r} and the
symmetric moving average S {-r,..., +r}. We show that the proportion of all choices S of size
giving invertible transforms is nearly unity when min(t, n t) is large.

Key words. Radon transform, Fourier analysis, Moore-Penrose generalized inverse, circulant,
circular time series, moving average
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1. Introduction.

Notation. Throughout this paper, in order to avoid notational conflict with (1.1)
below, we shall denote the complex conjugate of a number z by z*. More generally,
M* is the conjugate transpose of the matrix M. The size of a set S is denoted
The characteristic function, i.e., indicator function, of S is written s. The greatest
common divisor of integers jl ,Jk is written (Jl,... ,Jk). For real x, the largest
integer no larger than x (respectively, the smallest integer no smaller than x) is written

LxJ (respectively,
The study of directional data and circular time series is concerned with functions

] ?/n -+ or ] :/4 -+ , where ;n is the group of integers with addition modulo n and
//= [0, 1) is the (continuous) circle with addition modulo one. On n, we interpret
I(J) as the proportion of observations from the circle/g of unit circumference that lie
in the range [j/n, (j + 1)/n). For example, if the wind direction at a specified location
is recorded hourly for 24 hours and--with the circle / aligned with the compass
directions in such a way that (0/4, 1/4, 2/4, 3/4) (E, N, W, S)--n 4, then
is 1/24 of the number of hourly readings lying between due north and due west. (Many
interesting examples of circular data can be found in Mardia [10] and Batschelet [2].)
In such cases I is a probability mass function (pmf) on ?/n. In the limit as n -+ cx we
encounter probability density functions (pdf’s) ] on/g. We shall limit our discussion in
this paper to the discrete circle Zn. Corresponding issues for pdf’s on the continuous
circle L/are addressed in Fill [6].

In the analysis of (circularly or otherwise) ordered observations we commonly
filter the data. On n, this means that ] is replaced by ]:Zn -+ defined by

When s is the characteristic function x-s of some subset -S of Y/n, the corresponding
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transformation

(1.1) 7(k)-- f(j)

is called the Radon transform of f .based on (translates of) S and is the target of our
investigation here. Except for the constant factor 1/#S omitted to simplify the form
of our results, 7(k) is the (unweighted) average value of f over the translate S + k of
the set S by k, and 7, like f, is a pmf.

Two simple examples are presented in Example 2.1 below and later treated in
depth: (a)the "shell" s {-r, +r} and (b)the "ball" S {-r,...,+r}; the latter
case corresponds to the familiar (circular) symmetric moving average filter. Another
natural choice is (c) S {kd" k 0,..., n/d- 1}, with d a specified divisor of n. This
filter might be employed in the following situation. A sample x1,..., x is drawn from
a pmf ,h on 7]n and the empirical pmf is computed. Under the hypothesis that h is
periodic with period din the pmf-]/#S (d/n)"/is a better estimate of h than is .

Let S be a given subset of Zn. The fundamental question we address in this paper
is this: In what ways are the data in the "processed" form 7 less informative than the
original data? Alternatively, given , to what extent, and through what calculations,
can f be reconstructed from 7?

The answers are obtained through Fourier methods in 2. Since the Radon trans-
form Tf 7 of (1.1) is linear, the amount of information discarded by the transform
can be measured by the nullity (say, ) of T. We show how to relate v to the charac-
teristic polynomial Ps(x) ,ke.S xk of S and in 2.1 pursue this connection in detail.
We show in particular that when n is prime, 0" for any S, the transform (1.1) is
invertible. In 2.2 we show how to best choose in order to approximate a given 9 by
Tf when > 0 and g is not necessarily in the range of T: use :f Ug, where U T/ is
the Moore-Penrose generalized inverse to T. This might be useful when 7 is recorded
with some error as g and reconstruction of is desired. We use similar calculations to
characterize the set {g g for some pmf f} of interest in the data-based situation
described above.

In 3 we use results of Fill [5]-[7] to show that when both and n- are large,
the Radon transforms based on nearly all subsets of s of size are invertible. As we
show, this result to some extent complements a theorem of Freedman and Lane [8]
concerning the empirical distribution of a set of random Fourier coefficients.

When, by contrast, #S is two .or three, the nullity v can be expressed quite
simply in terms of S. Fill [7] derives the probability distribution of when S of size
is chosen at random. As a consequence we have the roughly stated conclusion that a
proportion 2/3 (respectively, 12/13) of all Radon transforms T Tn,S for which n >_ 3
and #S equals two (respectively, three) are invertible.

In 4 (invertible T) and 5 (noninvertible T) we derive explicit formulas for the
(respectively, ordinary and generalized) inverse transform v T+ (= T-1 in the
invertible case) when S is a shell or a ball. The formulas of these sections are much
more useful for considering such questions as the relative size of the coefficients u(k)
in (Ug)(j) ’keZn u(k)g(j -5 k) than are the corresponding Fourier-derived formulas
from 2.

2. Fourier analysis for Radon transforms based on translates in Zn. We
define the Radon transform T =_ TS based on translates of a given nonempty subset
of ’n (the discrete cyclic group with addition modulo n) as follows. Given 7/n C,
define its Radon transform TI " 7In C by

(2.1) (Tf)(k) ’](k) f(j), k 6. -n.
j6S+k
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In this section we shall use elementary Fourier analysis to determine exactly when the
linear transform T is invertible. The analysis will yield the (unique) Moore-Penrose
generalized inverse u T/ (see Davis [3, 2.8, 2.3]), for background to T. When T
is invertible, V is simply the (ordinary) inverse transform. Otherwise calculation of
U will enable us, for given g a --+ C, to characterize the set of solutions I to the
equation TI g. When this set is empty, we shall use u to find ] minimizing the
Euclidean norm IIT" gll.

In this paper we shall treat the following two familiar cases in detail.
Example 2.1. Let d(j,k) min{(k- j) mod n, (j- k) mod n} be the usual

bi-invariant metric on n. Here, as usual, we write a mod n b if b E (0,..., n- 1}
and a b(mod n). Define d(j) d(O,j). Let 2r -f- 1

_
n.

(a) Let Sr "= {j e Zn d(j) r} {-r, r} denote the shell o.f radius r centered
at zero. Then T

_
TS sums over the two points at distance exactly r.

(b) If S is the ball o] radius r Sr+ :- {j e n d(j)

_
r} we get the "nearest

neighbors" transform that sums ] over the 2r-f- 1 points at distance no greater
than r.

We shall find it convenient to regard each ] n -+ C as the column vector
I (S(0),I(1),...,I(n- 1))’ in Ca. Then (2.1) can be rewritten ? TI, where T
is an n n matrix with (k,)-entry tk XS(- k), k e ;n, e n. Here Xs is the
characteristic function of the set :7, and the subtraction k- is done modulo n. In
other words T is the circulant matrix

(2.2) T circ(s)

and the well-developed theory of circulant matrices [3] can be applied to the study of
Radon transforms. We shall follow much of the notation of Davis in what follows.

As demonstrated by Lemma 3 in Diaconis and Graham [4], Fourier techniques are
useful in discovering how Radon transforms based on translates behave for any finite
group. In the present setting the Fourier transform sends I" 7]a --+ to ]" n --+ C
given by

j=O

with inverse
n-1

j=O

Let (n e2ila; then the Fourier transform is represented by the unitary Fourier
matrix

(2.3) F n-ll2(kl)keZ.,eZ
and the inverse transform by F*, the conjugate transpose of F.

It is well known that every circulant is diagonalized by F. Our fundamental
theorem, Theorem 2.2, follows from Theorem 3.2.2 of [3]. Recall that the nullity of a
matrix is the dimension of its null space.

THEOREM 2.2. The matrix T of (2.2) has the diagonalization

(2.4) T-- F*AF, i.e., FT-- AF,

where F is the Fourier matrix (2.3) and

(2.5) A n1/2 diag(s(-j): j 0,... ,n- 1).
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The eigenvalues of T are therefore not necessarily distinct values

(2.6) nl/2s(-J) E e2rijk/n’ j 0,..., n- 1.
kES

Regardless of S, the columns of F* are a set of eigenvectors for T and form an or-
thonormal basis for Cn.

In particular T is invertible if and only if

"2s(j) O for every j "-O,...,n-1.

More generally, the nullity ofT is the number ofj E {0,..., n- 1} for which s(j) O.
Note s(-J) s(n- j) (s(J))*.
When S is symmetric about zero, as in Example 2.1 above, then the eigenvalues

(2.6) are real and, except for one or two values (j 0 and, if n is even, j n/2) occur
in pairs:

nl/2s(-j)-nl/2s(j)-Ecos(2--Jnk )
kES

The eigenspace corresponding to nl/2s(j) for given j 0, n/2 is spanned by the real
orthonormal vectors ((2/n) x/2 COS(2rjk/n))keZn and ((2/n)V2sin(2rjk/n))keZn.

In terms of the Radon transform (2.1), the result (2.4) can be restated

(2.7) (j)--" nl/2s(--j)](j), j e 7/n.

The norm of the transform is its largest absolute eigenvalue, namely, nl/s(0)
If ffs never vanishes, then ](j) n-1/2(j)/s(-j) for every j (i.e., T-1

F*A- F) and we arrive at the following inversion formula:

for reconstruction of f from . The coefficient of each (l) in this expansion is real.
The norm of the inverse transform is 1/min{ls(j)l j 7/n}.

In studying a noninvertible matrix T, the Moore-Penrose generalized inverse
(M-P inverse) T+ to T is of great help. This T+ is the unique matrix V satisfying
the following: (1) TUT T; (2) UTU U; (3) (TU)* TU; and (4) (UT)* UT.
As examples, if T is invertible then T+ T-L; if A diag (Ao,...,A,-I), then
h+ diag(Ag-,..., )’-1), where A+ is defined as 1/), for A 0 and as 0 for A 0.

If C is the circulant F*AF, then C+ F*A+F, [3, Thm. 3.3.1]. Our matrix T
therefore has as M-P inverse the circulant matrix

(2.9) u := T+ F*A+F

where A is given by (2.5)-(2.6). u, like T, has real entries; if T (i.e., S) is symmetric,
then so is U.

We can rephrase (2.9) by saying that if a transform v is defined in Fourier terms
by

g(j)-- [nl/2s(--j)]/(j)
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in other words by

n--1

-’0

for g /n --. C and j E /,, then U is real, linear, self-adjoint, and rotationally
equivariant, commutes with T, and satisfies TUT T and UTU U. Note

UT"--f (j) TUf(j)
0

By direct observation or from 2.8.5 of Davis [3], T and u have the same range space,
and TU UT is orthogonal projection onto this subspace of Cn. Thus the range
of T is the null space JV’(I TU) of I TU, and this space in turn equals T(TU).
Therefore

(2.11) g E T(T) if and only if (j) 0 whenever s(-J) O.

The criterion (2.11) is also directly evident from (2.7). Likewise, ./V’(T) (I--UT)
JV’(UT) T(UT)-L T(TU)-L T(T)-L, and

f E jV’(T) if and only if ](j) 0 whenever s(-J) O.

Since u+ T, we have symmetrically T(U) 7(T) JV’(T) -L JV’(u) -L. It follows
from (2.12) with j 0 that kez, I(k) 0 is a necessary condition for 0 whenever
S q); this is just as clear from the identity

(2.13)

derivable from (2.1) or (2.7), where

.= "()
jEZ

for h" Zn -- C.
Example 2.3. We return to the two settings of Example 2.1.
(a) Shells. The eigenvalues of T are

=:/:s (j) 2 cos (2j/).

(We have thus reproduced the results of 6.5.2 of Anderson [1].) It follows that the
Radon transform based on Sr is invertible if and only if n is not a multiple of 2a+2,
where 2a is the largest power of two that divides r.

Suppose now that T is not invertible. Then the nullity of the transform T is
2(n, r): we recognize the 2(n, r) vectors

]k(J) n-1/2 exp(-2rij(2k+:)/[4(’’r)]), 0 < k < 2(n, r)
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as an orthonormal basis for Af(T). Thus the null space of T consists of all vectors
in C’ periodic of period 4(n, r) (which divides n) such that the second 2(n, r) entries
are the respective negatives of the first 2(n, r). Since 7(T) Af(T) +/-, it follows that
g E 7(T) if and only if

n/[(,r)]-

(-1)g(j + g. 2(n, r)) 0 for each j 0 ,2(n, r) 1.

Whether or not T is invertible, we obtain the M-P inverse u of T via

(2.15)

(b) Balls. The eigenvalues of T are nl/fcs(O) 2r + 1 v and

nl/2(s+(j)=sin,--- / sin (---) j= 1,...,n-1.

Thus the Radon transform based on s+ is invertible if and only if n and u are relatively
prime. In any case the nullity of the transform is one less than the greatest common
divisor (n, u) of n and .

We have 2s(J) 0 precisely when j kn/(n, ) for some 0 < k < (n, u). According
to (2.12), E Af(T) if and only if the values of I add to zero (compare (2.13)) and f is
periodic of period (n, ). Since "R(T) Af(T) +/-, it follows that g 7(T) if and only if

(2.16) E g(k)
k j (mod (n,v))

is constant in j 0,..., (n, ) 1.

The M-P inverse U of T is given by

(2.17) (Ug)(j)----g(t)1 (=0-n + n-[k:-- sin,(rk)/, sin (-)] +cos (2k(j)))n
2.1. Invertibility: the characteristic polynomial. In this section we give

criteria for the invertibility of the Radon transform based on general 5’ in terms of the
prime factorization of n. The key to the analysis will be the characteristic polynomial

Ps(x) E xk
kES

of degree at most n- 1 in x. According to Theorem 2.2, the transform is invertible if
and only if P$ has no zeros among the n complex nth roots of unity, namely,

Jn e2rij/n, j---O,...,n--1.

The standard algebraic number theory results used here can be found in Washington

Case 1. n prime. We show that the Radon transform based on any proper subset s
of -n is invertible. As shown from the Eisenstein irreducibility criterion and a change
of variables trick, the so-called cyclotomic polynomial

n--1

:= 2,
k=0
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whose n- 1 distinct complex roots are the n- 1 nontrivial nth roots of unity, is
irreducible over the field of rationals. Therefore if Ps() 0 for some j e (1,..., n-
1}, then Ps (I)n, i.e., S ;n. Since Ps() #S > 0 for s , the result follows.

Case 2. n a prime power. In general the nth cyclotomic polynomial On is defined
as the (unique) monic polynomial of minimal degree satisfied by Ca e2ri/n. When
n pa with p prime and a >_ 1, (I)n is an irreducible polynomial of degree n (1 l/p)
(p- 1)pa-1 satisfied by the (p- 1)pa-1 primitive nth roots of unity with p)’. It is
well known that (I)n is in this case

p-1

k--O

It is easy to see that a polynomial P over the rationals Q of degree at most n- 1 is
satisfied by a primitive nth root of unity if and only if it is divisible by (I)n, which is
in turn the case if and only if its sequence of coefficients is constant on each residue
class of indices modulo pC-1.

Now suppose that P() 0 for some (not necessarily primitive) nth root with

j 0. Let pa- (j, n) be the highest power of p dividing j, so that is a primitive

(p)th root of unity. Define the polynomial/5 from P(x) n-1Ek-0 akxk by collecting
all coefficients with indices in a common residue class modulo p:

pf--i

k--O

pa-f-i

k :-- (k; p) :-- E ap + k, k O, p 1.
t--0

5J/(,n)Then -p P() 0, and so the sequence (k) is constant on each residue

class for k modulo p-. Conversely, if for some 1 a the reduced sequence
((k;p)) has the specified property, then p() 0 for M1 j such that (j, n) pa-.

Applying these results to P$ we see that the Radon transform based on s
will fail to be invertible ff and only ff for some e {1,..., a} we have for each fixed
j e {0,...,- 1} that the numbers

#(S {p + kpfl-1 + j" e {0,... ,pa- 1}})

are constant in k {0,..., p-- 1}. More generally, if S C { 1,..., a} is the set of all such, then the nullity of the transform is (1 1/p) es, since there are (1 1/p)
primitive (pZ)th roots of unity.

Case 3. General n. The facts about On are less simple in the "composite" case
that n has at least two distinct prime factors. In general, write (n) n prime p{n
(1- 1/p) and

0 if n is not square-free,
(n)

(-1)m if n Pl... Pm for m 0 distinct primes

for the usual Euler and Mhbius functions, respectively. It is well known that On is
satisfied precisely by the (n) primitive nth roots of unity and has the expression

(2.18) On(x) H(xn/d- 1)(d).
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In the composite case, unlike the prime power case, it is not necessarily true that all
coefficients are 0 or 1.

Here is a (somewhat unsatisfying) criterion for invertibility of the Radon trans-
form on 7/n based on S for general n. If for some divisor d of n the cyclotomic polyno-
mial Od divides Ps, then the transform is not one-to-one; otherwise it is invertible. An
algorithm of polynomial time in n to decide the invertibility of the Radon transform
based on translates of a given set s can be constructed from this criterion.

We shall now present a rather powerful sufficient condition for Ps to have a zero
among the nth roots of unity, based on ideas from the prime power case. But we shall
also demonstrate that the condition is not necessary.

Let P(x) n-1’k=O akx If the sequence (ao,..., a,_) is of the form

nip

(2.19) ak’- E E bp,g.St.,kmod,
prime pin -’0

then

primepln

niP- p--1

E bP,g E jnn/p + ?’’-0"
=0 j=O

More generally, let d be a divisor on n. Collect all coefficients with indices in a common
residue class modulo d:

d-1

.=

k--O

n/d-

(2.20) a(k; d) "= E atd+k, k O,...,d-- 1.
t=O

If (.; d) is a sequence of the form (2.19) (with d replacing n), then

o.

Observe that in the prime power case n pa, (2.19) reduces to the condition that
the sequence (ak) be constant on each residue class of indices modulo p-l; and the
corresponding condition for (.; d) reduces to the condition stated at the end of Case
2.

It is perhaps natural to conjecture that the converse is true: If P() 0 for
some j 1,..., n- 1, then for some divisor d > 1 of n the sequence (.; d) of (2.20) is of
the form (2.19). But this conjecture is false, even when (as in our application to Ps)
(ak) must consist of zeros and ones. For example, let n 30, S {0,1, 7, 8,18,19, 20},

zk Then P(1) 7 and it is easy to show that none ofand let P(x) Ps(x) keS
the coefficient sequences (.; d) is of the form (2.19). Nevertheless,

P(x) {I)30(x (x12 "4- x10 "4- x8 "4- x7 "t" x5 -f" x3 -t" 1)

since by (2.18)

(z3- 1)(z5- 1)(x3- 1)(z2- 1) xs + x7 x5 x4 x3 -1-x "4- 1;
(x15- 1)(x10- 1)(x6 1)(x- 1)
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thus P(30) 0.

2.2. Reconstruction: least squares solutions. Suppose that g" /, --. C,
purported to be the Radon transform g of some Zn -- C, is given and that
reconstruction of f from is desired, but that T is not invertible. In this section we
shall utilize u T-: to determine the extent to which such reconstruction is possible.

If j E Cn is used as an approximate solution to

(2.21) T/---- g,

then the error in the approximation can be measured by the squared length of the
residual vector R(I) R := 9 Tf in Cn, namely, IIR]I 2 ]19 Tfll 2 j=0 ]g(J)

If

(2.22) 0 ug

and f fo + h with h E Cn then

(2.23) ]]R]] 2 "-I1(I- TU)g- Thl] 2 ]l(I- TU)g][ 2 + ]]Th][ 2,

the second equality following since 7"(T) jf(I- TU) 7"(I- TU)+/-.
A least squares solution (LSS) to (2.21) is an ] 6 C’ minimizing I[RII 2. From

(2.23) it is evident that

f f0 - h is an LSS to (2.21) if and only if h @ Jf(T),

and that any such choice will achieve the least squares error (LSE)

(2.25) LSE IIRo]] 2 ]lY- ’oll 2 II(I -TU)g]I 2.

If h @ .Af(T), the two pieces Yo U and h in the LSS $ Yo + h are orthogonal since,
as we have seen, 7(u) Af(T) +/-, and so

(2.26) If $ $0 + h is an LSS to (2.21), then Ilsll Ilsoll + I1 11

Thus (2.22) is the unique LSS of minimum norm.
Of course we know that

(2.27) The LSE (2.25) vanishes if and only if

a condition that can also be tested using (2.11).
Reconstruction ofprobability mass functions. We consider once again the problem

of finding $ to minimize IIRII 2 IIg- TSII 2, but we add the probabilistically natural
condition that $ be a probability mass function (pmf) on Zn, i.e., that

(2.28a) (+) 1,

(2.28b) y(j) _> 0 for every j.

Say that y is an LSS1 (respectively, an LSS>0) to (2.21) if satisfies (2.28a) (re-
spectively, (2.28b)) and minimizes [IR[I 2 among all j satisfying (2.28a) (respectively,
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(2.28b)). We shall begin by considering the two conditions separately. The con-
dition (2.28a) is a simple one-dimensional linear constraint on E Cn. Whereas
E {g- Tf f satisfies (2.28b)} is a nonempty, closed convex set in Cn, so that at
least one LSS>0 exists, the analysis for (2.28b) is complicated by the facts that E is
not a linear subspace of Cn and that nonnegativity is not easily treated using Fourier
techniques.

We begin with (2.28a). Let 1 E (::’ denote the vector of ones. Any Cn can
be written in the form

f fo + cl + h

with h(+) 0 and nc I(+)- Io(+) I(+)- nl/20(0) f(+)- g(+)/#S. Then
by (2.23)

IIRII 2 If/toll + liT(el + h)ll 2 IIROll 2 + IIc(#5‘)1 + Vhll 2

I1 oll + + [Iv ll

The constraint (2.28a) amounts to nc 1- g(+)/#5‘, whence

(2.29)

It is now clear that

f is an LSS1 to (2.21) if and only if fl + h with h ( jf(T),

where

(2.31) fl "- f0 "}- n--l[1 g(-’)/:#:5‘],

and that any such choice will achieve the minimum error

(2.32) LSE1 IIRoll 2 + t-l[#5‘- (_]_)]2.

An easy calculation shows that

(2.33) If f fl -]- h is an LSS1 to (2.21), then Ilyll Ily ll + I1 11 :,
so that (2.31) is the unique LSS1 of minimum norm, and that

(2.34) Ily, II = II.foll = + n-111_ (,,q(+)/#5‘)2].

We have found in particular that

The four conditions

(2.35) LSE1 LSE, 1 0, o(+) 1,
are equivalent.

and g(+) #5’

As for the more difficult condition (2.28b), we shall focus on the question of when
LSE>o equals LSE. According to (2.24), this equality will hold if and only if o + h _> 0
for some h Jf(T), in which case all such ] $0 + h make up the set of LSS>o. Even
the minimum IIRII 2 for satisfying both the conditions in (2.28) will equal (2.25) if we
suppose further that 0(+) 1. Having nothing more to say in general, we pass to
our two examples, in which we suppose that the given g, and hence 0, is real valued.
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Example 2.4. (a) Shells. Suppose that T is not invertible. Define

(2.36) mj min $o(J / " 4(n, r))" 0

_
< 4(n, r)

0

_
j < 4(n, r).

If fo / h _> 0 with h E jf(T), then mj 4- h(j) >_ 0 and mj+2(,r) h(j) >_ 0 for
0 _< j < 2(n, r), and so

(2.37) mj 4- mj+2(n,r)

_
0 for 0 _< j < 2(n, r).

Conversely, if (2.37) holds and h ( jf(T) satisfies

(2.38) -mj <_ h(j) <_ mj+2(n,r), 0 _< j < 2(n, r),

(clearly such h’s exist), then f fo + h

_
0.

In particular, we have shown that

(2.39) LSE>o LSE if and only if the numbers mj of (2.36) satisfy (2.37).

Combining (2.27), (2.14), (2.35), and (2.39), we have the following summary: g R
is the Radon transform of some probability mass function if and only if the conditions
(2.14), g(+) #S, and (2.37) hold, in which case the most general such is of the
form

f fo4-h,

where Io ug is defined by (2.15) and h" Zn R is any function satisfying (2.38)
and

( + (, )) -(),

( + . 4(, )) (),

0 < j < 2(, ),
n

0 < t < 4(,)

For general g Cn we have, from the form of u computed in 5.1 below (see
(5.3)),

(2.40) LSE 2(., ) :("- "/I("’)]

j=o t=o

(-1)tg(j + t. 2(n, r))]2.
(b) Balls. Define

(2.41) mj "= min{Yo(j + . (n,))" 0 _< < n/(n,)}, 0 <_ j < (n,).

If/’ o 4- h _> 0 with h jf(T), then mj 4- h(j) >_ 0 for 0 _< j < (n, ) and h(4-) 0, so

(n,u)--i

(2.42) m+:- Z mj_>0.
j--O

Conversely, if (2.42) holds and h jf(T) is defined by

(2.43) h(j + t. (n,v)) ej mj, O <_ j < (n,v), 0 <_ <
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where

(2.44) for every j and e+ :-
(n,)--I

j=O

ej m+,

then 0 + h

_
0.

Therefore

LSE>0 LSE if and only if the numbers mj of (2.41) satisfy (2.42),

and we have the following summary: g E Rn is the Radon transform of some probability
mass function f if and only if the conditions

(#s)
0 < j <

k _---- j (mod (n,r,))

and (2.42) hold, in which case the most general such is of the form

f fo-f-h,

where fo ug is defined by (2.17) and h: ?In -’ [ is any function satisfying
(2.43)-(2.44).

For general g E Cn we have, from the form of u computed in Section 5.2 below
(see (5.10)),

(2.47) LSE (n’ ’) (’-I 9(+)[ 2

n
j=0 k _= j (mod (n,))

3. Nearly all Radon transforms based on translates of large sets are
invertible. Define St := {S C 7/n #S t}. Let S St. As shown in Section
2.1 above, the Radon transform based on translates of s is invertible if and only if

keS e2ik/d 0 for some divisor d of n. For large t, Diaconis and Graham [4]
conjectured that the Radon transform based on translates of S is invertible for most
sets S ,St when (and hence n) is suitably large. This conjecture is confirmed by
the following precise result, which is the heart of the present section.

THEOREM 3.1. Let S be a random subset of size from Zn, and let p(n, t) denote
the probability that the Radon transform based on s fails to be invertible. If (tn) is a
sequence of positive integers with min(tn, n- tn) --* oo as n --+ 00, then we have the
uniform convergence

(3.1) sup{p(n,t)’tn

_ _
n-- tn} --*0 as n ---* (:x.

Observe that s + sc zn vanishes except at the origin. Hence if S is any
nonempty proper subset of -n, then the Radon transforms based on S and on sc have
the same nullity. We therefore may and henceforth do suppose that tn <_ [n/2J and
restrict the range of in (3.1) to tn <_ <_ [n/2J. We continue to suppose tn --*

Theorem 3.1, with its conclusion (3.1) weakened to p(n, tn) -’* 0, can be related
to Theorem 1 in Freedman and Lane [8], which concerns the asymptotic empirical
distribution of the Fourier coefficients of a random permutation of a fixed vector in
Cn. We begin by observing that the sequence xs(.), indexed by n, is a random
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permutation of the vector consisting of t, copies of one followed by n copies
of zero. Define the vector zn to consist of copies of +v/(n- t)/t followed by n-
copies of-V/t/(n- t); this is the normalization appropriate to meet condition (i) of
Theorem 1 in Freedman and Lane. Condition (ii) also holds, so the theorem implies
that the random measure , placing mass 1/n at each of the n complex values zero
and

V/(n t)lt +v/il(. -t) s(J), 1,..., n 1,

converges in probability to the standard complex normal distribution, i.e., to the
distribution of u + iv, where u and v are independent real normal variables with

In particular, the nullity of the Radon transform based onmean zero and variance .
S equals nn{0} 1 and so is o(n) in probability, but this falls far short of the desired
assertion that P{nullity 0} --, 1.

Nevertheless, the preparatory lemma of Freedman and Lane [8, Lemma 4] can be
used to establish Theorem 3.1 in its full strength. A key ingredient in our proof below
of Theorem 3.1 is the following estimate (cf. (3.4) below):

(3.2) P{E e2rik/d--o}--0(t1/2)kES

uniformly for divisors d > 1 of n and tn

_
_< [n/2J. In our proof (3.2) will be

established effortlessly using bounds on the coarseness of random sums due to Fill [5],
but here we sketch an alternative proof of (3.2). Apply the aforementioned Lemma 4

taking x (t copies of + v/(n- t)/t, n copies of v/t/(n- t) ), y O, and, for
j 1,..., n, aj V cos(2rj/d) and bj V sin(2j/d) where d > 1 is a fixed divisor
of n. From the proof of the lemma, which uses bounds produced by the deep analysis
of Ho and Chen [9] for a combinatorial central limit theorem dating back to Wald and
Wolfowitz [11], we find

sup I(u) (u)l _< 48 n-1/2 V/(n t)/t,

where (in the notation of Freedman and Lane) is the distribution function of

l (1 1/n)12 V-1 Re(Ees e2ik/d) and is the standard real normal
distribution function. In particular,

(3.3) P {EkS e2k/d 0} _< 96x/ n-/2 v/(n t)/t <_ 96v/ t/2

independently of d, and (3.2) is established.
Proof of Theorem 3.1. The first step is subadditivity:

p(n,t)-P{E e2rik/d--o frsmedln}
kS

where

p(d;n,t) :--P{E e2rik/d-----O}
kS
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Of course p(1; n,t) O. For the remaining divisors d, note that Y]keS e2rik/d is the
sum of a random sample of size without replacement from the population {e2rik/d
k E 7/n} having n/d copies each of e2rik/d, k Zd. From Corollary 2.9 if n is even
and Corollary 2.14 if n is odd in Fill [5] (see also Remark 2.10 therein), it follows that
p(d; n, t) is no bigger than the modal probability of the hypergeometric ([n/2J, [n/2 t)
distribution, namely,

From here the bound

2
p(d;n,t) < (1 + o(1)) - t-l/2 O(t-l/2),

independent of d > 1 dividing n and uniform for n < < Ln/2J, follows simply.
In passing we note that the constant factor 2/v/- provided by the simple coarse-
ness results of Fill [5] is considerably smaller than the corresponding constant 96/
appearing in (3.3).

So we find

v(.,t) o ((-)/v4.) uniformly for , _< _<//2J,

where r(n) is the number of positive divisors of n and grows quite slowly with n; it is
easy to see that v(n) o(n) for any e > 0. If n >> v2(n), the proof of Theorem 3.1
is complete. To complete the proof of Theorem 3.1 in general it suffices to assume

tn < Lnl/3J and show

(3.5) p(n, t) o(1) uniformly for t, < < Inl/aj.

It follows from (3.4) in general that

2
(3.6) p(n,t) g (1 + o(1)) ._ t112 #{d g M" dln} + Z p(d;n,t)

d:M<dln

uniformly for t, _< _< In/2] for any positive integer M. The first term on the right
in (3.6) is no bigger than (1 + o(1))M (2/V/-)t/2 o(1) for any fixed M, so we turn
next to an analysis of the second term.

If v V(d; n,t) is the sum of the second coordinates of a random sample of
size with replacement from the population {(k,e2ik/d) k 0,...,n- 1}, then U,
independently of n, has the same distribution as any sum V(d; t) of independent
random variables each uniformly distributed on the d dth roots of unity, and

{ 0) >_ {all sampled items distinct}P{U 0lall items distinct}
(1 l/n)(1 2In)... (1 (t- 1)ln)p(d; n,t),

p(d; n,t) <_ [(1 1/)(1 2In)... (1 (t 1)/n)]-XP{U 0}.
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We estimate P(U 0} P(U(d;t) 0} very crudely. If d > 1 is odd, it is
simple to show that the modal probability for U(d; 2) equals 2/d2. If d is even, then
P(U(d; 2) 0} l/d, but the modal probability for V(d; 3) equals 3(d-- 1)/d3

_
3/d2.

Since convolution can only decrease modal probabilities, we .find

(3.8) P{U(d; t) --0}

_
3/d2 for all d > 1 and >_ 3.

Combining (3.6)-(3.8) we find

_< (1 + o(1)) a

rill3)
-nl/3

1--- Z d-2
n

d:M(dln

uniformly for t, <_ <_ [nl/3J for each M. As M is arbitrary, (3.5) holds and the proof
is finished.

4. Inversion formulas for shells and balls of arbitrary radius. In this
section we present useful inversion formulas (Theorems 4.2 and 4.5) for Radon trans-
forms based on shells sr {-r, r} and balls S+ {-r,...,r} of arbitrary radius r

satisfying 2r + 1 _< n. These results are displayed numerically for r 1, 2 in Tables
4.1-4.4.

Criteria for invertibility in the two cases were given in Example 2.3 above; we
shall investigate only invertible transforms in this section. In 2 above we used Fourier
analysis to write down an inversion formula valid for any invertible Radon transform
on n, but the particular results developed in the present section for shells and balls
will be seen in 4.3 below to be of an appreciably simpler nature.

In 5 below we shall extend our analysis to noninvertible transforms.

4.1. Shells. According to the following theorem, the inverse transform can be
found by solving a simple (circular) difference equation.

THEOREM 4.1. Let 2r + 1 <_ n and suppose that n is not a multiple of 2a+2, where
2a is the largest power of two that divides r. Then there exists a unique function
u" Zn --* C satisfying

1 if k=O (in?In),(4.1) u(k r) + u(k + r)
0 otherwise.

Moreover, if, given f" Zn C, -]" Zn - C is its Radon transform

+ +

then

(4.3) d(J) Z u(k)-](j + k).
kE.n

Proof. Under the stated conditions we know that the transform is invertible, so
it is possible to write

k.-n
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identically in for some u. By matching coefficients of values of we find that u

satisfies (4.1). Conversely, if (4.1) is satisfied by a given u, then so is (4.3). Since the
Radon transform is linear and invertible, a trivial vector space dimension argument
establishes uniqueness of u.

The solution u to (4.1) is not hard to find. First note that u is symmetric. Then
by setting k 2tr for successive values of t we find

(4.4) u((2t + 1)r) (-1)
1, 0<_<0,

where t0 is the smallest positive integer t such that 2tr 0 (mod n). We can check
that t0 is the odd number

nl[2(n, r)](4.5) to
n/(n,r)

if n is a (necessarily odd) multiple of 2+1

otherwise.

Conversely, if u is defined so as to vanish identically except for the stipulation that
(4.4) should hold, then the resulting u does indeed satisfy (4.1).

It is evident that u(j) u(j + 4r) is an identity in 0 _< j < j + 4r < n. It follows
that for 0 g j < n, u(j) has constant value on each residue class for j modulo 4r. It
is also not hard to see that if an inverse uo exists on ’,, then an inverse u exists on

nTk(4r) for any integer k _> 0; to wit, u(j) uo(j mod 4r) when 0 _< j < n -t- k(4r).
Thus, for example, in constructing tables for u(j) on ;n, 0 g j < n, we need only
concern ourselves with the values of n mod 4r and j mod 4r.

THEOREM 4.2. The unique solution u to (4.1) is obtained by letting (4.4)-(4.5)
hold and setting all remaining values of u to zero. The resulting u provides the inverse
to the Radon transform (4.2), in the sense that (4.3) holds.

Example 4.3. For the cases r 1, 2, Tables 4.1 and 4.2 give the values of u(j)
when 0 _< j < n.

n mod 4

TABLE 4.1
Inverse Radon transform

u .for shells of radius r-- 1.

j mod 4

0 1 2 3

0 no inverse

+1/2 +1/2 -1/2
0 +1/2 0 --1/2 +1/2 +1/2
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n mod 8

TABLE 4.2
Inverse Radon transform

u for shells of radius r 2.

j mod 8

0 1 2 3 4 5 6 7

no inverse

0 0 +1/2 0 0 0 - 0

_i-- +1/2 +1/2 + - -+1/2- 0 +1/2 0 + 0 - 0- - +1/2 +1/2 +1/2 +1/2 - -
4.2. Balls. The next result sets up the difference equation analogous to (4.1)

for a ball of radius r.

THEOREM 4.4. Let 2r-b 1 <_ n and suppose that (n, 2r-b 1) 1. Then there exists
a unique function u" In --+ C satisfying

(4.6) ,( ,.) +... + ,( + ,.) /
I, O, otherwise.

Moreover, if, given y" n --+ C, 7" In - C is its Radon transform

7() .f(- ,-) +... + .f( + ,-),

then

(4.s) () ()7(; + ).
kEln

Next we show how to solve (4.6) for the (symmetric) function u. The results are
presented in Theorem 4.5 below. For simplicity we employ the notation, 2r-+- 1 for
the number of values summed in forming the transform (4.7) and j* for that value in
the set {-r + 1,..., r / 1} of u elements to which a given integer j is congruent modulo
u. That is, j* (j + r- 1) mod u (r- 1). We begin by subtracting successive
instances of (4.6) to produce the simpler identity

(4.9)
+1 ifj=r(in/n),

u(j)-u(j-u)= -1 ifj=r+l (in/,),
0 otherwise.

Using (4.9), we find it simple to derive

(-) ( ) u((n )*).
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The equality
+ (,-

follows in the same manner, provided (n-r)* is congruent to neither r nor r+ 1 modulo
n, that is, provided n -1 (mod u) and n 0 (mod u). Likewise,

,.)*) ,.)*)

provided 2n -1 (mod u) and 2n 0 (mod u). Continuing along these lines, we find

(4.10) u(-r) u((&- r)*), 1 <_ g <_ _,
where l_ is the smallest positive integer / such that In -1 (mod u). (Note that
since by assumption (n,u) 1,/n 0 (mod u) for 1 _< / < u, while in -1 (mod u)
for some such value, namely, l_.) As (4.10) is obtained, so is

(4.11) u(-r- 1) u((ln + r)*), 1 <_ l <_ l+,

where i+ is the smallest positive integer / such that in +1 (mod u).
It is easy to show that l_ + l+ u and that the u u-indices appearing on the right

in (4.10)-(4.11) are distinct and make up the set {-r + 1,..., r + 1}. Thus from (4.6)
with k 1 we see

l_u(-r) +/+u(-r 1) 0.

On the other hand, from (4.9) with j r we find

u(-r)- u(-r- 1)= 1

using the symmetry of u. Hence

(4.12) u(-r)

As with shells, in constructing tables for u(j) on n, 0 <_ j < n, we need only concern
ourselves with the values of n mod u and j mod u.

THEOREM 4.5. The unique solution u to (4.6) has only two values, namely
and t_/u, where u 2r + 1 and l+ u l_ is defined to be the smallest positive
integer t such that in +1 (mod u). The solution is obtained by first defining u(-r)
and u(-r- 1) by (4.12); next using (4.10)-(4.11), where j =_ j* e {-r + 1,... ,r

1} (mod u), to set the values of u(-r + 1),... ,u(r + 1); and finally using (4.9) to set
the remaining values of u. The resulting u provides the inverse to the Radon transform
(4.7), in the sense that (4.8) holds.

Example 4.6. For the cases r 1,2, Tables 4.3 and 4.4 give the values of u(j)
when 0 _< j < n.

TABLE 4.3
Inverse Radon transform
u for balls of radius r 1.

n mod 3

j mod 3

0 1 2

no inverse

2
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n mod 5

TABLE 4.4
Inverse Radon transform
u for balls of radius r 2.

j mod 5

0 1 2 3 4

0 no inverse

4.3. Comparison of inversion formulas. Suppose that the Radon transform
on ’n based on the shell Sr is invertible, and let u be its inverse, in the sense of (4.3).
It follows from the Fourier calculation (2.15) that

n--1
1

jo
cos(2rjk/n)

(4.13) u(k) "n cos(2rjr/n)’
k e n.

By Theorem 4.2, these u’s simplify to (4.4)-(4.5) for k congruent to an odd multiple
of r modulo n and vanish otherwise. An identity for the trigonometric sum on the
right in (4.13) is obtained as a byproduct of the comparison. Clearly Theorem 4.2 is
a great practical improvement on (4.13).

Likewise, for balls Theorem 4.5 improves on the Fourier result

(4.14) u(k)
1 1 sin(rj/n) 2rjk

-"t- k E -ns.n,r_u.n COS nn
"_

5. Generalized inverses for shells and balls of arbitrary radius. In this
section we continue our non-Fourier investigation of Radon transforms on 7]= based on
translates of shells S {-r, r} and balls s+ {-r,..., r} of radius r with 2r + 1 <_ n

begun in the previous section. Here we consider only transforms that are not invertible.

5.1. Shells. Throughout 5.1 we suppose that 2r+ 1 _< n and that n is a multiple
of 2a+2, where 2 is the largest power of two that divides r. That is, we suppose that
the Radon transform T on ?]n based on the shell S is not invertible.

A simpler form of the M-P inverse (2.15) is provided by our first result.
THEOREM 5.1. If u" Zn - R is defined by setting

(5.1)
1

u((2g + 1)r):= (-1)a 1-(2g + 1)
2(n,r)

n

n

2(, )’

and u(j) := 0 otherwise, then u is symmetric and the transformation

(5.2)

i.e., the matrix circ(u(-.)) circ(u), provides the M-P inverse to the Radon transform
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based on St.
Proof. For any u ?]n C: the corresponding mapping u of (5.2) satisfies TUT T

if and only if TUTf Tf for every coordinate vector , i.e., if and only if u satisfies

1
(- ) + ()+( + )

0

if k +/-r (in 7/n),
otherwise.

Using the observation that n/[2(n, r)] is even and the smallest positive integer g for
which 2gr _= 0 (mod n), we can show by direct calculation that the function u of
(5.1) is indeed a solution to this difference equation. Since T and the resulting v are
circulants, they commute. Finally, one can check directly that UTU U.

By direct calculation, the image of the usual zeroth coordinate vector e0 in Rn
under I- TU is the multiple 2(n, r)/n of the vector w E Rn defined by

w(k) { 0(--1) if k 2& (mod n) for some

otherwise,

Hence for general g E Cn

if k g. 2(n, r) (mod n) for some 0 _< g < n/[2(n, r)],
otherwise.

(5.3) ((I- TV)g)(j) 2(n, r) n/[2(] - (--1)tg(j + g" 2(n, r)), j e 7/n,
n

g=O

and (2.40) above follows.
From the equality of (5.2) and (2.15) we have the byproduct

(5.4) u(k)- -n
j=o

cos
/

cos

for the sequence u described in Theorem 5.1. This result is a companion to (4.13)
above.

5.2. Balls. Throughout 5.2 we suppose that 2r + 1 _< n and that (n, .) > 1,
so that the Radon transform T on 7/, based on the ball &+ is not invertible.

We begin with an analogue of Theorem 5.1 for balls that display the M-P inverse
(2.17) in simplified form.

THEOREM 5.2. Define u" Zn -+ in three stages. First, set

(5.5) u(u r) (n,u)(g_ _) 1
0<g<_ _n

n n 2’ (n, )

then define u(-(eu- r))"= u(eu- r) for the same values of e; and finally set

1
(.) ()

for the remaining values of j. Then u is symmetric and

(.r) (v)() y ()( + )
kEZn
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i.e., the matrix circ(u(-.)) circ(u), provides the M-P inverse to the Radon transform

+ +

based on Sr+.
Proof. The mapping V of (5.7) satisfies TUT T if and only if u satisfies

u(k+t+m)-- (1 ifkE(--r,...,r}

=-r m=-r 0 otherwise,

i.e., T2u X{_r r}. Now define u as in the theorem and v" 7/n --+ R by

v(O)-- 1 -[(n,u)- 1],
n

n
(5.8) v(g" (n, u)) --[(n, u)- 1]

0 < e < (n, )n

v(j) 1/n otherwise.

The sum of any (n, ) (circularly) consecutive values of v excluding (respectively, in-
cluding) v(0) equals one (respectively, one); it follows that Tv X{_r r}. We show
next that Tu v, completing the proof that TUT T. A key observation in this
regard is that if 0 < t _< n/(n, u), then

(([(:,,)
1 (n,u) [ n 1 1=-+ L /l-,g-
nu n (n,u) 2

n ] ),in, u) +1- -r

holds in addition to (5.5), so that

2
u(gu (r + 1)) + u(g.u r)

is constant in .
We consider three cases.

(a) If j 0 (mod (n, )), then all terms in (Tu)(j) k=-r u(j+k) equal 1/(n)
except for u/(n, ) pairs of the form (u(t-(r+l)), u(i-r)). Thus (Tu)(j) 1/n v(j).

(b) If j gu (mod n) with 0 < g < n/(n,u), then (Tu)(j) 1In -F u(gu- r)--u((g q-
1)-r) 1/n- (n,y)/n v(j).

(C) If j 0 (mod n), then (Tu)(j) 1/n + u(--r) u( --r) is larger than in case
(b) by one, and so equals v(0).

Thus TUT T. Since T and u are circulants, they commute. There remains only
the proof that UTU U. For this we note first that

(5.9a) (I- TU)eo eO --v n
-1 [(n, u)x- 1]

where the vector v is defined by (5.8) and the vector x by

(5.9b) x(k) { O1 otherwise.ifk 0 (mod (n,u)),
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Now (Ux)(j) -,k -:1 (mod (n,v)) u(k) has the value (n/(n,v)). (1/nv) 1/v(n,v) if

j is congruent to neither :t: r (mod (n,v)) and the (same!) value

n/(n’v)[1 (n,v) () 1 I 1

otherwise. Thus the constant value of u1 is ’keZ, u(k) (n,v). (1/v(n,v)) 1/v
and

(U UVU)eo n-1 [(n, v) Ux U1] 0.

Since u is circulant, it follows that u UTU.
From (5.9) it follows that for general g E Cn

(5.10) ((I- TU)g)(j)
n

k_j (mod(n,v))

and (2.47) above follows.
From the equality of (5.7) and (2.17) we obtain the complement

u(k)
1 1 sin (-2) +

n cos
n

./=z
sin (-) n

kEZn,

to (4.14) for the present noninvertible transform.
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SORTING IN AVERAGE TIME o(log n)*

M. AJTAI’, D. KARABEG:, J. KOML(S, AND E. SZEMERIDI

Abstract. This paper presents a comparison sorting algorithm for the abstract CRCW PRAM parallel
computer model. The algorithm sorts n input values using n processors and runs in time O(log n/log log n)
on the average, assuming that all permutations of the input are equally likely.

Key words, sorting, average-time complexity, parallel algorithms

1. Introduction. The parallel computer model we will be using is a powerful variant
of the concurrent-read-concurrent-write parallel random access machine called the Ab-
stract PRAM. It consists of an unbounded number of random-access memory cells,
each of which can store an unbounded number of bits, and of a set of N processors
{ P, PN}. In one unit of time each processor can read one arbitrary memory cell
(possibly concurrently with other processors); do an arbitrary computation on the contents
of its unbounded internal memory; and write to an arbitrary memory location. If several
processors write to the same location, the one with the largest processor number will
succeed.

When a computation is initiated, all the processors start executing their programs
concurrently and synchronously. The computation terminates when all the processors
terminate.

The unbounded computing power ofthe processors enables us to de-emphasize the
cost of computation entirely, and to concentrate on the communication issues.

We say that a parallel algorithm solves the sorting problem if, when given n values
from an arbitrary ordered set in the first n memory cells M[ 1, n] as input, on
termination of the algorithm the first n memory cells contain the input values in nat-
ural order.

It can be immediately observed that any function of the input can be computed in
O(log n) time (n is the size of the input measured as the number of memory cells that
contain the input), if the number of processors is O(n). Indeed, it suffices to merge the
input values into pairs iteratively, until all the inputs are contained in one memory cell,
and then read them into one processor that can then compute an arbitrary function in
unit time. Consequently, we will be interested in studying the possibility ofsublogarithmic-
time computation.

It is also easy to see that an increased processor power is necessary if we want to
sort in sublogarithmic time with O(n) processors. The ft(n log n) comparisons required
for sorting give an immediate fl(log n) lower bound for any parallel machine with n
processors whose processing power is limited to doing one comparison at a time. On the
other hand, sorting in logarithmic time can be done even with a much less powerful,
"realistic," computer model (the parallel sorting network ofAjtai, Koml6s, and Szemer6di
[AKS]). Concurrent reads and writes are also necessarymthe ft(log n) lower bound for
the exclusive write PRAM model for computing the logical OR function (see Cook,
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Dwork, and Reischuk [CDR]) yields the same lower bound for sorting. On the CRCW
PRAM the logical OR can be computed in constant time in an obvious way.

A lower bound f(//log n for sorting on CRCW PRAM with unbounded processor
power has been proved by Meyer auf der Heide and Wigderson [MW]. They have con-
jectured that the tight lower bound is 2(log n). Beame and Hastad [BH have recently
proved the lower bound f(log n/log log n) for parity on the same machine model, which
implies the same lower bound for sorting. Karabeg [K] has pointed out that the same
lower bound holds for computing parity (and sorting) with probability 1/2 + e.

On the other hand, even the prefix summation problem recently has been shown
to have time complexity O(log n/log log n) with a linear number of processors (Cole
and Vishkin [CV]; see also the earlier paper by Reif [R]).

We remark that using more than n processors it is easy to sort in sublogarithmic
time. We can use the AKS sorting network and take advantage of the extra processors
to "look into the future" by comparing an input to multiple inputs in parallel. (Teams
of processors are used for each multiple comparison. Each team is assigned the task of
verifying in constant time one of the possible outcomes of the multiple comparison.)
This results in a O(log n/log log k)-time sorting algorithm if the number of processors
is kn.

In this paper we present a sorting algorithm using n processors that runs in
O(log n/log log n) time for most inputs (and also on the average, assuming that all input
order types are equally probable).

2. The algorithm. With n2 processors, sorting is as easy as counting because we
can assign n processors to every input element that compares the element with all others.
Counting, done by the mentioned prefix summation algorithm, provides the rank. We
will call such a procedure QSORT.

The idea behind our sorting algorithm is to select a large subset of the inputs, sort
them using QSORT, and compare the rest of the elements to them in parallel. (This, in
a way, resembles Quicksort.) To do these latter comparisons fast enough, a k-ary search
tree is built on the sorted elements, where k is equal to log n. When searching through
the k-ary tree, a processor can take advantage of its unbounded computing power to
compare an input element to k keys at a time, thus gaining a factor log k in comparison
to a binary tree search. We shall call the selected and sorted inputs bucket separators, or
separators for short, and the rest of the inputs will be called bucket elements. All bucket
elements whose values range between two adjacent bucket separators form a common
bucket.

The above procedure can now be applied to each bucket iteratively until all the
buckets are of a "manageable" size with a large probability. At that point the elements
within each bucket are sorted and counted. The prefix sums of the bucket sizes are
produced next. The rank ofeach element is computed by adding its rank within its bucket
to the prefix sum that corresponds to the sum ofthe sizes ofbuckets with smaller elements.

2.1. Procedure SIFT. The partition ofinput elements into buckets and bucket sep-
arators is produced and refined by iterative application of procedure SIFT. It consists of
four phases. The first phase selects a subset of each bucket, of size roughly equal to the
square root of the bucket size. This selection is done as follows. In every round of SIFT
we define a hash function by reading in new bits of the addresses of the input elements.
Then every element attempts to write into the location corresponding to the value of its
hash function in a separate table reserved for its bucket. The one that succeeds is selected.

The selected elements become new bucket separators. In the second phase the new
bucket separators are sorted by using the QSORT procedure. In the third phase the sorted
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separators are composed into a k-ary search tree. In the fourth phase each bucket element
is compared to the search tree and new buckets are formed of elements that belong to
the same leaf of the search tree.

The shared memory is divided into three segments, denoted I, S, and W. The
segments are of size n, and they represent the space for the input elements, the space for
the bucket separators, and the "scratch-pad" working space, respectively.

A location in the S segment is assigned to each bucket separator so that a larger
address corresponds to a larger separator. Each bucket is represented by a bucket identifier
that is the address within the S segment (an integer from 0 to n of the location

assigned to the smaller ofthe two separators that define the bucket. The bucket identifier
is known to each element of the bucket. Before the first iteration of the algorithm SIFT
is started, the whole input is one bucket, with identifier 0.

All processors execute each iteration ofSIFT in synchrony, all working on the same
phase at the same time, except some of them possibly being idle.

ALGORITHM SIFT(i).

Phase I. Pj reads the next d digits of j, where d [2 -i log nJ. These
d digits describe a number r in binary.

Pj attempts to write xj into cell W[l(xi) + r]. Each processor reads the
same location to verify if the write was successful, and if yes,
labels xj as a bucket separator.

Phase 2. QSORT bucket separators. Ass ign bucket ident if iers to
bucket separators.

Phase 3. Within each bucket, build a k-ary tree from the new
bucket separators in W-space.

Phase 4. Processors search through the k-ary tree in parallel to
f ind their ref ined bucket id.

2.2. Procedure COLLECT. After the division of elements into buckets has been
sufficiently refined by successive application ofprocedure SIFT, the elements that belong
to a common bucket need to be sorted. Even though the buckets are now small and
could be sorted with an O(log n) sorting algorithm, the problem of sorting the buckets
is still not trivial because it is not globally known which inputs belong to the same bucket.
Consequently it is not obvious how to organize a collection of processors to execute an
algorithm on the elements that belong to a common bucket. This gives rise to the following
problem.

DEFINITION 2.1. We say that an algorithm solves the collection problem if, when
presented with n values in M[ 1, n on input, each input value consisting of a data
field from an ordered set and a key in 1, n], it produces some encoding of each
set of inputs with the same key (buckets) in memory cell M[ i].

We propose the following algorithm that has a very good expected behavior. The
algorithm will build a binary search tree on the elements with the same key and then
proceed through the tree bottom-up merging the child vertices with their parent.

Input in M[ i] is associated with processor Pi. Note that by having a processor read
the cell it is about to write, new information can be written into memory cells without
destroying the existing information.



288 AJTAI, KARABEG, KOMLOS, AND SZEMERIDI

ALGORITHM COLLECT.

Phase 1. All processors in parallel: processors whose asso-

ciated inputs have a key equal to all attempt to write their pro-
cessor number and data value into the same memory locat ion M[ i]. This
selects one processor with index j =j(i) for every i.

All other processors with key change their key to j, and compare
their data value to that inM[i]. The ones with a smaller value attempt
to write into memory j, this way selecting the left child of j. The
right child is selected in the same way.

Repeat the above recurs ively.

Phase 2. After the trees are constructed for all buckets, tra-

verse the trees bottom-up and merge the data at each step.

2.3. Algorithm PSORT. We are now ready to describe the PSORT algorithm for
sorting n inputs with n processors. The algorithm consists of four phases. In the first
phase the partition ofthe inputs into bucket elements and bucket separators is produced
and refined by successive application of procedure SIFT. Next, the bucket elements are
brought together by procedure COLLECT. In the end, the prefix sums of the sizes of
buckets are computed, and the rank of each input is set to be equal to the sum of its
intrabucket rank and the appropriate prefix sum. Finally, each input element x; is re-
positioned to a location whose address is equal to the rank of xi.

ALGORITHM PSORT.

Phase I. Perform SIFT(i) iteratively for I, log log n.

Phase 2. Perform COLLECT on the input elements, with the input
values as the data items, and the bucket identifiers provided by
SIFT as keys.

Phase 3. Produce the sizes of the buckets in the corresponding
locat ions in S segment. Perform on the S segment an algorithm that
produces the pref ix sums.

Phase 4. Each processor Pi reads the pref ix sum from the location
S[l(xi)] and learns the rank of x/within its own bucket from the result
of COLLECT. Pi produces the f inal rank(x/).

Phase 5. Each processor Pi stores input value xi into address
rank(x/).

3. Analysis of PSORT. In this section we give a sequence of results that lead to
the conclusion that, with an overwhelming probability, the algorithm PSORT terminates
in O(log n/log log n) time. We first show that the iterations ofSIFT in Phase ofPSORT
terminate in O(log n/log log n) time. Subsequently we show that, with a large probability,
the largest bucket size s at the start of the COLLECT procedure is small compared to n,
or, more precisely, that log log s o(log log n). This will allow us to conclude that
COLLECT terminates in O(log n/log log n) time with a large probability. The final
stage, namely computation of the prefix sums and the ranks of the inputs, is done in
O(log n/log log n) time by using a known parallel summation algorithm [CV].
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3.1. Analysis of SIFT. As explained earlier, the algorithm SIFI" is applied iteratively
to produce a sufficiently fine partition of the input elements into buckets. Here we first
show that the time required for the log log n iterations of SIFT as performed in Phase
of PSORT is O(log n/log log n). Subsequently, we show that the largest of the buckets
produced as a result of Phase of PSORT is small with a large probability.

LEMMA 3.1. Phase of PSORT terminates in O(log n/log log n) time.
Prooj Phase of SIFT(i) requires only a constant time, Phase 3 terminates in

O(log log n) time, and Phases 2 and 4 each require no more than O(log w/log log w),
where w is the size of the region in the working space used for selecting the bucket
separators, w= ?l 1/2i. Hence, the ith iteration of SIFT requires no more than
O(( 1/2i)(log n/log log n i) + log log n) time. The result follows by summing the
values of this expression for ranging from one to log log n.

To derive a bound on the size of the largest bucket on termination of Phase of
PSORT, we need the following elementary technical result.

LEMMA 3.2. Given a set S ofsize s and a set ofl labels such that s >-_ l, a subset of
S is selected asfollows. A labelfor each element ofS is selected at random with replacement,
andfrom each subset ofelements with the same label one element is selected at random.
Then the probability that any given element ors is selected exceeds l 3s.

Proof. Note that the number of selected elements will be equal to the number of
selected labels. If labels are selected, the probability that an arbitrary element x S is
selected is equal to i/s since, by symmetry, all elements have the same probability of
being selected. Let 6 be a real constant, 0 _-< i -< 1. Then

P(x is selected) _t p( labels are selected)
i=l S_
6l , p( labels are selected)
S i=6l

This probability can be estimated as follows:

P(x is selected) >- max P( 6l or more labels are selected)
s

max P(less than 6l labels are selected)
s

=rnax(1-(6ll_l)(-))
> max 1- 6

s l/2

By choosing 6 2
l- and applying the Stiding’s formula, we have

P(x is selected) > ss > 3--
as claimed.

We now turn to the bound on the largest bucket size.
LEMMA 3.3. Let B denote the size of the largest bucket at the end ofPhase of

PSORT, and let n be the number ofinput elements. Then the probability that B exceeds
2(3c log r/)lglg n is smaller than rl 2-c.
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Proof. Note that, by symmetry, in any iteration of SIFT all the elements within a
bucket have the same probability of being selected as separators. Also note that the
probability that a given element is selected is smaller if the size of its bucket is larger.
Consequently, the elements of the largest bucket will be the least likely to be selected as
separators.

Let Pi be the minimum over all input elements x ofthe probability that x is selected
as a bucket separator during the first iterations of SIFT. Let Bi be the size of the largest
bucket after the ith iteration of SIFT. Then by the above argument and Lemma 3.2,

nl/2
Pi - Pi-1 -].3Bi-1

We now claim that

c
(2) Bi <=-ff log n
with an overwhelming probability that depends on the constant c. This bound on Bi
implies the desired bound on the final bucket size B. By and (2)

(3) Bi <= 3cBi_ n-/2 log n,

(4) B0=n,

hence, for log log n,

(5) Bi B<(3C= log n)lglgnn 1-5lggnz-i’-’j=

and the required bound

(6) B _-< 2( 3c log n)lglg

easily follows.
To estimate the bound on the probability that (2) is violated, let us consider the

probability Qi(j) that some given j consecutive elements (in the natural order) are not
selected for separators in the first rounds. Clearly,

7 Qi(j) <-- Pi)J.

Substituting the expression for Bi from (2) for j, we obtain

(8) ai( c lg n ) < (1- Pi)clgn/i’ < e-clgn n -c

e
Since there are no more than n sequences of consecutive input elements of the specified
length, the probability that (2) is violated for some sequence is at most n . Consequently,
the probability that (2) is violated in some of the log log n iterations of SIFT is at most
n(l-c) log log n, which is smaller than n2-c. [-]

3.2. Analysis of COLLECT. The running time of COLLECT depends on the size
of its input buckets. Consequently, a bound on the running time of COLLECT will be
shown to hold with an overwhelming probability under the assumption that the bucket
sizes are bounded.

LEMMA 3.4. Let n input elements be distributed into buckets so that the size B of
the largest bucket satisfies the inequality

(9) log log B _-< 1/2 log log n.
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Then the probability that the time T(n requiredfor running the algorithm COLLECT
on all the buckets in parallel exceeds c(log n/log log n) is smaller than cln -c/3, where
c is a constant.

Proof. Observe that the selection in Step of COLLECT of the bucket element
subsequently used to subdivide the bucket is such that all the elements have an equal
chance of being selected (we assume that all input permutations are equally likely). We
can model this random selection by a uniformly distributed random variable u, u e
(0, ]. For a bucket of size B, the bucket element that corresponds to a given value of
u is determined by its rank within the bucket, [ uB].

Algorithm COLLECT consists oftwo phases, one in which the bucket elements are
organized into a binary search tree, and one in which the tree is traversed bottom-up. A
constant number of steps is spent on each level of the longest directed path of the tree
in each phase. Thus, the time the algorithm requires to collect one bucket is a constant
multiple of the height of the tree that corresponds to that bucket. Since all the buckets
are collected in parallel, the total running time of COLLECT is a constant multiple of
the height ofthe highest search tree corresponding to a bucket. Hence, it suffices to exhibit
a bound on the maximum height of a search tree.

Let Px(d) be the probability that a specific leaf x is at the level d or higher. Let ui
be the random variable corresponding to the selection ofthe internal node (the subdividing
element) of the search tree at level ofthe directed path of the tree corresponding to leaf
x. Then

Px( d) <-_ P U >

p(eZ/=, log ui> e-log B)
p(etY/=, log Ui > e-t log B)

for any real constant > 0. Since by Markov’s inequality P(x > c) <- Ex/c (cf. [Rn, p.
85 ]), then

EetY /= log Ui

Px( d) <-

(10)
e-tlgB

d B
BtE I-I etlgui= Bt(Eut)d--

i=l (l+t)d"

Here we used the fact that all random variables ui are independent and uniformly dis-
tributed.

By computing the minimum of the fight-hand side of (10) with respect to we find
that the best bound is obtained for

d-log B
(11) t=

log B

Substituting 11 into (10), we have

(12) P(d) -< exp d log
log

Since, by assumption, log log B _-< 1/2 (log log n), then

.<e-(l/3)clogn(13) Px c
log log n

n-C
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There are less than n leaves in all trees. Hence, the probability that some leaf is on
level (c(log n/log log n)) or higher does not exceed

(14) nP c
log log n

which is smaller than n -(c/3-). [:]

The results of this and the previous section allow us to conclude the following
theorem.

THEOREM 3.1. The probability that the running time of PSORT on an input of
size n exceeds C(log n/log log n) is less than n -c’ where C’ is proportional to C.

4. Concluding remarks. We have described a deterministic sorting algorithm called
PSORT that sorts most of the inputs in time o(log n). It is easy to see how PSORT can
be modified into a probabilistic sorting algorithm that sorts any input in expected time
o(log n).

By reviewing the existing upper bound results in parallel computing it can be observed
that, with few exceptions, the probabilistic upper bounds match the corresponding de-
terministic upper bounds. Techniques that have been developed in recent years for "sim-
ulating randomness" usually allow for constructing efficient deterministic algorithms
whenever there is an efficient probabilistic algorithm for the same problem. Whether or
not such techniques can be effective in the present case remains an open question. If the
f(log n) lower bound conjectured in [MW] turns out to be exact, this problem will be
one of the few in parallel computing for which the probabilistic upper bound is smaller
than the deterministic lower bound.

Acknowledgment. We are indebted to Jeff Kahn for several fruitful discussions on
the topic.
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Abstract. A question from biological sequence comparison can be formulated as a simple problem in
matrix algebra. While this problem can be solved by matrix inversion, its special structure permits a compu-
tationally more efficient solution by means of graph theory.
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Introduction. An important question in biological sequence comparison is how to
align two or more sequences so as to elucidate their similarities. Dynamic programming
algorithms are generally recognized as the method of choice for aligning two sequences
(Needleman and Wunsch [7], Sellers 10], Waterman 11 ]). The generalization of this
approach to multiple sequences that is closest to biological intuition computes a multiple
alignment that minimizes the cost of an evolutionary tree (Sankoff [8 ], Sankoff and
Cedergren 9 ], Altschul and Lipman 3 ]). A variation that permits algorithms requiting
much less space and time computes a multiple alignment that minimizes the sum ofthe
costs of all imposed pairwise alignments (Carrillo and Lipman 4 ], Altschul and Lipman
3 ], Altschul ]). For this strategy to yield biologically reasonable results, the costs of

the various pairwise alignments need to be given different weights (Altschul, Carroll, and
Lipman 2 ]). The reason is best illustrated by considering an alignment ofthree sequences
A, B, and C. Imagine including several sequences very similar to A in the multiple
alignment. If all pairwise alignments are given equal weight, then the many pairs similar
to A B and A Cwill outvote the single B C pair. Sequence A will essentially dictate
the multiple alignment simply because there are several copies of it in the data. Since
most any set of related DNA or protein sequences will contain some sequences more
closely related to one another than to the rest, this problem remains even if extra copies
of virtually identical sequences are removed. A way is needed to weight the pairwise
alignments so that redundant information is discounted.

Pairwise distance information can be used to construct an unrooted evolutionary
tree relating a set of sequences so that the leaves of the tree correspond to the input
sequences (Felsenstein [6 ]). Each edge of the tree is assigned a length that estimates the
amount of change occurring along that edge. Altschul, Carroll, and Lipman [2 argue
that, given such a tree, it is possible to define correlation coefficients for the pairwise
alignments. Finding appropriate pair weights for use in constructing a multiple alignment
then reduces to a problem in matrix algebra which can be solved by simple matrix
inversion. However, the given evolutionary tree imposes a special structure on the matrix
in question. This permits a graph theoretical solution which requires time that is only
linear in the dimension of the matrix. Certain interesting graph theoretical constructs
arise from the consideration.

Our problem is analogous to one considered by Felsenstein [5], in which he seeks
weights for the individual leaves ofa rooted evolutionary tree. His formulation also gives
rise to a problem that can be solved by matrix inversion but whose special structure
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permits a linear time solution. The parallel between his results and ours suggests the
possibility of a more general theorem.

The lroblem. In all that follows, we will assume that we have been given a tree T
with edge set E, and vertices divided into a set of leaves L and a set of internal vertices
N. We define P as the set of unordered pairs of distinct leaves. To each p P there
corresponds a unique path through the tree. Call the set of internal vertices in this path
Np, the set of edges in the path Ep, and denote by Er the set of edges in an arbitrary
path r.

Assume each edge e e E has a length le. Extend the concept of length by letting
lp eeEp le and lpq eEp CIEq le for all pairs p, q 6 P.

Define the symmetric matrix M with rows and columns indexed by the set P by
Mr,, (l,/l.lo). We seek a solution to the matrix equation

(1) M.=
where is a vector of ’s.

It is possible to solve for Y simply by writing Y M-. To calculate Y this way,
however, requires inverting a PI PI matrix. Just to write down the matrix requires
O(I p]2) time. We show below that the special structure of this problem allows us to
solve for Y in o(Iel) time.

A graph theoretical solution.
DEFINITION 1. An edge choice c:N E is an injection such that for all v N, c(v)

is adjacent to v. For trees with no internal vertices (i.e., those having one or two vertices),
the function with vacuous domain and range is an edge choice. Let C be the set of all
edge choices.

DEFINITION 2. A dissection D c E is the complement ofthe range ofan edge choice.
S is the set of all dissections of the tree T.

Intuitively, a dissection is the set of edges that remain after each internal vertex
eliminates an adjacent edge, with the constraint that no two vertices eliminate the
same edge.

LEMMA 1. For all dissections D S and pairs p P, D fq Ep is nonempty.

Proof. Edges of Ep can be eliminated only by the lEvi internal vertices of
path p.

LEMMA 2. For all dissections D S and all internal vertices v N, there is a path
rfrom v to a leafsuch that D f) Er is empty.

Proof. Let v N, D 6 S, and let c be an edge choice giving rise to D. Let v be the
vertex other than v that is adjacent to edge c(v). Ifv N, let v2 be the vertex other than
v that is adjacent to c(v ). Repeat this process until vn is a leaf. None of the edges of
the path from v to vn are members of D.

LEMMA 3. Each dissection D arisesfrom a unique edge choice cD.
Proof. Suppose there are two distinct edge choices giving rise to dissection D. Let

v Nbe a vertex on which they differ. Using the construction in the proof of Lemma 2,
the two edge choices give rise to disjoint paths satisfying Lemma 2. The union of these
two paths violates Lemma 1.

DEFINITION 3. For a pair p e P, a p-edge choice is an edge choice that maps Np
into E. A p-dissection is the complement of the range of a p-edge choice. Cp C is the
set of all p-edge choices and Sp S is the corresponding set of all p-dissections.

Any p-edge choice c can be decomposed into two injections c :Np -- Ep and
c2:N- N- E E each ofwhich maps internal vertices to adjacent edges. Conversely,
any c and c2 of this description can be paired to yield a p-edge choice c. Observe that
since N[ levi l, the complement of the range of any c is a single edge of Ep.
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Furthermore, each edge ofEp clearly corresponds to a unique Clo Finally, since the range
of c2 is E Ep, we must have ]D N Ep[ for all p-dissections D.

DEFINITION 4. For a pair p P, a p-elimination is the set D D f) Ep for some
p-dissection D. S is the set of all p-eliminations.

LEMMA 4. If D’ is a p-elimination, then for any edge e Ep, D’ tO { e ) is a
p-dissection. Furthermore, these are the only p-dissections giving rise to D’.

Proof. Notice that a p-elimination D’ is just the complement in E of the range of
some c2. Pairing this c2 with any cl yields an edge choice whose p-dissection gives rise
to D’. These p-dissections are just D’ adjoined with the various edges of Ep.

DEFINITION 5. The weight WT of tree T is given by the formula WT DS HeeD le.
For T consisting of a single vertex, w 1.

DEFINITION 6. The weight wv of a pair p P is given by the formula wp
Y.9s, l-Iez) le.

DEFINITION 7. The bias bv of a pair pc P is given by the formula bp
aD’_S’p Ue_D’ le.

LEMMA 5. For all p P, wv bplp.
Proof. By Lemma 4, each p-elimination D’ arises from levi p-dissections. Each

ofthese p-dissections may be regenerated by adding a different member ofEp to D’. The
lemma follows immediately.

2THEOREM 1. For all p P, Zqe ll,qbq lv wT.
Proof. We shall show that each term (summand) on the left-hand side ofthe equation

corresponds to a unique term on the fight-hand side, and the converse. First, consider a
left-hand term t. It has the form of a triple le, le2 I-[eZ’ le where el, e2 Ev f"l Eq and D’
is a q-elimination. Since e2 Eq, by Lemma 4 e2 can be adjoined to D’ to yield a dissection.
The product le2 I-[eZ)’ le can therefore be rewritten as Heed le for some dissection D. In
this way, the triple can be written as a unique product of a term from the formal sum
1, and a term from wr. Each left-hand term can thus be mapped to a unique fight-hand
term. It remains to show that every fight-hand term can arise in this way from a left-
hand term.

Consider any fight-hand term t. It can be written in the form le, UeD le for some
edge el E, and some dissection D. Along the path corresponding to p name the vertices
in order vl, Vn. Let v; and vi + be the vertices at either end of el. By Lemma 3, let
co be the edge choice corresponding to D. Since co is an injection, either co(vi) 4 el or
co(vi / 1) =/= el. (We deem the condition satisfied by vi or vi +1 a leaf, on which cz) is not
defined.) Without loss of generality, suppose co(vi) 4= el. By Lemma 2, there is a path
from vi to leafv whose intersection with D is empty. By Lemma 1, there exists a smallest
integer j > for which co(v) does not connect vj and v_ 1; if such an integer did not
exist, the path from Vn to v, would have empty intersection with D. Denote by e2 the
edge between vj and v_ (Fig. ). By Lemma 2, there are paths r and r2 from either
end of e2 to a leaf, each of which has empty intersection with D. Since neither path uses
edge e2, they must be disjoint. Let q be the pair of leaves these paths reach. Then Eq
Er, tO Er2 tO { e2 } and D fq Eq (e2 }. Therefore D’ D { e2 } is a q-elimination. Note
that both el and e2 are members of Eq and of Ep. The term can thus be written
le, le I-[eO’ le, where D’ is a q-elimination and el, e2 e Ep f3 Eq. This is a left-hand term.

THEOREM 2. The vector given by Yp wp/wr solves MY .
Proof. Dividing both sides ofthe equation ofTheorem by lp wT and using Lemma

5 to replace bq by Wq/lq we get qt, (lZpq/lplq)(Wq/wr) for all p P.
COROLLARY 1. If the lengths le are all positive, the solution to MY - has all

components positive.

Proof. All the summands in wp and wr are positive.
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P

FIG.

Time complexity. Let us consider how much time is required to compute the
using the formula of Theorem 2. First, we prove a lemma that allows certain trees’
weights to be computed recursively.

LEMMA 6. Let T be a tree and let v N. Suppose that all internal vertices

of T other than v have degree at least three (i.e., they are incident to at least
three edges). Let TI, Tn be the subtrees of T that hang from v by the respective
edges el, en and let T be the subtree Ti minus the vertex v and the edge ei. Then
w= ZT--1 (wri I-[i w) If all the wr are nonzero, this can be rewritten wr
(ZT- 7-

_
wr;/wr,)(H

_
w,)

Proof. Let S/= {D e S[co(v) ei}. Clearly S ’--1S/. While v is an internal
vertex in T, it becomes a leaf in the trees TI, T_ 1, Ti+l, Tn. Let v’ be the
vertex at the other end of edge ei. The assumption that all internal vertices of T other
than v have degree at least three implies that if v’ is an internal vertex in T it remains
one in T. Therefore, any dissection D e Si can be seen as the union of dissections ofthe
trees TI, Ti-1, T, Ti/l, T (Fig. 2). The lemma follows immediately from
the definition of

In what follows we assume that the weights ofthe subtrees hanging from all vertices
are nonzero. (By Corollary l, this is true if all the le are positive.) While the results hold
in any case, this assumption allows us to use the second equation of Lemma 6, which
simplifies several arguments.

LEMMA 7. Given a tree T, all of whose internal vertices have degree at least
three, the weights of all subtrees hanging from all vertices of T can be computed in
O(I L I) time.

Proof. For each edge e e E we need to compute two numbers: the weight of the
subtree hanging by that edge from either of the two vertices it touches. Consider the
following algorithm for computing these numbers

Choose an internal vertex v0 of T. Starting with Vo, perform a depth first search
for edges and vertices. Label them el, -", em and vl, "", Vm in the order they are
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FIG. 2

found. For every edge ei found while searching vj, setf(i) := j, and add to the list A[j].
For all i, the two vertices touched by ei are thus vf( o and

(2) For from rn to 1:
If vi is a leaf, set W-= and W/"= lei.
Otherwise, set x := HjeA[i] Wj; set W; := XjAti] W’/Wj.)x; set W,. := le,W+x.

(3) For from to m:
Set x := ]-[j Atf(i)],j 4 Wj and y := E Atf(i)],j 4: W/Wj.
Iff(i) :/: O, set x xVf(i) and y y + V’fi)/Vfi).
Set V xy and Vi :- leV + x.

Using Lemma 6, it can be shown inductively that for from to m, W,. is the weight
of the subtree hanging from vfto by edge ei, and Vi is the weight of the subtree hanging
from vi by edge ei. Notice that if is the index of a leaf, then Vi is the weight wT of
the tree.

The search of step can be executed in O(] E] time. Since the A[ i] produced
are disjoint, O(I El time is required for steps (2) and 3 ). A tree, each ofwhose internal
vertices has degree at least three, has at most 21LI 3 edges, so the algorithm requires
O(I L I) time.

LEMMA 8. Given anyp P, let T Tn be the subtrees ofT that hangfrom the
path p. Then wp lp II 7--1 WTi.

Proof. By Lemma 4, Wp bplp. A p-elimination can be seen as the union of dis-
sections ofthe trees T, .., Tn hanging from path p (Fig. 3). The lemma follows from
the definitions of bp and wT.

THEOREM 3. Given a tree T, all ofwhose internal vertices have degree at least three,
the weights wfor all p P can be computed in O(I L[ ) O(1 el) time. Equation
is solvable in o([e[ time.

Proof. We assume the weights W and V/hanging by all edges ei of T have been
precomputed using the algorithm described in the proof of Lemma 7. Consider the fol-
lowing recursive algorithm for finding the weights of all pairs that include a specific
leaf Vo:
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FIG. 3

(i) Mark all edges of the tree T. Execute subroutine A(0, 1, Vo).
Subroutine A a, r, v)

Set r to r times the weights of all subtrees hanging from v.
(2) If v is a leaf other than v0, record aTr as the weight of the path from v0 to v.
(3) Otherwise, for each marked edge ei adjacent to v (and leading to vertex v’),

unmark ei and execute subroutine A (o + le, r/ W.Vi, v’).

The variable a is a running sum ofthe length ofa path beginning at v0. The variable
r is a running product of the weights of all subtrees hanging from the path under con-
sideration. By Lemma 8, aTr is the weight of the path from v0 to v.

Since subroutine A is executed once for each vertex of the tree, and each edge is
adjacent to two vertices, the total time required for the algorithm is O(IEI O(I L I).
By executing the algorithm for each leafofthe tree, the weights wp ofall pairs are computed
in O(I LI 2) O(I P[) time. (Each weight is calculated twice.) The precomputation of
subtree weights takes time only O(I L I). Since the precomputation yields wT, by using
the formula of Theorem 2 we can solve equation in O(IP] time.

Note that for an arbitrary tree, matrix equation is left unaltered by consolidating
two lone edges that meet at a vertex and adding their lengths. Any tree can thus be
transformed into an equivalent tree all of whose internal vertices have degree at least
three. Thus given any tree, equation is solvable in O(IEI / O(IPI time.

Conclusion. While it is possible to solve for by matrix inversion, the graph
theoretical solution described above is much more efficient. Furthermore, the formula
for Y given in Theorem 2 provides certain insights into the nature of the solutions.
Among these is the fact that for positive edge lengths, all components of Y are positive.

Acknowledgment. The author thanks Dr. David Lipman for suggesting the problem
and for many helpful conversations.
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ON THE INVERTIBILITY OF THE DISCRETE RADON TRANSFORM*
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Abstract. The Radon transform is a useful device for analyzing multidimensional data. It is closely connected
to what has become known as "projection pursuit." For the case of discrete data, theorems that address its
invertibility are proven. Connections to the projective group over GF(2) and block designs naturally arise. An
extension of the Radon transform to joint densities is then investigated.
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1. Introduction. Making sense out of multivariate discrete data often involves pro-
jecting the data onto a lower dimensional subspace and exploring it there for interesting
effects. The subspace to project on is selected at will by the user. Some subspaces are of
course more interesting than others, and search algorithms for relevant subspaces have
been suggested by Huber 1981 ), and Friedman and Tukey (1979).

Projection pursuit for discrete data has been discussed in Diaconis (1983). This
work extends several results presented in Diaconis’ paper. The main focus is on under-
standing the conditions that make the Radon transform on discrete sets invertible. Results
of this kind appear in Kung (1979) and Diaconis and Graham (1983). The former
examines the independent sets of a matroid, while the latter relates essentially to binary
codes. We give two large families of sets that admit invertible Radon transforms: the
nonsingular linear maps of a finite dimensional vector space over GF(2) (the field with
two elements) and certain classes ofblock designs. Such is the case ofBIB designs (referred
to in the following as 2-designs), known to admit invertible transforms by Diaconis
(1983) and the unpublished works cited there.

Most work on Radon transforms involves the recovery of a density as a function of
one variable from its transform. A natural extension is to consider the recapture of a
joint density in several variables. The transforms are defined as straightforward extensions
of the univariate case. Inversion becomes a trickier business, since higher dimensions
allow much more freedom of movement. Yet known structures, such as t-designs, are
proved to admit invertible Radon transforms that recapture densities in up to t/2 variables.
Information on construction of t-designs may be found in Constantine 1987, Chap. 7).
Additional useful readings appear in Cameron and van Lint (1980) and Lander 1982 ).

2. Recapturing a univariate density.

2.1. Let f be a function on a finite set P. We call the elements of P points and
denote by P the cardinality ofP. Let B be a set of nonempty subsets ofP. The Radon
transform of f at a set a e B is

f(a) ., f(x).
x

The general problem that we address is this: characterize B such that the set
{f(a)" a B } of Radon transforms determines f uniquely.

2.2. We shall write v for P] and b for BI. Denote by Fthe v vector ofvalues
f(x), as x runs over P in some fixed order. Similarly, let F be the b vector off(a)
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as a runs over B. Furthermore, denote by N the v b incidence matrix of points versus
the sets in B; that is, N (nx.), with nx, if x 6 a and nx. 0 otherwise. With such
notation we have

(1) NtF=F.

We wish to solve for F. The solution is unique if and only if N is of full row rank, in
which case

(2) F= (NNt) -’

We summarize in the following lemma.
LEMMA 1. The Radon transform is invertible if and only if the point versus set

incidence matrix is offull row rank over thefield ofrational numbers.
Obviously, N is of full row rank if and only if NN is nonsingular. An obvious

implication reminds us of Fisher’s inequality in block designs: the Radon transform is
invertible only if b >- v; that is, only if there are at least as many sets as points.

We would prefer a set-theoretic or geometric answer to our problem instead of the
algebraic one that the lemma offers.

2.3. The matrix N is of full row rank if and only if there exists a v v submatrix
S ofN that is nonsingular over the rational numbers. Then SI, the determinant of S,
is a nonzero integer. It is clear that SI is odd if and only if S is a nonsingular linear
map of a vector space of dimension v over GF(2). This simple observation allows con-
struction of many invertible Radon transforms, since the geometry of the group of such
transformations is well understood. We summarize in the following theorem.

THEOREM 1. Ifthere exist v columns in N that form a basis over GF(2 ), then the
Radon transform is invertible.

The matrix S can of course have nonzero even determinant over the rational num-
bers. In such a case the transform is also invertible. A characterization of such matrices
appears to be more difficult to obtain.

2.4. Denote the points ofP by 1, 2, ..., v. The sum

(3) I1,

over all a in B that contain point i, is called the weight of point i. Throughout this
section we restrict attention to collections of sets B that assign equal weights to all points.
(For example, the points will have equal weights if all sets in B have cardinality k and if
each point belongs to r sets.) The common value i, ]al is denoted by d.

Form the matrix

(4) C dI-NNt.

The matrix C is nonnegative definite, with zero row and column sums. It follows that C
is singular having the vector I (with all entries in the kernel. One of its eigenvalues is
therefore zero. Let 0 t0 =< u -< =< #v- be the eigenvalues of C. It is obvious from
(4) that C and NN admit the same set of (orthogonal) eigenvectors. The matrix NN is
therefore positive definite if and only if the spectral radius of C is less than d (i.e., if and
only if tv_ < d). We shall now attempt to find a good upper bound for uo_ and obtain
a sufficient condition on the invertibility of the Radon transform by insisting that the
upper bound be less than d.
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Given n numbers x <= x2 <= <= Xn, we denote by their average and by a2 their
variance, that is, # n- , xi and

We assert that

0.2_ (X )2
n

(5) x <= # + 0./n 1,

with equality if and only if X X2 Xn_ . (To see this we may assume # 0.
Then the xi’s can be interpreted (up to sign) as distances of one-pound weights from 0.
Now the problem is how to balance these weights at zero without changing their variance
such that the largest distance (i.e., Xn) is as large as possible. The worst possible case is
intuitive: it has x x,_ and thus formula (5) emerges.)

In the case of our matrix C, we have v numbers # _-< _-< u_ . Their average
is # (v )- Tr C and their variance is

0.2 (v- )- [Tr (C)-(v 1)-l(Tr C)].
The symbol Tr denotes the trace. Straightforward calculations show that

Tr C dv Tr (NNt),

Tr C2 dZv 2dTr (NNt)+ Tr ((NNt)2),

u (v- 1)-l[dv-Tr(NNt)],
a2= (v- )-2[(v- Tr ((NNt)Z)-(Tr (NNt))2 + 2dTr (NNt) dZv].

These calculations and the bound in (5) yield the following theorem.
THEOREM 2. Ifeach ofthe v points has weight d, and if

tz+ 0-/v- 2 (v- 1)-’[dv-Tr(NNt)]

+(v-2)l/2(v 1)-1 [(v 1) Tr ((NNt)2)-(Tr (NNt)) 2

+ 2d Tr (NNt) d21] i/2 <d,

then the Radon transform is invertible.
The usefulness ofTheorem 2 lies in providing a sufficient condition for invertibility

only in terms of traces of NN and (NNt) 2. Both traces are easy to compute. The next
section looks at several special cases involving well-known block designs.

From Theorem 2 it easily follows that ifB consists ofblocks ofa BIBD (or 2-design ),
then the Radon transform is invertible. This result is proved in Diaconis 1983 ), and in
some of the references that he cites. Indeed, # (v )-lvr(k- and 0

-2 0 for a
BIBD, while d rk. The inequality u < rk is easily verified (since k < v).

2.5. Suppose B is such that each set has k points and each point is in r sets. Then
Tr (NNt) vr, and Theorem 2 takes a simpler form, as stated in the following corollary.

COROLLARY 1. If(P, B) is a block design with k points per block and r blocks per
point, and ifthe sum ofsquares ofthe entries ofNN is (strictly) less than

(v- )(v-2)-l[rk-(v )-lvr(k- )]2 q-(V-- )-lvrZ(v-2k+ kZ),

then the Radon transform is invertible.
Proof. In this case d rk, Tr (NNt) vr, t v )-lvr( k ), and

0-2 (v- )-2 [(v- Tr ((NNt)2) lr2( 1)- 2k + k2)].



THE DISCRETE RADON TRANSFORM 303

A straightforward, but possibly lengthy, calculation shows that the condition on inver-
tibility written in Theorem 2 reduces to what appears in our corollary. This ends
the proof.

Many designs that are used in statistical experiments are partial designs (known
also as PBIB designs). They are based on association schemes. We refer to Raghavarao,
Chap. 8 or [Constantine, p. 297] for an introduction to association schemes. Let Ai be
the adjacency matrix of the ith associates in a scheme with n classes. Denote by vi the
number of ith associates of a (any) point; E vi v. We call (P, B) a partial design if
any pair of th associates occurs in k blocks (i.e., elements of B). For a partial design
the matrix NN is therefore

NNt= _, )kiAi.
i=1

Fundamental properties of the scheme imply

TrA 2
i=vvi, and TrAiA=0, fori4=j.

Consequently, the sum of squares of entries in NN is

Tr ((NNt)2) Tr (( kiAi)2 kikj Tr AiAj
i,j

Corollary now yields Corollary 2.
COROLLARY 2. If(P, B) is a partial design with n associate classes whoseparameters

vi and k satisfy

1) Z 1)ik<( 1)- 1)(v-2)-[rk-(v- 1)-vr(k- 1)]2-4-( 1)- 1)-vr-(v-2k+k2),
i=0

then the Radon transform is invertible.
Certain classes of partial designs (e.g., Raghavarao 1971, p. 139)) can be shown

to admit invertible transforms by the above corollary. Obviously, the transform is more
likely to be invertible if the );’s are nearly equal, that is, if they differ by at most 1.

A sharper result can be obtained for partial designs with two associate classes. In
this case the Bose-Mesner algebra is generated by three elements: I (the identity), A,
and A2 (the adjacency matrices of a strongly regular graph and its complement, respec-
tively). The matrix NN can be written as follows:

NN= rI+ )A + 2A2,

where hi denotes the number of blocks containing a pair of ith associates. Matrices A
and A2 share the same eigenvectors. Each has three distinct eigenvalues.

An eigenvector of NN is the vector 1. If NN is singular then for some nonzero
vector z orthogonal to 1 we have

(6) 0 NNtz rIz + XAz+ ,2A2z.

Properties of the Bose-Mesner algebra yield that

Az -z-Az.
Substituting in (6) we obtain:

(7) (- X)Az=(r- X2)z.
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This last equation tells us that z is in the kernel ofNN if and only if z is an eigenvector
ofA with eigenvalue (r- 2)(X2- )-l.

A is the adjacency matrix of a strongly regular graph with parameters (v, vl, a, c).
Here v is the number of points (or vertices), v is the degree of any vertex, a is the
number of vertices adjacent to a pair of adjacent vertices, and c is the number of vertices
adjacent to a pair of nonadjacent vertices. The two nontrivial eigenvalues of A are
known to be

and

#-= 1/2 {(a-c)-[(a-c)Z+4(v-c)l ’/2}

/+= 1/2 {(a-c)+[(a-c)Z+4(vl-c)]/2}.
Equation (7) therefore implies that NN is singular if and only if either

(r- k2) k2 k )-1 ].t_ or (r- 2)( k2 )kl )-1 #+.

The former can in fact only occur if 2 < kl, since
_

is negative, while the latter can
only occur if k2 > 1. This can be summarized as follows.

THEOREM 3. Let P, B) be a partial design with two associate classes and design
parameters v, r, , 2. Let the strongly regular graph offirst associates haveparameters
v, v, a, c). Then the Radon transform with sets B is singular ifand only ifeither

(r- Xz)(X2-))-’= 1/2 {(a-c)-[(a-c)Z+4(v-c)]/2},
or

(r-- k2)(k2-- kl) -1= 1/2 {(a-c)+[(a-c)Z+4(v-c)l/2}.
Unlike for the case ofBIBDs, there are partial designs that do not have an invertible

Radon transform. The above result characterizes such situations when the scheme has
two classes. Invertibility can be guaranteed, however, for large values ofdesign parameters.
As Theorem 3 shows, by keeping 12 ,ll small, a sufficiently large value of r-
ensures invertibility, since the fight-hand sides in the two equations depend only
on the parameters of the scheme and not of the design.

By specializing to various schemes, many known families of partial designs can be
shown to have invertible transforms. We shall not do this here, contenting ourselves with
one short example.

Example. The well-known Desargue configuration is a partial design based on a
triangular association scheme with two classes. Vertices of the scheme are subsets oftwo
elements of the set { 1, 2, 3, 4, 5 ). Two vertices are first associates if the two subsets are
disjoint. The graph of first associates is the Petersen graph. Its parameters are v 10,
v 3, a 0, and c 1. Lines of the Desargue configuration correspond to cocliques
in the Petersen graph. There are ten points and ten lines with three points per line. The
design parameters are v 10, r 3, 1 0, and X2 1. Theorem 3 informs us that the
Radon transform, whose sets are the lines of the Desargue configuration, is invertible.

We refer the interested reader to Chapter 8 ofRaghavarao 1971 for a list ofmany
families of partial designs.

2.6. Moments ofthe transform are related to moments ofthe original function. By
assuming a uniform distribution over the values off, and likewise for f, we proceed in
relating the means and variances off and f. With some abuse of notation, and by using
traces, it is straightforward to establish the following formulae:

(8) meanf=b-ltNtf=+_b-l(ftNJNtf) /2, and varf:b-lftN(I-b-J)Ntf.
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Here I is the vector with all entries 1, J 11 t, and I is the identity matrix. For the case
of a BIBD they reduce to those given in Theorem 2 of Diaconis (1983).

3. Retrieving a multivariate density.

3.1. A subset of m points is called an m-subset. Let f be a function defined on the
m-subsets of P. In particular, f may be a symmetric density function in m variables.
The Radon transform of f at a subset a (11 > m) is

?(0/)-- Z f(O’m),
O-rn

the sum extending over all m-subsets O" of a. Denote by B the subsets a on which f is
defined. We wish to find conditions on B that make the transform f -- f invertible.

By a (v, k, kt) design we understand a pair (P, B) ofpoints and k-subsets (called
blocks) with the property that any t-subset is contained in kt blocks. A (v, k,
design is often called a t-design for short. It is known that a t-design is also an/-design,
for _-< =< t, with

k kt.
t-i

We denote by N the (sv) ko incidence matrix of s-subsets ofP with the k0 blocks in B,
where (P, B) is a 2s-design. It is a well-known result in the theory of t-designs that N is
offull row rank (see Ray-Chaudhuri and Wilson, 1975 ). We therefore have the following
theorem.

THEOREM 4. Ifthe sets in Bform a t-design with even, then the Radon transform
is invertible and retrieves any symmetricfunction in up to t/2 variables.

The result can be generalized to functions on associate classes ofthe Johnson scheme.
Write NN (k), with k, the inner product ofthe rows ofNcorresponding to s-subsets
a and ’.

Let B consist of sets, not necessarily of the same cardinality, with the property that

X depends only on the cardinality of the union a t2 ’. We call such B class compatible.
Such structures exist, examples being the blocks of several t-designs of varying block
sizes. By writing k for k when tr t_J ’l i, we obtain

where A; is the adjacency matrix of the ith associates in the Johnson scheme. The ki’S
are called the class values. We refer to Constantine, 1987] for notation and details. Let
yj be thejth eigenvector ofAi (i 1, n), where n is the number of associate classes.
The matrix NN is singular if and only if for some j we have

O= XiAiyj= ,iP(i,j)yj=( i XiP(i,j))Yj,
if and only if for some j

hip(i,j) O.
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In the above writing p(i, j) denotes the eigenvalue ofAi associated to the eigenvector yj.
The eigenvalues of the Johnson’s scheme are well known. They are the Eberlein
polynomials

(9) E(i,x)=o(_l)k
x n--x v--n--x
k i-k i-k

O<=i<=n

evaluated at x j. These observations may be summarized as follows.
THEOREM 5. IfB is class compatible with class values )i, and if 2Si=o )E( i, j) 4:

O, for allj, then the Radon transform is invertible and it recaptures a symmetricfunction
in s orfewer variables.
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Abstract. Finding the minimum number of rectangles required to cover a rectilinear or orthogonal polygon,
where overlapping of rectangles is allowed, is one of several well-known, hard geometric decomposition problems.
This paper reports the first results known that give worst-case performance bounds for an approximation algorithm
for this problem. It is proved that partitioning the polygon into rectangles (with no overlapping) produces at
most 20 + h rectangles, where 0 is the minimum number of rectangles in a cover, and h is the number of
holes. Examples are also given in which this bound is tight. The proof is based on counting arguments, and on
Euler’s formula for a planar graph. This paper shows that extending rectangles vertically and deleting duplicates
produces at most O(0 log 0) rectangles. For the proof, geometric constraints are used to construct a large an-
tirectangle, a set of points with no two contained in the same rectangle. This algorithm has an O(n log n)
implementation using balanced trees, where n is the number of vertices.

Key words, polygon, cover, rectangle, rectilinear, orthogonal, algorithm, approximation, heuristic, sweep-
line
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1. Introduction. The problem of coveting a rectilinear or orthogonal polygon with
the minimum number of rectangles is one of a large class of geometric decomposition
problems (several of which are surveyed in O’Rourke and Supowit (1983)). There has
been little progress in finding algorithms for constructing minimum covers of arbitrary
polygons with primitive shapes, thus, much attention has been focused on rectilinear
geometry. The problem has applications to storing graphical images (Masek 1978 )) and
to the manufacture of integrated circuits (Mead and Conway (1980), Chaiken et al.
1981 ), Hegedtis (1982)). This and related problems have given rise to new classes of

perfect graphs of interest in combinatorics (Saks (1982), Motwani, Raghunathan, and
Saran (1988a), (1988b)).

The exact computational complexity of even this seemingly simple problem has
remained open for a number of years. Masek (1978) proved that the problem is NP-
hard for arbitrary polygons. Conn and O’Rourke (1987) showed that several restricted
versions of the problem are also NP-hard. On the other hand, Franzblau and Kleitman
(1984) gave a polynomial-time algorithm for coveting vertically convex polygons with
rectangles. They used a combinatorial duality theorem ofGyrri (1984), which improved
an earlier result by Chaiken et al. 1981 ). Lubiw 1985 ), (1988a) showed that the problem
was polynomial time for a somewhat larger class ofpolygons and has reported a weighted
version of Gytiri’s theorem (Lubiw (1988b)). Until now, the complexity ofthe problem
for polygons with no holes was unknown. However, in a recent abstract, Culberson and
Reckhow (1988) have reported that the problem is NP-hard even in this case.

The problem of coveting a rectilinear polygon with the minimum number of "or-
thogonally convex" or "orthogonally star-shaped" components has a similar history (Keil
(1986), Reckhow and Culberson (1987), Reckhow (1987), Culberson and Reckhow
1988 ), Motwani, Raghunathan, and Saran (1988a), (1988b)).

We distinguish the problem of covering, where overlapping of rectangles is allowed,
from that ofpartitioning into disjoint rectangles. By contrast, the problem ofpartitioning
an arbitrary rectilinear polygon into the minimum number of rectangles has an
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0(175/2) solution (Ohtsuki (1982), Pagli et al. (1979)). When degenerate point holes
are allowed, however, the problem is NP-hard (Lingas 1982 )).

Since good algorithms for minimum cover problems are so scarce, it is worthwhile
to look for approximation algorithms with guaranteed performance bounds. (See Garey
and Johnson 1979, chap. 6) for an introduction to this approach.) This paper provides
what we believe are the first results in this direction. Other coveting heuristics have been
reported, but with no analysis of performance bounds (Hegediis (1982), Levco-
poulos 1985 )).

We first show that partitioning the polygon into rectangles using horizontal cuts
produces at most twice the minimum number of rectangles if the polygon has no holes.
More generally, partitioning always produces at most 20 + h rectangles, where 0 is
the minimum number of rectangles in a cover, and h is the number of holes in the
polygon. We also give examples in which this bound is tight.

We then study a simple coveting heuristic, called Partition in which the
rectangles in the partition are stretched vertically as far as possible, and duplicates are
deleted. We show that this heuristic produces at most O(a log a) rectangles, where a is
the size ofan antirectangle, a set of points such that no two can be contained in the same
rectangle. This gives a bound of O(0 log 0), since c _-< 0. In our examples, the number
of rectangles produced is at most 30, which we conjecture is the correct upper bound.

The organization ofthe paper is as follows. Section 2 contains basic definitions. The
coveting heuristic and main results are stated formally in 3. An O(n log n) implemen-
tation ofthe heuristic is described in 4. Some observations and open problems are given
in5.

2. Definitions. A rectilinear or orthogonal polygon is a finite set of unit squares (or
"pixels") on a two-dimensional, integer grid. That is, it is a simple polygon with integer
vertices, edges aligned with the horizontal and vertical axes, and positive area. Such a
polygon is also called a polyomino. In applications, all polygons are finite, so there is no
loss of generality in assuming the polygon is embedded in a grid.

A rectangle will denote a rectangle (in the usual sense) which is a union of unit
squares. That is, it is a rectangle aligned with the horizontal and vertical axes.

Given a rectilinear polygon R, a rectangle cover is a finite set of rectangles whose
union is equal to R. Rectangles are allowed to overlap, but must be contained completely
within R. A minimum rectangle cover is a rectangle cover containing the minimum
possible number of rectangles. We denote the number ofrectangles in a minimum cover
by O(R).

Dual to a rectangle cover is an antirectangle or independent set, a subset A of unit
squares in R, such that every rectangle inside R contains at most one square of A. We
denote the maximum number of squares in an antirectangle by a(R). It is easy to see
that c(R) <= O(R). (See Fig. 1.) (Note that there are examples in which a < 0. See Chaiken
et al. 1981 ), or Franzblau and Kleitman 1984, p. 166).)

Regarding R as a closed planar region, the boundary ofR consists ofhorizontal and
vertical line segments called edges. Edges intersect only at endpoints. A vertex of R is
the intersection of a horizontal and a vertical edge. There are three types of vertices,
shown in Fig. 2. A normal convex vertex is the intersection of exactly two edges which
form a 90 angle inside R. A degenerate convex vertex is the intersection of two pairs of
edges forming two 90 angles. A concave vertex is the intersection of two edges forming
a 270 angle.

We regard the vertices and edges of R as a straight-line planar graph. A hole in R
is a bounded (finite area) face of this graph, contained in the complement of R. R is
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FIG. 1. (a) Rectilinear polygon with antirectangle ofsize three (squares with dashed outlines). (b) Minimum
rectangle cover, also ofsize three.

FIG. 2. Polygon with two connected components, and ii ), and three holes H). Vertex N is normal
convex, D is degenerate convex, and C is concave.

FIG. 3. a Horizontalpartition. Two type chords (- -), one type 2 chord ), and two type 3 chords
(...) are shown. (b) Rectangle cover determined by extending rectangles vertically. (Note that the two long
horizontal rectangles are shown smaller than actual size for clarity.) c) Pairs ofparallel lines represent five
inequivalent horizontal slices, which determine the same rectangle cover.
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connected if, after deleting the holes ofR (along with their boundaries), the remaining
boundary is a connected graph. (See Fig. 2.)

A horizontal chord of R is a horizontal line segment contained in R, such that at
least one endpoint is a concave vertex, both endpoints lie on the boundary, and no other
point lies on the boundary. (See Fig. 3(a).) Every concave vertex determines a unique
horizontal chord. This notation is taken from Ohtsuki (1982).

3. The covering heuristic an(l worst-ease performance guarantees. The coveting
heuristic can be described as follows.

ALGORITHM Partition /Extend.

Input: Rectilinear polygon R.
Output: Rectangle cover for R.

1. Partition R into rectangles by cutting along each horizontal chord of R. (See
Fig. 3(a).)

2. Extend each rectangle vertically inside R until it is vertically maximal, i.e.,
touches the boundary on top and bottom. Delete any repeated rectangles. (See
Fig. 3(b).)

Let R be a rectilinear polygon, and let p p(R) be the number ofrectangles obtained
by horizontal partitioning alone (step ). Let (R) be the number of rectangles
obtained by Algorithm Partition/Extend.

Recall that 0 O(R) is the minimum number of rectangles in a cover, and c

a(R) is the maximum number of unit squares in an antirectangle or independent set.
Let h h(R) be the number of holes of R.

The main theorems of this paper are as follows.
THEOREM 1. For any connected rectilinear polygon, p <- 20 + h 1.
THEOREM 2. For any rectilinear polygon, fi <- 2c(log a + ).
From these theorems and the inequalities/5 _-< p and c =< 0, we immediately derive

the following performance bounds for Algorithm Partition/Extend.
COROLLARY 1. (Theorem 1.) IfR kas no koles, tken fi/O <= 2.
COROLLARY 2. (Theorem 2.) For any rectilinear polygon, fi/ 0 <= O(log 0).
Figures 4 and 5 give examples in which p 20 + k 1, so the bound of Theorem

is tight. In Fig. 4(a),/5 p, so the bound of Corollary is tight.

L_ I-LfLff-L]
f_]

(a) (b)

FIG. 4. Two examples in which Theorem is tight: p 20 + h 1. a Chain of0 rectangles (0 4).
There are no holes, and p 20 1. (b) Lattice with 0 2k rectangles k 3). The number of holes is
(k- 1) andp=2k+k2=20+h- 1.
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D D D

FIG. 5. Another example in which Theorem is tight. Formedfrom k rows ofstaircases ofk non-overlapping
rectangles each k 4, 0 k2, h k )(k 2 )). The top staircase adds k rectangles to the partition. Every
subsequent staircase adds 3k rectangles. So p k + 3k )(k 20 + h <= 30. Extending
rectangles vertically does not reduce the number.

Figure 4(b) shows that the number of holes can be (02), making the bound of
Theorem unsatisfactory in general. Note, however, that the heuristic gives the optimal
solution in this case.

To prove Theorem 1, we find a relation between the minimum number ofrectangles
in a cover and the number of horizontal chords and vertices. We then relate the number
of chords to the number of holes using Euler’s formula for a planar graph.

There are three types of chords, illustrated in Figure 3 (a). A type chord contains
exactly one concave vertex, a type 2 chord connects two concave vertices with opposite
orientations, and a type 3 chord connects two concave vertices with the same orientation.
Let and 2 be the number of normal convex vertices and degenerate convex vertices,
respectively. Let c, c2, and c3 be the number of type 1, type 2, and type 3 horizontal
chords. Recall that 0 is the number of rectangles in a minimum cover. We then have the
following useful relation.

LEMMA 1.

(*) #l + 2#2 + Cl + 2C2----< 40.

Proof. 40 is the number of corners of rectangles in a minimum cover. Each normal
convex vertex ofR is also the corner of at least one coveting rectangle. Each degenerate
convex vertex yields two distinct corners. Given a type chord, with concave vertex u
as an endpoint, there must be a rectangle coveting u whose corner lies on the chord.
Using the same reasoning, each type 2 chord contains at least two rectangle corners. (See
Fig. 6.) Since we have not counted any corners twice, the number of corners is at least
#l + 2#2 + C + 2C2. I--1

We can prove a similar relation involving p, the number of rectangles in the hori-
zontal partition ofR.

LEMMA 2.

() l,tl + 2#2 + 3Cl + 2C2 + 2C3 =4p.

Proof. 4p is now the number of corners of rectangles in the partition. Each normal
convex vertex is also a rectangle comer; each degenerate convex vertex yields two rectangle
corners. Each type chord determines three corners, while each type 2 or type 3 chord
determines two corners. (See Fig. 7.) H
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FIG. 6. Illustrationfor the proofofLemma 1. (a) Vertex u is the concave endpoint ofa type chord. There
must exist a rectangle r covering u, with a corner on the chord. (Rectangle r is offset slightly from its actual
position.) (b) Endpoints ofa type 2 chord must be covered by two distinct rectangles with corners on the chord.
(The two rectangles are offset slightly.)

THEOREM 1. For any connected rectilinear polygon, p <= 20 + h 1.
Proof. From (,) and (, ,) we obtain

(***) 2p<=20+(c +c3).

To relate c and c3 to the number ofholes, we use Euler’s formula for a connected planar
graph, which says v e + f 2, where v is the number of vertices, e is the number of
edges, and f is the number of faces (including the unbounded face). (See Bondy and
Murty 1976, p. 143).)

The vertices are the convex vertices of R, plus the endpoints of the chords. Thus,
we have v + u2 + 2(c + c2 + c3).

The edges are the segments between vertices on the boundary ofR, plus the chords.
Each normal convex vertex is incident with two edges, each degenerate convex vertex
with four edges, and every other vertex with three edges. Therefore, 2e 2# + 4#2 +
6(c + c2 + c3).

Finally, the number of faces is f p + h + where p is the number of rectangles
in the partition, and h is the number of holes.

Using Euler’s formula,

c +c3=p+h 1-#2-c2 <=p+h 1.

Combining this with (***) above yields 4p_-<40+2(p+h- 1), or p-_<20+
h-1. [3

The strategy of the proof of Theorem 2 is to show there is an antirectangle of size
at least (//2 (log c + )), where c is the maximum size of an antirectangle, and/ is

FIG. 7. Illustration for the proofofLemma 2. The top figures show the three types ofchords. The bottom
figures show the polygon (locally) after cutting along the chords. Each type chord (left) yields three corners of
rectangles in the partition, each type 2 chord (middle) or type 3 chord (right) yields two corners.
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FIG. 8. A set of inequivalent horizontal slices. The small squares are boundary squares. a Square x is
blockedfrom above, but not from below. (b) Slices are separated by atoms c and d (pairs of vertical dashed
lines).

the number of rectangles in Algorithm Partition The notation below will be
used to describe the construction of the antirectangle.

A horizontal slice ofR is a horizontally maximal rectangle of unit height contained
in R. Call a square touching the boundary of R, but not in R, a boundary square. A
horizontal slice is a connected row of squares in R, delimited by two boundary squares.

Each horizontal slice determines a unique maximal rectangle in R, obtained by
extending the slice vertically until it meets the boundary ofR on top and bottom. Two
horizontal slices are equivalent ifthey determine the same maximal rectangle. A complete
set of inequivalent horizontal slices determines a rectangle cover, since every square is
contained in some slice. (See Figure 3(c).)

LEMMA 3. The cover determined by a complete set ofinequivalent horizontal slices
is the same as the cover obtained by Algorithm Partition/Extend.

Proof. The vertical sides of each rectangle in the horizontal partition must lie on
the boundary of R. Thus, each rectangle of the partition contains a horizontal slice, so
every rectangle generated by Partition/Extend is also generated by some slice. Conversely,
every horizontal slice must be contained in some rectangle of the partition, so every
rectangle generated by a slice is also generated by Partition/Extend. D

If x is a unit square and h is a horizontal slice, we say that x is blocked from h if
there is no rectangle inside R containing both x and a square of h. This means that any
rectangle containing x and a square of h must also contain a boundary square of R.
Given a subset S of horizontal slices and a unit square x, x is blockedfrom above (with
respect to S) if x is blocked from every slice in S (except the slice containing x) which
is "above" x, i.e., whose vertical coordinate is greater than or equal to that of x. (See
Fig. 8(a).) We define blockedfrom below similarly.

The following lemma shows that a set ofblocked squares determines an antirectangle.
LEMMA 4. Let S be a subset ofhorizontal slices ofa rectilinear polygon R. Let A

be a set ofunit squares, such that each slice contains at most one square, and every square
is blockedfrom above. Then A is an antirectangle in R.

Proof. Let xl and x2 be two squares in A, and let hi and ha be the corresponding
slices. We may assume that ha lies above h (has the same or greater vertical coordinate).
Since x is blocked from above, no rectangle in R contains both x and X2 I-’]

By symmetry, the lemma also holds if "above" is replaced by "below."
Although it is not obvious how to construct a large set ofblocked squares in general,

if the set of slices can be "separated" by vertical lines, as described below, then we can
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FIG. 9. The three cases for rectangle ri (dashed outlines), defined in Lemma 5. (The small squares are

boundary squares.) I is the projection of the top slice on the x axis. J is the projection of the bottom slice.
(a) I c J. ri contains a boundary square.) (b) I J. (Since h and hi-i are inequivalent slices, there must be
a boundary square between them, in r.) (c) J c I. (r may not contain any boundary squares.)

show that either half the slices contain a square blocked from above or half contain a
square blocked from below.

Call an infinite vertical strip of unit width an atom. A slice contains an atom a if
the slice intersects the vertical strip. Given a set of horizontal slices, S, a set of atoms
{al, a2, ak} separates S if every slice contains exactly one atom. (See Fig. 8(b).)
(Note that not every set of slices has such a set of atoms; see Figure 3(c).)

LEMMA 5. Let S be a subset ofinequivalent horizontal slices ofa rectilinear polygon
R. Ifatoms { a, a2, ..., ak } separate S, then there is an. antirectangle in R containing
at least [ S + k)/2 ] squares.

Remark. It is possible to construct an example with k where this bound is tight.
Proof. For a given atom a e { al, a, ag }, let h, h2, hm be the set of slices

containing a, ordered from top to bottom.
Let x be the intersection of atom a and slice h. The square Xl is blocked from

above, since any slice h above h does not contain a, so that a rectangle containing Xl
and a square of h must contain one of the boundary squares delimiting h.

For each slice hi, 2 <= <-_ m, let ri be the smallest rectangle which contains the slice
hi and extends to the row containing the slice hi- above. (See Fig. 9.) If ri contains no
boundary squares, then let xi be null. Otherwise, choose a boundary square y in ri whose
horizontal distance from atom a is minimized. (Possibly, y is contained in a.) Let xi be
the square on hi directly below y. By the definition of ri, y lies in the same row or below
that of hi-. (See Fig. 10.)

We claim that xi is blocked from above. Ifnot, there is a slice h, above hi, containing
a square x, such that x and xi are in the same rectangle. This slice h must intersect the
vertical strip containing y and xi. Since y is in the same row or below hi-, h cannot
contain a. Thus, one of the boundary squares at the endpoint of h lies in ri and is closer
to a than y, contradicting the choice of y. (See Fig. 10.)

For each of the k atoms, construct the corresponding set of blocked squares,
{ x, x, Xm }. Let A be the union of these sets. A is a set of squares satisfying the
conditions of Lemma 4, and hence is an antirectangle. Using a symmetric construction,
working from bottom to top at each atom, we can construct an antirectangle B where
each square is blocked from below.

The key observation is that, for any atom, if slice hi does not contain a square in A
then slice hi- must contain a square in B. To see this, let I and J be the intervals on
the horizontal axis which are the projections of hi-1 and hi, respectively. I N J g: since
hi- and hi both contain a. The only case in which hi does not contain a square ofA is
when ri contains no boundary squares. Note that if J I, since there are no equivalent
slices in S, there must be a boundary square between hi- and hi, in ri. Thus, hi contains
no square ofA only if J is strictly contained in I. (See Fig. 9(c).) By inspection, hi-1
must contain a square in B.



RECTANGLE COVER HEURISTIC 315

il
II

X

’, ’1 h.

X.

FIG. 10. Definition ofsquare x in Lemma 5, and illustration ofthe proof that x is blockedfrom above.
Square y is the boundary square in rectangle ri closest to atom a (vertical dashed lines). Ifx is not blockedfrom
above, there is a slice h not containing atom a, and containing a square x, directly above xi, as shown.

Thus, the number of squares in B is at least the number of"bottom" slices, i.e., the
number of atoms plus the number of slices which do not contain a square of A. So,
BI >-- k + S] AI, or BI + ]AI >- SI + k. The lemma follows from the pigeonhole

principle. [3

The construction ofLemma 5 cannot be used when a slice contains more than one
atom. The next two lemmas will be used to show that we can extract a large separated
subset in this case.

LEMMA 6. Let S be a set ofslices, and let { a, a2, a } be a set ofatoms, sorted
from left to right, such that each slice contains at least one atom. Then there is an m,
with rn =< + log k, such that S can be partitioned into disjoint sets S S1 to $2 to

to Sm, where each Si is separated by a subset ofthe atoms.

Proof. The proof is by induction on k. If k then S is separated by the single
atom a, so rn 1.

If k > 1, let j fk/2] and let S be the set of slices containing aj. Trivially, S is
separated by aj. Observe that S is the disjoint union SI tO S tO SR, where SL is the set
of slices to the left of aj, and SR is the set of slices to the fight.

Since the atoms are sorted from left to fight, SL, with { al, a2, aj_ ), and SR,
with { a+ , a+2, ak}, each satisfy the induction hypothesis. However, given a
separated set in S and a separated set in SR, their union is also separated. IfS can be
partitioned into m separated sets, and SR can be partitioned into mR separated sets, then

rn -<_ + max { mz, mR }.

By induction, mL -< + log (j =< log k, and mR ----< + log (k -j) _-< log k. Therefore,
m -< + logk. V1

IfS is a set of slices, let I(S) denote the set of(open) intervals obtained by projecting
slices onto the horizontal axis.

LEMMA 7. Let S be a set ofslices. Let 6 be the maximum number ofpairwise disjoint
intervals in I( S). Then, there is a set of6 atoms, such that each slice contains at least
one atom.

Proof. This is a well-known duality theorem for interval graphs. The lemma says
that if 6 is the size of a maximum independent set in the overlap graph determined by
I(S), then 6 is also the size of a minimum cover by cliques. See Berge 1975, p. 9) for
a proof. [3
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THEOREM 2. For any rectilinear polygon, <= 2a(log a + ).
Proof. Let S be the set of all inequivalent horizontal slices ofR. If 6 is as in Lemma

7, then there is a set of 6 atoms such that each slice contains at least one atom. By Lemma
6, S $1 tO $2 tO tO Sm, where m -< log 6 + 1, and each Si is separated by one or
more atoms.

[S[ =/7, by Lemma 3. From the pigeonhole principle, there is some Si with

logr+l logr+l

Using Lemma 5, we can construct an antirectangle from Sg, having size at least
1/2/7/(log 6 + ). Since a >_- 6, the antirectangle has size at least 1/2/7/(log a + ), or
/7 _-< 2a(log a + ).

Remark. We can construct a set of k n(log n + intervals, with n intervals of
each length in { 1, 2, 4, 8, }, such that the largest subset that is separated contains
2n e O(log k) intervals. Thus, this is essentially the best bound that can be proved
using Lemma 5.

4. Implementation of the heuristic. To implement Partition we first make
a list of all "top corners" of rectangles in the horizontal partition. (See Fig. 11 (b).) From
this, it is easy to extract a list of all top edges of partition rectangles. (See Fig. 11 (c)).
To do this, we must find the corners which are not vertices of R but are endpoints of
(type horizontal chords. We find the corners which are fight endpoints of chords by
running a vertical sweep-line from left to fight across R and updating the set of chords
crossing the sweep-line at each step. We then perform the mirror-image procedure to
find the vertices which are left endpoints. (The use of sweep-lines is a standard method
in computational geometry; see, e.g., Preparata and Shamos (1985).)

Once we have a list of top edges of rectangles in the partition, we use a similar
sweep-line technique to find the upper and lower edges of the vertically extended rect-
angles. We sweep from bottom to top to find the upper edges, then reverse direction to
find the lower edges.

The O(n log n) time bound is based on the bound for sorting, and on the use of
balanced trees. Here, n is the number of vertices. If linked lists are used instead, the
algorithm becomes O(n2). (Note that Ohtsuki (1982) reported the existence of an
O(n log n) algorithm for horizontal partitioning but gave no details.) We give an informal
presentation of further details and discussion of data structures below.

(a) (b) (c)

FIG. 11. (a) Polygon with left concave corners circled, and right vertical edges labeled e, f, g. (Step 1.1 of
implementation.) (b) Top corners of rectangles in the partition (marked with boxes). The dashed lines are
horizontal chords. (Step 2.) (c) Top edges ofrectangles in the partition. (Step 3.)
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ALGORITHM Partition

Input" Rectilinear polygon R, represented as a list ofvertices, sorted in order around
each boundary component, oriented so that R lies to the left. (IfR is connected,
the outer boundary is oriented counterclockwise, and the hole boundaries are
oriented clockwise.) (Note: any degenerate convex vertex will appear twice on
the vertex list.)

Output: List of rectangles in a cover for R, each represented by a quadruple
a, b, c, d], where a, b) is the projection ofthe rectangle on the x (horizontal)

axis, and (c, d) is the projection on the y (vertical) axis.

Part 1. lrocedure Right endpoints

{ Left endpoints is the mirror image of this procedure.

Output: For each horizontal chord whose left endpoint is a concave vertex,
output the right endpoint, (x, y) (the intersection ofthe chord with the boundary
of R).

{ Outline: To find the set of fight endpoints, run a vertical sweep-line from
left to fight, stopping at each fight vertical edge. At each stopping point, update
the set ofchords which extend rightward from some left concave vertex, across
the sweep-line. Then, find all chords which intersect a fight vertical edge on
the sweep line and output their endpoints. }

Step 1.1. Making one pass over the vertex list of R, extract a list VL, of all left concave
vertices, and a list ER, of all right vertical edges of R, each represented as
a triple [x, y, Y2], where (Yl, Y2) is the projection on the y axis. (See
Fig. 11 (a).)

{ VL represents the set of all chords whose left endpoint is concave. Any
such chord must have its fight endpoint on an edge in E.

Step 1.2. Sort the edges in E, and the vertices in V from left to fight.

Step 1.3. Let a be the minimum x-coordinate of the set of edges in E.

Let e [a, y, Y2], be an edge ofE.
Delete e from E.
Add to L the set of vertices (x, y) in V, with x < a. Delete these vertices
from Vz.
{ L represents the set of chords whose left endpoint lies strictly to the left
of the line x a and whose fight endpoint lies on or to the fight of the
line. }

Step 1.4. For each vertex (x, y) in L, with y =< y =< Y2,

{ there must be a chord with left endpoint (x, y), which intersects edge e.

Delete (x, y) from L;

ify < y < Y2, then add the point (a, y) to the output list.

Step 1.5. Repeat Steps 1.3 and 1.4 until E or V is empty.
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procedure Top corners

Output: Set of vertices which are "top corners" of rectangles in the horizontal
partition. (See Fig. 11 (b).)

Make one pass over the vertex list of R, examining incident edges, extracting
all vertices which are either "upper convex vertices" or "lower concave vertices."
To these, add the vertices found in Part 1.

procedure Top edges

Output: Set of top edges of rectangles in the partition, represented as triples
[x, x_, y], where (x, x2) is the projection on the x axis. (See Fig. 11 (c).)
Sort the list of top corners from Part 2, from top to bottom, then from left to
fight. Form top edges from adjacent pairs of vertices with the same y coordi-
nate.

procedure Upper boundaries

{ Lower boundaries is the mirror image of this procedure. }
Output: List oftop edges ofvertically maximal rectangles represented as triples
[x, x, d], where (x, x) is the projection on the x axis, and d is the y-
coordinate.

{ Note: when Lower boundaries is implemented, the input should be the list
of triples [a, b, d] from Upper boundaries. The output should be a list of
quadruples [a, b, c, d]. }

{ Outline: use a sweep-line procedure, similar to that ofRight endpoints, work-
ing from bottom to top, maintaining a list ofall rectangles which extend upward
to the current position of the sweep-line.

Step 4.1. Let T be the list of top edges, from Part 3.

From the vertex list of R, extract a list U of all "upper horizontal edges"
of R.

Step 4.2. Sort T and U from bottom to top.

Step 4.3. Let e be a horizontal edge e [Xl, x2, d] in U with minimum y coordi-
nate d.

Delete e from U.

Add to B all edges [a, b, y] in T, with y =< d.

Delete these edges from T.

{ B contains all top edges of rectangles which can be extended upward at
least to the line y d. }

Step 4.4. For each edge f [a, b, c] in B, such that the (open) intervals (a, b) and
(Xl, x2) (the projection of edge e) intersect (in more than one point).

Delete f from B;

Output the edge [a, b, d].

Step 4.5. Repeat Steps 4.3 and 4.4 until U or T is empty.
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Part 5. lrocedure Delete duplicate rectangles.

Sort the list of rectangles lexicographically, and remove duplicates.
Let n be the number of vertices of R. Part 2 requires only O(n) steps, while Parts

3 and 5 each require O(n log n) steps for sorting.
If L is stored as a linked list, then Step 1.4 may require 0(I L I) steps, yielding an

0(n 2) algorithm. If L is stored as a balanced tree (sorted by y coordinate), all vertices
in L with y =< y =< Y2 can be found in O(log ILl + k) steps, where k is the number of
vertices found. Each addition and deletion also requires only O(log ILl) steps. (For a
discussion of balanced trees, see Knuth (1973, Chap. 6.2.3).) Step 1.4 thus requires a
total of O(n log n) steps. Since ER and VL are sorted, Step 1.3 adds only O(n) steps. In
either case, O(n) extra space is used.

The analysis of Part 4 is the same, with one exception. Instead of using a balanced
tree to store B, use a Group Tree (due to McCreight, described in Ullman (1984, pp.
385-391 )). (This data structure was introduced independently by Edelsbrunner, who
called it an Interval Tree, described in Preparata and Shamos (1985, pp. 352-355).)
Using this data structure, we can find all intervals (a, b) which intersect the query interval
(xl, x2) in O(log n + k) steps, where k is the number ofintersections reported. Additions
and deletions can also be performed in O(log n) steps each. Thus, the procedure can be
performed in O(n log n)steps.

5. Concluding remarks and open lroblems. The main question raised by this work
is whether there is any algorithm which always produces a cover with at most c. 0 rect-
angles, where c is a constant. Note that a proofwhich uses the technique of constructing
a large antirectangle, as in the proof of Theorem 2, will prove the stronger result that
0/a is bounded.

We have shown that a simple, efficient heuristic for producing a rectangle cover
yields a number of rectangles which is at worst twice the minimum if the polygon has
no holes. We conjecture that the number of rectangles is within a constant factor of the
minimum for an arbitrary rectilinear polygon, though we have not been able to prove
this. The bound of O(0 log 0), from Theorem 2, is the same asymptotic bound obtained
by Johnson (1974) on a heuristic for general set coveting. His algorithm requires repeated
searching for the maximal rectangle containing the most uncovered squares. The example
of Fig. 4(a) has 19(n 2) maximal rectangles, so a naive implementation would use much
more space and time than Partition/Extend.

There is some evidence that the upper bound for Algorithm Partition is 30.
Observe that if there are no type 3 chords (as in Figs. 4(a) and 5), then the proof of
Theorem shows that p =< 30. If no four vertices lie on the same horizontal line, then
there can be no type 2 or type 3 chords, so p =< 30 in this case also. On the other hand,
the existence of many type 3 chords (or many vertices on the same line) may force
rectangles to be deleted when rectangles are "extended," as in Figure 4(b).

There are many other algorithms which would be natural for further study. An
obvious improvement to Partition is to use it both horizontally and vertically,
then take the best cover. Another improvement is to find "degenerate" rectangles in the
cover, those that are completely covered by a set of narrower rectangles, deleting them
until stuck. (See Fig. 12.) In the example of Fig. 4(a), there is one degenerate rectangle.
In Fig. 5, deleting degenerate rectangles yields an optimal cover.

Inserting or deleting one rectangle at a time, in a greedy manner, can yield covers
with f(02) rectangles if done arbitrarily. However, there may be rules for selecting the
next rectangle, with a much better bound (as in Johnson (1974)). A different type of
heuristic was described informally by HegediJs (1982). The idea is to first cover all "edge"
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FIG. 12. "Degenerate" rectangle (dashed outline, offset slightly). It is covered completely by the three
rectangles with solid outlines.

squares, greedily, obtaining a "reduced polygon," then repeating the process until all
squares are covered. Note that finding a minimum cover for the set of edge squares is
also NP-hard (Conn and O’Rourke 1987 )).

Finally, there are several nonrectilinear coveting problems that have practical ap-
plications, for which it would be worthwhile to study the performance ofapproximation
algorithms. One problem is coveting a (nonrectilinear) polygon with rectangles, allowing
rotations (and assuming either no acute angles, or a means of approximating an acute
angle with rectangles). This problem has been studied by Levcopoulos and Lingas (1984),
and by Levcopoulos (1985). Allowing a discrete set of edge orientations, such as 45
and 90, would also be of interest in this case. Another problem is covering an arbitrary
polygon with convex polygons (proved NP-hard by O’Rourke and Supowit (1983)).
There is a rather complicated polynomial-time algorithm for finding a minimum partition
(when there are no holes), due to Chazelle and Dobkin 979). It would be interesting
to know whether a relation between coveting and partitioning, similar to that ofTheorem
1, holds in this case also.
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CONSTRUCTING A MAXIMAL INDEPENDENT SET IN PARALLEL*

MARK GOLDBERGf:[: AND THOMAS SPENCER"

Abstract. The problem of constructing in parallel a maximal independent set ofa given graph is considered.
A new deterministic NC-algorithm implemented in the EREW PRAM model is presented. On graphs with n
vertices and m edges, it uses O((n + m)/log n) processors and runs in O(log n time. This reduces by a factor
of log n both the running time and the processor count of the previously fastest deterministic algorithm that
solves the problem using a linear number of processors.

Key words, parallel computation, NC, graph, maximal independent set, deterministic

AMS(MOS) subject classification. 68Rl0

1. Introduction. The problem of constructing in parallel a maximal independent
set of a given graph, MIS, has been investigated in several recent papers. Karp and
Wigderson proved in KW that the problem is in NC. Their algorithm finds a maximal
independent set of an n-vertex graph in O(log4 n) time and uses O(n3/log rl) processors.
In successive papers, the authors proposed algorithms which either are faster or use a
smaller number ofprocessors. Luby in [L and Alon, Bahai, and Itai in [ABI] presented
probabilistic algorithms running in O(log2 n) time on a EREW PRAM with a linear
number of processors. Luby also described a technique for converting probabilistic al-
gorithms into deterministic ones; the technique preserves the running time but requires
an increase in the number of processors used to O(n2m), where m is the number of
edges in the graph. The first deterministic NC-algorithm on a linear number ofprocessors
(EREW model) was constructed in [GS]; its running time is O(log4 n). Recently, Luby
[L2 proposed a general method for converting randomized parallel algorithms into
deterministic ones, which does not require an increase in the number of processors. In
the case of MIS, the method yields a new algorithm running on a linear number of
processors in polylogarithmic time; however, it runs slower than that in GS ]. All NC-
algorithms for MIS mentioned above use the following top-level design proposed in [KW]:

Start with an empty independent set I. Find an independent set I’, add it to I, and
delete I’ and the vertices adjacent to a vertex in I’ from the graph. Repeat the
previous step until the graph is empty.

Call FINDSETthe procedure which constructs I’. One can easily prove that an algorithm
with such a structure belongs to NC if FINDSET is designed so that, on any n-vertex
graph (n > 0), it runs in polylogarithmic time and delivers an independent set C such
that C tO N(C)[ ft(n/log n) for some fixed s >- 0; (N(C) is the set ofneighbors of C).

In this paper, we present a new deterministic algorithm for MIS which improves
the running time ofthe algorithm in [GS] by a factor oflog n and simultaneously reduces,
also by a factor of log n, the number of processors used. The algorithm is implemented
in the EREW model of computation. Thus, the processor-time product ofthe algorithm
in GS] is improved by log2 n. These gains are due to the new version of the FINDSET
procedure. The new procedure finds in O(log2 n) time an independent set I such that
removing I t_J N(I) reduces the size ofthe graph by half. Thus, the procedure FINDSET
needs to be called only O(log n) times.

To reduce the number of processors used, we modify the definition of the size of
the graph so that it takes into account the number of edges deleted. The result of this
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modification is that the processor-reduction technique of Miller and Reif MR can be
applied to reduce the number of processors necessary by a factor of log n.

Both the algorithm of [GS] and the one of this paper use the idea of a partial
coloring. A partial coloring is an assignment of colors to some, not necessarily all, of the
vertices such that no two adjacent vertices have the same color. Examples of partial
colorings include the trivial coloring where every vertex has a different color and the
empty coloring where no vertex is colored. Ifa coloring assigns colors to all ofthe vertices,
then it is called complete. The set of vertices with the same color is called a color class.

FINDSETconstructs a sequence of partial colorings starting with the trivial coloring.
The objective is to find a "big" color class C (the definition of "big" is given later). If
such a color class C is found, FINDSET deletes C LJ N(C) from the graph; if no color
class is "big," some of the color classes are merged. A side effect of this is that some
vertices become uncolored. FINDSET halts when all vertices are either deleted or un-
colored. It returns the union of all the "big" color classes it found.

The success of such an approach depends on the definition of a "big" color class
and on the efficiency of merging. When an algorithm decides to merge, it should do it
"fast" and so that "not-too-many" vertices are decolored. The technical means by which
this task is accomplished in our implementation is the comparison oftwo representations
of the edge set E of a colored graph. The first one views E as the union of the sets L(C)
of edges with an endpoint in the color class C, where C ranges over the set of all color
classes. Roughly speaking, L(C) measures the size of the part of the graph that would
be deleted if C is added to I. The second representation of E partitions the edges into
classes so that the membership ofan edge is determined by the colors ofboth its endpoints.
Every class of the second representation measures the size of the graph which would be
decolored if merging were performed according to this particular class. Propositions
and 2 establish that if there are no big classes, then there is efficient merging.

We expect that the consideration of these representations can be helpful in the
design of parallel algorithms for other graph problems.

2. Terminology. The definitions of class NC and models of computations can be
found in [P], [V], and [KR]. The graph-theoretic terminology used in this paper is
standard [BM]. The degree of a vertex v in a subgraph H is denoted degn(v). Given a
set K c V(G) of vertices, an(K) vK( + degn(v)) is called the weight of Kin H.
If the graph is understood, the indices in degn and an(K) are omitted. We use weight as
the definition of size when we say that FINDSET finds an independent set I such that
the deletion of I t3 N(I) reduces the size ofH by half.

Let C [Co, Cr- ] be the collection of color classes of a partial coloring b.
Then, Li denotes the set of edges which have one endpoint in Ci, and Ni denotes the set
of vertices which have neighbors in Ci. The consideration of Li’s yields the first method
ofclassifying the edges. To understand the second method, we need to define the functions

I p if p is odd,
x(p

p- if p is even.

rev( i, q;p) q- i) mod x(p).

index( ,j p)

(i +j) mod x(p)

2i mod x(p)

2j mod x(p)

if 0 =< i,j <= (p) 1,

if j= x(p),

if x(p).
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One can readily prove that for every q and (0 =< i, q -< x(p) ), j rev(i, q; p) is
the only integer in the interval [0, x(p) with index(i, j; p) q.

Let be a vertex coloring and C Co, "", Cr- ] be the set of its color classes.
For k 0,... let rk {(Ci, Cj): index(i,j; r) k} be a partition of C into
r2J pairs and possibly one singleton. These partitions of C are called the regular

partitions ofC. One can readily check, that for all j, r; and r do not share a common
pair. Thus, the collection { 7r0, "’", r_ } presents a minimal edge coloring ofthe com-
plete graph whose vertices are Co, "", Cr- .

Fix k and let r rk. For each l 0, ...,/r/2J, define Bl (Ci! (’] N(Ct)) t3
tr/2]-Ct f3 N(C#)) and B t3 l= 0 Bl. The weight a(r) of r is then given by r(r) a(B).

3. An outline of the algorithm. In this section, we present a description ofFINDSET
and prove that every application ofFINDSET reduces the weight of the graph by half.

Let G be a graph with n vertices and m edges. FINDSET starts by defining an empty
independent set I and a trivial vertex coloring on the vertices of G. Then, it proceeds in
phases. At every phase, one of the following actions is performed:

( ) A color class C* is found for which a(N(C*)) >= (n + m)/log n. All vertices
of C* are added to I and all vertices from C* t3 N(C* are deleted.

(2) The color classes are partitioned into pairs (Ci, C), with possibly one color
class left over. The two color classes of each pair are merged. To make the
merged color class independent, the weights of the sets Ci f3 N(C) and C fq

N(Ci) are compared and the vertices of the set with the smaller weight are
decolored.

Action ( ) is done whenever possible; action (2) is done only when there is no suitable
color class C*. The actions are executed until at most one color class is left. Ifit is indeed
one color class, then independent of its weight the color class is added to I.

Action (2) is done by the procedure HALF. It constructs a regular partitioning r
of the minimal weight, and merges every pair of color classes matched by

The following propositions show that action (2) does not decolor too many vertices.
PROPOSITION 1. Let C [Co, Cr- 1] be the set ofcolor classes ofa coloring

ck and { ro, rx-1} be the set ofregular partitionings ofC. Then

X-I r-I

(*) r( Trj) < (N( Ci)).
j=o i=o

Proof. The set ofpartitionings { rj } (j 0, contains every pair ofcolor
classes exactly once. Therefore, for every colored vertex v, its contribution to the left part
of the inequality is equal to a(v) (the number of color classes that contain vertices
adjacent to v). Obviously, the contribution of v to the right part is as big as that.

PROPOSITION 2. Let 4 be a coloring andC Co, "", Cr 1] be the set ofits color
classes. Iffor every >= O, a(N( Ci)) <= (n + m)/log n, then there is a regular partitioning
r ofC and a set D ofvertices such that

foreverypair C’, C" ofcolorclasses matched by r,

C’U C"-D is an independent set;

n+m r
(2) r(D)

2 log n (r)
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Proof. If for every >_- 0, a(N(C)) <- (n + m)/logn, then it follows from (.) that- (n+m), a(r)<=r,
j =0 log n

which in turn implies the existence of a regular partitioning rk of C with r(rk)=<
((n + m)/log n)(r/x(r)).

Let {(Cit, Cjt)} be the set of pairs of r. For every 0, Lr/2J 1, compute
r( Cit f3 N( Cjt)) and a( Ct f3 N(C/t)) and denote by Dt the set having the smallest value
of a. Then, the union D Lit Dt satisfies conditions and (2).

THEOREM. FINDSETexecutes at most O(log n) actions. Ifn’ and m’, respectively,
are the number of vertices and edges of the graph G’ induced on the set of decolored
vertices, then

n’+ m’=<(1/2 +o( 1))(n + m).

Proof. If action ( ) is applied, then the total number of edges and vertices deleted
is at least (n + rn)/log n; thus, these actions are executed at most log n times. Obviously,
the number of times actions of the second type are applied is also at most [log n].

Let D be the set of vertices that are decolored by the ith application of an action
of type 2 and let A t_J D;. Then,

n’+ m’<- a(A)<= , r(Di),

a(D i) <
n + m ri
2 log n xiri)"

and
log n-I o.gnn+m r <n+ m r, ri

i= 2 log n X(ri) 2 log n o X(ri)’

where ri is the number ofcolor classes just before the ith application ofthe type 2 action.
To evaluate Z o nq

i=0 (ri/X(ri)), note that X < ri for even ri’s only, and for such ri s,
eve application of an action of type 2 reduces the number of color classes by half; if
ri 3 is odd, ri+ (ri/2) + 1. Thus,

log n] 2 < [log n] + 2,
logn

ri
2X x(r) =1i=0

which implies the theorem.
COROLLARY. Any application ofFINDSET yields an independent set I, such that

lION(I)[ (-o(1))(n+m).
In the next section, we will show that FINDSET can be implemented to mn in

O(log2 n) time. This will imply that the running time of the algorithm is O(log n).

4. Im#ementation of the algorithm. We will first see how to implement FINDSET
to mn in O(log2 n) time on n + m processors. Obviously, for eve application ofFIND-
SET, action of either type is executed at most O(log n) times. Thus, we should show
that the execution of each action requires only O(log n) time.

A gaph G is represented by a list L L(G) of its veices and edges. Each edge is
in this list twice, once in each direction. Thus, the length ofL is n + 2m. For each ent
of L, there is a processor attached to it. The processors are numbered by 1, ..., n +
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2m; the first n of them represent the vertices. In addition to its endpoints, each edge
knows the colors (if any) of the endpoints and the location of itself given in the other
direction. Almost all of the operations are done by sorting this list based on some key.
From [AKS], [C] we know that it is possible to sort m records in O(log m) time on m
processors.

To delete a color class C, each edge checks the colors of its endpoints to see if one
has the same color as C. If one does, the edge deletes itself. Then FINDSET sorts the
list of edges to remove the deleted edges.

To decide whether to do action (1) or action (2), FINDSET needs to calculate
a(Ci), for each Ci in . It can calculate the degree of each vertex by sorting the list of
edges by their first vertex. It can then sort the list of vertices by color and add up the
degrees of the vertices.

When HALF performs action (2), it finds the regular partition r that minimizes
tr(r). For this purpose, it needs to know the degree of each vertex. It can calculate them
itself, or it can inherit them from the previous step. To calculate a(Tr), HALF calculates,
for each edge with two colored endpoints, index(i, j; r), where and j are the colors of
the endpoints. It then sorts the edge list by index, breaking ties by first vertex. The
different first vertices that occur with a given index q are the vertices in D for the
partition %. HALFthen sums the degrees of these vertices to calculate the weights a(71"t)
(t 0, X(r) and selects the partition with the minimum weight.

Let q be the index of the selected partition r. At this stage, HALF is consider-
ing the list F of edges whose index is q. For every pair (Ci, Ci) of r, the vertices of
one of the color classes will be either decolored or recolored when C; and Cj. are
merged; we call this color class eligible. To find eligible classes, HALF computes

ail o’(Ci! [") N(C)) for every 1 0, [r/2J 1, and sets class Cil eligible if and
only if % =< trj. Once HALF has identified the eligible color classes, it looks at each
edge and decolors those vertices v belonging to the eligible color class Ct that are con-
nected to a vertex with color rev(t, q; r). Finally, the pairs of color classes determined
by q are merged into single classes by recoloring, for every pair, all the vertices in the
color class with the larger color, i.e., each vertex v with original color c(v) changes its
color to rev(c(v), q; r) if and only if rev(c(v), q; r) <= c(v).

In general, the new color classes do not necessarily have consecutive numbers. To
fix this, the vertices are sorted by color, so that the set of colors in use can be determined.
Next, HALF renumbers the colors and gives each vertex its new color. To update the
colors of the first vertex stored with the edges, the list of edges is sorted by first vertex.
Then, the pointers to the other representation of the edges are followed to update the
color of the second vertex.

Each execution ofthe main loop ofFINDSET requires between one and three sorts
and O(log n) time spent doing other miscellaneous work. Thus, FINDSETrequires only
O(log2 n) time in all. The number oftimes FINDSETis called is O(log n) implying that
the running time of the algorithm is O(log n).

So far, we have assumed that m + n processors are available. However, using the
processor reduction technique of Miller and Reif [MR], the algorithm can be executed
on (m + n)/log n processors without increasing the running time by more than a constant.
For an arbitrary k > 1, if there are only (m + n)/k processors, then each real processor
can simulate k virtual processors in the algorithm. Since a call to FINDSET halves the
value n + m of the graph, the number of virtual processors that every real processor
simulates decreases by a factor of 2 after each call to FINDSET. Thus, there is a constant
C> 0, such that for every 1,2, ..., the ith call of FINDSET is executed
in <=C2 -i log n time. This increases the running time of the algorithm by a factor of 2.
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There is no problem allocating virtual processors to real processors. Each virtual
processor is responsible for a single item in list L of vertices and edges in the graph. It is
only necessary to reallocate virtual processors after each call to FINDSET. The new
representation of G (I LI N(I)) can easily be calculated by sorting. The reallocation
can be done even after each execution of the loop in FINDSET. While this will speed
up the algorithm for a typical graph, the worst-case graphs do not get smaller fast enough
to improve the asymptotic performance of the algorithm.

Note that the same technique can be applied to reduce by a factor of log n the
number of processors used by the probabilistic algorithms from [L and [ABI].

5. Conclusion. An important property of a parallel algorithm is the total work W
it does. Obviously, W -< P T, where P is the number of the processors used by the
algorithm and T is its running time. Thus, our deterministic algorithm for MIS does
O((m + n)log n) work which is a factor of log n more than the work done by the
obvious sequential algorithm. It would be nice to find an algorithm that does less work.
One approach would be to improve the sorting algorithm that our algorithm uses. This
might be possible since the keys of all the sorts are small integers. In fact, Reif has an
algorithm that sorts n small integers while doing only O(n) work on a randomized con-
current-read, concurrent-write, PRAM [R]. However, if randomization is introduced in
the model, then the algorithms from [L and [ABI] are preferable. Thus, real improve-
ment would be achieved if better deterministic sorting algorithms were used. Obviously,
they would be of interest for other reasons as well. Another approach is to find a way to
sort less often. Both approaches appear to be very difficult.

A more promising way to improve the algorithm would be to reduce its running
time without increasing the work that it does very much (if at all). It may be possible
to reduce the running time of the algorithm by executing different calls to FINDSET in
parallel. There are several ways to do that; the difficulty seems to be in developing a
better analytical technique for estimating the running time.

The dual representation ofthe edge set may also be useful for other problems, edge-
coloring and vertex-coloring being among the first candidates. Another potentially fruitful
application of this representation is the problem of constructing an independent set of a
guaranteed size. In [G], an algorithm was described which runs in O(log n) time on
O(n + m) processors and constructs an independent set with >=n:/32rn (m >= n/2)
vertices. Conceivably, an appropriate change in the definition of the weight of a set
will convert our algorithm into one which builds an independent set containing >=n-/
(2m + n) vertices. This is guaranteed by T6ran’s theorem [T which also states that this
bound is best possible in terms of n and m.

Acknowledgments. We gratefully thank the three referees for their helpful comments
on the first version of the paper.
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SINGLE-SUIT TWO-PERSON CARD PLAY III. THE MISIRE GAME*

J. KAHNf, J. C. LAGARIAS:I:, AND H. S. WITSENHAUSEN:I:

Abstract. Misre End Play is a two-person constant sum game with perfect information. The game uses
a deck of cards that consists of a single totally ordered suit of 2n cards. To begin play, the deck is divided into
two hands of n cards each, held by players Left and Right, with one player designated as having the lead. The
player on lead plays one of his cards, and the other player, after seeing it, plays one of his cards. The player
with the higher card wins a "trick" and obtains the lead. The cards in the trick are removed and play continues
until all cards are played. In Misre End Play each player’s goal is to take as few tricks as possible. Misre End
Play is shown to have a simple optimal strategy.

Key words, combinatorial games, two-person games, card games, computational complexity

AMS(MOS) subject classifications. 90D05, 90D42, 68Q25

1. Introduction. In previous papers we studied a two-person constant sum perfect
information game called the End Play Game. The two players are called L (left) and R
(fight). In the starting position each player holds n cards (his "hand"), which together
comprise a set of 2n cards (the "deck"). The cards are totally ordered, i.e., the deck of
cards has one suit. Both players know the content of both hands and the order. One of
the players is designated as having the initial lead.

Play proceeds as follows. The leader selects one of his cards, and the other player,
after he has seen this selected card, plays one of his cards in response. The highest of the
two cards scores a "trick" for the player who played it and the lead passes to this player.
The two cards played are removed, leaving a new position with hands of n cards and
a leader, from which play proceeds until the cards are exhausted. Each player’s goal is
to win as many tricks as possible.

The game was described in 1929 by Lasker [4], the mathematician and world chess
champion, who called it whistette. Lasker studied this game as an illustration of simple
aspects of play in games of the whist type. He gave rules of play sufficient for hands with
a small number ofcards, and observed that finding an optimal strategy for hands having
a large number of cards might be difficult.

The appeal and apparent subtlety of the End Play Game arises from the presence
ofthe lead, and the rules concerning its movement between the players during the game.
In previous papers ([ 2 ], 3 ]) we derived basic properties ofthe End Play Game and gave
evidence suggesting that it indeed may be dicult to compute an optimal strategy for a
large number of cards.

In this paper we consider the Misre variant of the game, in which the rules of play
are the same, but now each player’s objective is to take as few tricks as possible. We call
this game the Misre End Play Game, or Misre End Play for short.

The main result ofthis paper is that Misre End Play has a simple optimal strategy.
THEOREM 1.1. For the MisOre End Play Game, thefollowing strategy is optimal.

When on lead, always lead one’s lowest card.
(2) When playing to a lead, one should play the highest card in one’s hand which

is lower than the card led, ifthis is possible. Otherwise, one shouM win the trick, playing
one’s highest card.
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We will prove this result by induction on the number of cards in each hand. One
might expect that this result is simple to establish, but surprisingly this does not seem to
be so. The induction we use requires rather complicated hypotheses. The problem we
encountered in proving this result is that while the optimal strategy itself is easy to describe,
we could not find a simple closed form for the value function Vn(A, B). This prevents
us from giving a simple inductive proof using exact formulae for the payoff matrix.
Instead, we use a complicated set of regularities of the payoff matrices as inductive hy-
potheses in order to reach the desired conclusion. We have found examples of payoff
matrices which indicate that the induction hypotheses have to be rather complicated
(see 2).

In the End Play Game, having the lead is always a disadvantage that can cost one
player at most one trick over what he would take with the same hand when not having
the lead ([ 2, Thm. 3.1 ]). In Misre End Play, having the lead is also always a disadvantage.
However it can potentially cost a player [] tricks in an n-trick game. The worst
case turns out to be two hands with interlaced cards: A { 2n, 2n 2, 2 }, B
{ 2n 1, 2n 3, , }. Assuming that Theorem 1.1 holds, it is easy to check that A
takes all n tricks if he is on lead, B ducking every trick, while ifB is on lead they alternate
taking tricks, with A taking n [] tricks. (We omit a proof that this is in fact the
worst case.)

Another variant of the End Play Game arises when each player’s objective remains
to capture as many tricks as possible, but the rule concerning the lead is changed to
require that the player who does not capture a trick must lead to the next trick. We call
this game the Reverse-Lead End Play Game. The Reverse-Lead End Play Game is the
same game as Misre End Play, using the following equivalence. One may convert a set
of Misre End Play hands to an equivalent set of Reverse-Lead End Play Game by
reversing the ordering of the cards. One can then check that an admissible sequence of
plays in the Misre Game corresponds to an admissible sequence in the Reverse-Lead
game, with the lead behaving properly. In this case a player not taking a trick in the
Misre game corresponds to a player taking that trick in the equivalent Reverse-Lead
game, so that the number of tricks taken by a player in the Reverse-Lead Game equals
the number of tricks taken by his opponent in the corresponding Misrre Game. Using
this equivalence and Theorem 1.1, we find that an optimal strategy for the Reverse-Lead
End Play Game is as follows:

When on lead, lead one’s highest card.
(2) When playing to a lead, if one can capture a trick, do so with the lowest card

that will capture the trick. If one cannot capture the trick, play one’s lowest card.
The optimal strategy given in Theorem 1.1 does not extend to Misre End Play

with more than one suit. In the multisuited game, the player not on lead is required to
play a card in the same suit as the card led ("follow suit"), but if he has no card in this
suit, he may play any card ("discard"). The trick is won by the player who played the
highest card in the suit led, i.e., play is as in "no-trump" in bridge. The possibility of
discards certainly makes Misre End Play with several suits a more complex game. In
fact, Misre End Play is a more complicated game even in the special case in which each
player holds the same number n of cards in each suit, so that discards cannot occur.
Extra complexity arises because not having the lead can be a very valuable commodity.
Consider a two-suited game in which the payoff in suit 2 differs by []-tricks, depending
on who has the lead, and in which, in suit 1, the effect ofthe lead on the payoff difference
is small. Then the player holding the lowest card in suit may do better than the strategy
of Theorem 1.1 by hoarding the lowest card in suit and playing on suit at every
opportunity sacrificing some tricks because he hoards his lowest card) and finally throwing
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the other player in the lead at the last trick in suit with the hoarded lowest card. The
other player might as well play on suit initially also, because he can play on suit 2 only
while having the lead, and this is the situation he is trying to avoid. Thus for the Misre
Game with more than one suit, even when players have the same number of cards in
each suit, it is not clear whether or not there is a simple optimal strategy.

The rest of the paper is organized as follows. In 2 we study the payoff matrix of
the game and prove two preliminary results. One is that having the lead is never advan-
tageous in the game, all other things being equal. The second result (Monotonicity Theo-
rem) is that it is never advantageous for a player to trade a card in one’s hand for a
higher ranked card. The proof of Theorem 1.1 follows in 3.

2. Payoff matrices and the Monotonicity Theorem. We first establish notation. Let
(A, B) denote a pair of hands. The standard deck is { 1, 2, 2n } where the cards
have the usual ordering on the integers, so that 2n is the highest card. A state ofthe game
is (e, A, B) where A denotes the cards in Left’s hand, B denotes the cards in Right’s
hand, and e 0 or indicates who has the lead, where e means Left leads. The
integer V(A, B) denotes the value ofthe state (e, A, B) to Left, which is the number of
tricks Left has to take with optimal play by both players, and n AI BI indicates
the number of cards each player has in that state.

We may recursively compute the value function as follows. We associate to a pair
of hands (A, B) a payoffmatrix G(A, B), which is an n n matrix (where n IAI
B I) whose rows are indexed by Left’s cards in A in decreasing order, and whose columns

are indexed by Right’s cards in B in decreasing order, and whose (a, b)th entry Ga,b gives
the value of the game to Left if Left plays a and Right plays b to the first trick. This is

r/’[a’b] (A { a } B- (b})(2.1) Ga,b [a,b] + vn-1

in which [a, b] is the value of the first trick, which is

if a> b,
(2.2) [a,b]=

0 ifa<b,

and [a, b] also specifies the lead determined by play to the first trick. As an example,
Fig. gives the payoff matrix for the hands (A, B) where A { 12, 10, 8, 6, 4, 2 } and
B ( 11, 9, 7, 5, 3, }. The line inside the payoff matrix indicates the capture boundary,
which is the line where the lead changes. Below and to the left of this line [a, b] 0.

R 11 9 7 5 3 1
L

6 5 5 4- 6_ 5 4

3
4
5

3
4 3 3:
4 4

4 3
4 3
4 3
5 4

36366 5

FIG. 1. Payoffmatrix giving number oftricks L takes.
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The object of Misbre End Play is for each player to minimize the number of tricks
he takes. Recursions for the value function can be read off from the payoff matrix. IfR
is on lead, he wishes to minimize his value, which is equivalent to maximizing Left’s
payoff, since the total number of tricks in the game is constant. Thus Right wishes to
pick the column in the payoff matrix whose smallest entry is largest, so that

(2.3) V,(A B)=max min[a,b]+ Vt"’bl(A {a} B- {b})

IfL is on lead, he picks the row in the payoff matrix whose largest entry is smallest,
so that

1/" [a,b](2.4) Vn(A B) min max[a,b] + -n-l(A- {a},B- {b}).
b

The minimax inequality asserts that for any rectangular matrix [mij] one has

2.5 max min m0 -< min max mo.
j j

An immediate consequence is that for all { A, B } one has

(2.6) V(A,B) <= VI(A,B),
which asserts that it can only be advantageous for Left not to have the lead ifthe hands
are heldfixed.

The Misre End Play Game has a symmetry in that the game appears the same to
Left and Right. More precisely, the game is symmetric under interchanging Left’s and
Right’s hands while also interchanging the lead. Since the value function measures the
value in terms of tricks to Left, this symmetry is expressed in terms ofthe value function
as

(2.7) Vn(A,B)+ Vn-’(B,A) n,

fore 0 or 1.
We introduce some additional terminology. We say x, y are consecutive cards for

hands (A, B) if they are adjacent in the total ordering of the deck A B. A block for
hand A (respectively, B) in hands (A, B) is a maximal set of consecutive cards in A
(respectively, in B). For example, for a standard deck { 1, 2, 2n } a block for A has
the form {x,x+ 1,...,x+k} Awhereeitherx- is inBorx= and either
x + k + is in B or x + k 2n. Two sets of hands (A, B) and (A’, B’) are isomorphic
if they have the same number of cards and the identical partial order, i.e., they
differ only in the labelling of the cards and not in the ordering of the cards, e.g.,
{ 1, 2 }, { 3, 4 } is equivalent to { -3, 7/2 }, { 4, 6 } ). Two cards x, xz are called

equivalent for (A, B) if they are both in the same block for one of the hands. Equivalent
cards are indistinguishable in the play of the hand, i.e., given hands (A, B) with
x, x2 being two equivalent cards in A and y, Yz being two equivalent cards in B
then the plays of (x, y) and (x2, Y2) to the first trick are the same in the sense that
Ixl, Yl] [X2, Y2] and the resulting pairs of (n )-card hands

(A- {x},B- {y}) and (A- {x2},B- {Y2})
are isomorphic.

Now we justify the intuitively obvious assertion that exchanging a weaker card in
Left’s hand for a stronger card in Right’s hand is always disadvantageous to Left. We
first prove this in the case of an exchange of consecutive cards.
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THEOREM 2.1. Given hands (A, B), suppose that x, y are two consecutive cards in
A t_J B with x < y andx A andy B. LetA’ A {x} + {y} andB’ B- {y} +
{ x } be the hands obtained by interchanging x and y. Then

(2.8) Vn(A’,B’)>= Vn(A,B); e=0 or 1.

Proof. We prove the result by induction on n. It is clearly true for n 1, since the
value is independent of the lead in that situation. Suppose it is true for n 1. Look at
the payoff matrices G G(A, B) and G’ G(A’, B’). We claim that each entry G,, in
G(A’, B’) is greater than or equal to the corresponding entry G,, of G(A, B). Here the
row labelled y of G is identified with the row labelled x of G’ and the column labelled x
of G is identified with the column labelled y of G’. The truth of this claim immediately
implies the desired inequality (2.8) via the recursive formulae (2.3) and (2.4) for the
value in terms of the payoff matrices.

To prove the claim we consider four cases. Suppose a A, b e B are two cards
unequal to x and y, respectively. Then

ta’bl(A’-- {a} B’- {b})Ga,b [a,b] + Vn-I
Ia,b]>= [a,b]+ l/’n_(-{a},B-{b})=Ga,b

by the inductive hypothesis, since

(A- {a})’=A’- {a} =A- {a}- {x} + {y},

(B-{b})’=B’-{b}=B-{b}-{y} + {x}.

Second, suppose x 6 A, b B with b 4: y. Then

Gy,b [y,b] + V[,Y’_(A’-{y},B’-{b})

Ix, b] + -n-,’: (A {x} B- { b }) Gx, ,

using the facts that [y, b] [x, b] because y and x are consecutive cards, and once x is
played the hands (A’ { y }, B’ { b } and (A { x }, B { b } have the identical
ordering of cards. Third, if a 6 A, y B and a 4 x, then

Ga,y= Ga,

by a similar argument. Finally for x A, y B

(A B)G,x "- V
>= Vn (A,B) Gx,y,

using (2.6). This proves the claim.
We define a swap for (A, B) to be the exchange of a card a e A with b e B with

a < b, leading to new hands (A’, B’) with A’ A { a } + { b }, B’ B { b } + { a }.
Theorem 2.1 proved that a swap of consecutive cards cannot decrease Left’s value. Now
define (A, B) to be superior to (A’, B’), written (A, B) >=s (A’, B’), if (A, B) can be
obtained from (A’, B’) by a series ofswaps ofconsecutive cards. Theorem 2.1 immediately
implies that

(2.9) (A,B)>=s(A’,B’) V,(A ,B’) > V,(A,B), e=0 or

It is relatively easy to prove the following result.
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THEOREM 2.2 (Monotonicity Theorem). Given hands (A, B) and suppose that
a A and b B with a < b. Then

(2.10) V(A- {a} + {b},B- {b} + {a})>= Vn(A,B); e=0 or 1.

Suppose that c is a new card not in A t_J B and that c > a. Then

(2.11) V(A-{a}+{c},B)>=V(A,B); e=Oorl.

Proof. It suffices to show that

(A-{a}+{b},B-{b}+{a}) and (A-{a}+{c},B)
are both superior to (A, B). It is a relatively easy matter to find a series of swaps of
consecutive cards that show these, cf. [2, 4].

The superiority relation is a partial ordering. It can be shown fairly easily that for
hands (A, B) and (A’, B’) drawn from a standard deck of 2n cards if we define the
counting functions

(m)=#{aA:a>=m},

then (A, B) is superior to (A’, B’) if and only if the condition

XA(m)>= XA,(m)

holds for _-< rn =< 2n. We omit the proof of this fact as we make no further use of it.
The Monotonicity Theorem gives the following information about an optimal

strategy.
THEOREM 2.3. MisOreEndPlay has an optimal strategy in which theplayerfollowing

to a lead always does one ofthefollowing:
Takes the trick with the highest card playable.

(ii) Does not take the trick, playing the highest card that will not take the trick.
This theorem asserts nothing about how the player chooses among alternatives (i)
and (ii).

Proof. Without loss ofgenerality assume that the hands are A { ai and B { b }
with cards ordered in decreasing order in both hands, and that Right leads, say card b.
By Theorem 2.2 the function V,_ (A { a; }, B { b } is an increasing function as
decreases. Hence if Left wins the trick, his value is

min (1 + Vn_,(A-{ai},B-{bj})) + Vn_,(A-(al},B-{bj)),
i: [ai,bj

i.e., Left may as well play his highest card. Similarly, if Left loses the trick, his value is

min (V_,(A-{ai},B-{bj})) V_l(A-(a},B-{bj})
{i: [ai,bj] =0}

where ak is the highest card with ak < bj. Hence Left might as well play a. if]

We conclude this section with an example ofa payoff matrix showing that the value
to Left is not a monotone decreasing function of the strength ofthe card Left leads. This
example was computed using a recursive calculation of the value function. The hands
are {A, B } with A { 11, 10, 6, 4, 3, 2 } and B { 12, 9, 8, 7, 5, and the payoffmatrix
is given in Fig. 2. It is better for Left to lead 10 or 2 than to lead 6.

While we have no general expression for the value as function of the position, we
note in passing the (easy) solution for the case where each player has only two blocks.
Without loss of generality assume that Left has the lowest a cards as his bottom block,
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R 12 9 8 7 5 1
L
11 - 3
10 1 3
6 2 2
4 2 2
3 2 2

2

3 3 3 2
3 3 3 2
2 2 [___ 3
2 2 2 3
2 2 2
2 2 2

FIG. 2. Payoffmatrix.

while Right’s lower block consists of the next cards. Thus we are talking about
the value

V;({1, ,a} LJ{a+/3+ 1, ,n+/3},{a+ 1, ..-,a+/3}U{n+/3+ 1, ..-,2n}).
In the boundary case where any of the four blocks is empty, the value is (/3 a)+,
regardless of the lead. In the "interior" case, where < a < n and </3 < n, the value
is (/3 a + e) + Here (x) + denotes max (0, x).

3. Optimal strategy for Mis6re End Play. In this section we prove Theorem 1.1
by induction on n. We make the following inductive hypotheses, in which the hands
(A, B) have n cards each, unless otherwise noted.

(A,) It is optimal, when playing second to a trick, to play one’s highest
card that will not win the trick, and, if this is impossible, to play one’s
highest card.

(B,) It is optimal, when on lead, to play one’s lowest card.
(I,) Suppose Right has the lead with hands (A, B). Let x A be at least as

high as the highest card in Left’s hand that is lower than Right’s highest
card, and let be a card lower than any card in A U B. Giving Left the
lead and replacing Left’s hand with A { x } + { } is never bad for Left,
i.e.,

(3.1) Vn(A {x} + {1 },B)=< V(A,B).

(J,) Let [A[ [B[ n and let x, y with x < y be two new cards such
that x and y are consecutive cards in the deck A U B U { x, y }. Then for
e 0 or one has

(3.2)

(Kn)

(3.3)

V_I(A,B)+ >= V(AkJ{y},Bt{x})
>= V(AU{x},BU{y}) >- V_(A,B).

Suppose that Right has the lead with hands (A, B). Let b be the lowest
card in B and t a new card higher than all cards in A B. If B* B
( b } + { t }, then replacing Right’s hand with B* and giving Left the lead
can benefit Left by at most one trick, i.e.,

V(A,B* + >= V,(A,B).
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The hypotheses (An), (Bn) specify the optimal strategy, and the hypotheses (In)--
(K,) are auxiliary hypotheses necessary to complete the induction.

The hypotheses are easily verified to be true in the base cases n and n 2.
We will complete the induction step by verifying a series ofimplications. To describe

these implications, we use the notations (A-<,) O= I(Ai), (A<n) I,-JT-I (Ai) and sim-
ilar abbreviations to denote certain sets of induction hypotheses. The implications are,
in order:

(1) (Kn-) =:" (A,).
(2) (A_,), (B<n), (I<n), (J<n), (K<,) (Bn).
(3) (A-<,), (B_,) (In).
(4) (A_,,), (B<_,), (In_ ,), (Jn-,) =v. (Jn).
(5) (A_<n), (B-<,), (In), (Jn-l) (Kn).

A brief inspection shows that these implications together complete the induction step.
We will prove these implications as a series of claims.

CLAIM 1. (Kn_ =" (An).
Proof. Without loss of generality suppose that the hands are (A, B) with A { ai },

B { bi } arranged in decreasing order and that Left is on lead and led a. By Theorem
2.3, Right either ducks, playing his highest card b that does not win the trick, or else
wins the trick playing his highest card { b }. If Right ducks, the payoff to Left is +
vnl_l (A { a }, B { b } ). If Right wins, Left’s payoff is V_l (A { a }, B { bl } ).
But by the Monotonicity Theorem (applied twice) and (Kn- 1) we have

l+ V_I(A-{a},B-{b})>=I + Vn_l(A-{a},B-{b}-{bl} + {t})

(3.4) >-1+ V-l(A-{a},B-{bn}-{bl} + {t})

>= V_(A-{a},B-{bl}),
where t is a card higher than all cards in A tA B. So Right can always maximize Left’s
payoff by ducking with his highest card that does not win the trick, if this option is
available.

CLAIM 2. (A_n), (B<n), (I<n), (J<n), (K<n) (Bn).
Proof. Without loss of generality suppose that Right is on lead. Let b denote the

lowest card in R’s hand. Suppose that Right leads a card d. We must show that, under
optimal play by both sides, Right can do at least as well leading b as leading d.

We can analyze the play using the observation that once Right leads, Left’s reply
may be selected using the already proved induction hypothesis (A,), and all subse-
quent optimal plays for Left and Right can be made using the induction hypotheses
(A<n),(B<,).

The proof is divided into several cases. To describe these, we first note that we may
suppose d is not in R’s lowest block, because otherwise the play orb and d are equivalent.
Then L must have a card lower than d and we let c denote L’s highest such card. We
also let p denote Left’s highest card (which may coincide with c) and a L’s lowest card
(which may coincide with, or be equivalent to, c). We denote by q Right’s highest card
(which may coincide with, or be equivalent to, d). We also suppose without loss of
generality that d is the lowest card in its block, noting that c is the highest in its block,
by definition.

Case 1. L has the lowest card.
Then a < b < c < d.
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By (An) ifR leads d, then L ducks with c; then by (Bn- l), (An-l) on the next trick R
leads b, and L ducks with a. IfR instead leads b at trick 1, then L ducks with a. At trick
2, R has the option to play d, whence, by (Bn_ l), L will duck with c, and this leads to
exactly the same position and payoff after 2 tricks. And R may have a better lead at trick
2 than this. So R does at least as well leading his lowest card b at trick 1.

Case 2. R has the lowest card.
This divides into 2 subcases according to whether d is equivalent to Right’s highest

card q or not.
Case 2.a. d is equivalent to R’s highest card q.
Thus R is leading from his top block. This divides into two subcases, depending on

whether c is Left’s highest card or not.
Case 2.a. 1. c is Left’s highest card (c p).

If R leads d, L ducks with c, with payoff V_ I(A { c }, B { d } ). If R leads b,
then L wins with c, with payoff + Vln l(A { c }, B { b } ). Now if t denotes a card
higher than all cards in A t_J B, then by (Kn_ l) we have

Vn_l(A {c},O- {d}) -< + V_I(A- {c},B- {d}- {b} + {t})

1+ Vn_l(A-{c},B-{b}),
where the equality follows by the equivalence of d and t. Hence R does at least as well
to lead b, which completes Case 2.a. 1.

Case 2.a.2. c is lower than Left’s highest card p.
This divides into two subcases, according to whether c is or is not equal to a.
Case 2.a.2.a. Left has two or more cards lower than d, so a is not equal to c.
This divides into two subcases according to whether the number of cards below a

is or more.
Case 2.a.2.a. 1. b is the only card below a.

[L p c a

i, l d b

IfR leads d, L ducks with c. Then at trick 2 R leads b, L wins with p. If instead R
leads b at trick 1, L wins with p, and, at trick 2, L leads a which R wins with d. The
payoffs are + V-2(A ( c, p }, B { b, d } and

+ Vn_(A {a,p},B- {b,d}),
respectively. Now

Vn_z(A {c,p},B- {b,d})=< Vn_z(A {a,p},B- {b,d})
holds by (In_ 2), which applies since if B’ B { b, d ) then a is the lowest card in the
deck (A { c, p } t.J B’ and c is at least as high as the highest card in Left’s hand in
(A { a, p }, B’) lower than the highest card in B’. Hence R does at least as well to lead
b as to lead d.

Case 2.a.2.a.2. Right has at least two cards lower than Left’s lowest card a, of these
cards b is the lowest and b’ the highest.
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IfR leads d, L ducks with c; at trick 2 R leads b, and L wins with p; the payoff is
+ Vn_ 2(A { c, p }, B ( d, b ) ). IfR leads b, then L wins with p; at trick 2 L leads

a, R ducks with b’. The payoff to L is then 2 + Vn_ 2(A { a, p }, B (b, b’} ). To
see that

(3.5) Vn_2(A-{c,p},B-{d,b))<=l + Vn_2(A-{a,p},B-{b,b’}),

holds, we observe that by (Jn_ ) we have

V_(A- {c,p},B- {d,b}) <- Vn_,(A {p},B- {b}),
and

Vn_(A-{p},B-{b})<=I + V_2(A-{a,p},B-{b,b’})

since a and b’ are consecutive cards with a > b’. Combining these two inequalities proves
(3.5) which completes Case 2.a.2.a.2. and thereby Case 2.a.2.a.

Case 2.a.2.b. Left has exactly one card lower than d, so a and c are equal.

Now all of Left’s cards but c are higher than all of Right’s cards. If Right leads d,
then L takes n tricks in all. But L always takes at least n tricks with any lead,
since L has n cards higher than all cards in R’s hand. Hence R may as well lead b,
which completes Case 2.a.2.b. This settles Cases 2.a.2. and 2.a.

Case 2.b. d is not equivalent to R’s highest card q.
Thus Right leads from one of his inner blocks (neither the highest, nor the lowest.)

This again divides into two cases depending on whether a equals c or not.
Case 2.b. 1. Left has two or more cards lower than d, so a is lower than c.
This divides as earlier according to the size of b’s block.
Case 2.b. .a. Right has at least two cards lower than Left’s lowest card a, ofwhich

b’ is the highest.

If R leads d, L ducks with c; at trick 2 R leads b, and L takes with p. The
payoff to Left is then + Fin_ 2(A c, p }, B { d, b }). On the other hand, if R
leads b, then L wins with p and leads a, which R ducks with b’, giving the payoff
2 + Vn_ 2(A {a, p}, B- {b, b’}). Now we note that

V_z(A- {c,p},B- {b,d})=< --t- V_(A {a,p},B- {b,b’})

holds by the same argument as in Case 2.a.2.a.2., using hypothesis (Jn_ 1).
Case 2.b. 1.b. Right has exactly one card b lower than Left’s lowest card a.

IfR leads d, L ducks with c; at trick 2 R leads b, which L wins with p; at trick 3 L
leads a, which R wins with q. The payoff is

1+ V_3(A-{a,c,p},B-{b,d,q}).
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On the other hand, ifR leads b, then L wins with p; at trick 2 L leads a, which R wins
with q. At trick 3 R may choose to lead d, in which case L will duck with c, giving
the payoff

+ Vn_3(A {a,c,p},B- {b,d,q})

to Left, and R might do better by leading differently at the third trick. Hence R can do
at least as well leading b as leading d. This completes Case 2.b.l.b and thereby
Case 2.b. 1.

Case 2.b.2. Left has exactly one card lower than d, i.e., a is equal to c.
This again divides depending on the number of cards less than a.
Case 2.b.2.a. R has at least two cards lower than Left’s lower card a (=c), ofwhich

b’ is the highest.

q d b" b

If Right leads d, L ducks with c; at trick 2 R leads b, which L wins with p. The
payoff to Left is

/ vln_z(A {c,p},B- {b,d}).
If Right leads b, L wins with p; at trick 2 L leads c, and R ducks with b’. The payoff to
Left is then

2+ Vn_2(A-{c,p),B-{b,b’}).
Since c is the only card in Left’s hand between d and b, the hands (A (c, p ), B
(b, d}) and (A (c, p}, B- {b, b’)) are equivalent. Hence Right prefers to lead b.
This completes Case 2.b.2.a.

Case 2.b.2.b. Right has exactly one card lower than Left’s lowest card a (= c).

q d b

If R leads d, L ducks with c; at trick 2 R leads b, and L wins with p. Left’s pay-
off is

/ Vn_2(A {c,p},B- {b,d}).
IfR leads b, L wins with p; at trick 2 L leads c, and R wins with q. Left’s payoff is then

+ Vn_2(A {c,p},B- {b,q}).

It now suffices to show that

(3.6) Vn_2(A-{c,p},B-{b,q}) >- Vn_2(A-{c,p),B-{b,d}).

To obtain this, we apply (In-2) with Right and Left’s hands interchanged and with
x q to obtain

Vln_2(B {b,d,q} + {1 },A- {c,p})_-< Vn_2(B {b,d},A- {c,p}).

Observe that the hands (A ( c, p }, B { b, q } and (A ( c, p }, B ( b, d, q } + { }
are isomorphic, so that the last inequality implies

VIn_2(B {b,q),A- {c,p})-_< Vn_2(B {b,d},A- {c,p}).
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Substituting (2.7) into both sides of this inequality yields (3.6). This completes Case
2.b.2.b., which completes the proof of Cases 2.b.2., 2.b., and 2., thus proving
Claim 2.

CLAIM 3. (A_n), (B_n) = (In).
Proof. We are given hands (A, B) and a card x A which is at least as high as the

highest card in A which is lower than the highest card in B, and a new card not in
A U B which is lower than all cards in A t_J B. We wish to prove

(3.7) Vn(A {x} + {1 },B) Vn(A,B).
By the Monotonicity Theorem it suffices to prove this inequality in the case that x is the
highest card in A that is lower than the highest card q in B. Call (0, A, B) the Before
game and 1, A {a} + {1 }, B) the After game. Using (A,), (B,) in the After game,
Left leads 1, Right wins with q. Hence

(3.8) V(A- {x} + {1 },B)= Vn_,(A {x},B- {q}).

In the Before game, Right may choose to lead q (which is generally suboptimal) in which
case Left will duck playing x. Left’s value is at least as low as it would be if Right played
optimally, hence

(3.9) V(A,B)>= Vn_l(A-{x),B-{q}).

Then 3.8 and (3.9) imply the desired bound (3.7).
CLAIM 4. (A_n), (B<=), (/n-l), (Jn-1) => (Jn).
Proof. The central inequality in (J) holds by monotonicity and the third inequality

follows from the first via (2.7). Thus we need only prove the first inequality. We are
given hands (A, B) with AI [BI n and x, y two new cards such that x, y are
consecutive cards in the deck A t_J B t_J { x, y }. By renumbering cards if necessary, we
suppose that A B t_J { x, y } is a standard deck { 1, 2, 2n }, in which case y x +
1. We are to show

(3.10) V_(A,B)+I>-_ Vn(A+ {x+ 1},B+ {x}).

We call the game with (A, B) the Original game and the game with hands

(A+{x+ 1},B+{x})

the Augmented game. We consider several cases, as follows.
Case 1. Left is on lead (e ).
In the Augmented game Left may choose to lead x + 1, which may be a suboptimal

play, in which case by (A) Right ducks playing x. The payoff to Left playing this way,
with optimal play thereafter, is + V_ (A, B), hence

Vtn(A+ {x+ 1},B+ {x})=< + Vtn_l(A,B).

Case 2. Right is on lead (e 0).
Case 2a. Right’s lowest card b is lower than x.
In both the original game and augmented game Right leads b by (Bn). In the original

game Left plays a card a A, and in the augmented game Left may choose to play
a e A, though he might have a better play. Hence

’/’[a’b](A + {X+ } {a} B+{x}-{b})Vn(A+{x+I} BW{x})<[a,b]+,n _,
Lr [a’b](A- { a } B- { b }Vn t(A B) [a, b] + .._ 2



SINGLE-SUIT TWO-PERSON CARD PLAY 341

By the induction hypothesis (Jn_ 1), we have

’’ta’bl(A { a } B- {b}).--n-lI’r[a’b](A- {X-- 1} {a},B+ {x} {b}) <-- -}- 2

These last three inequalities imply that

V(A+ {x+ 1),B/ {x))=< + Vn_,(A,B)
holds in this case.

Case 2b. x is lower than all cards in Right’s hand and Left holds a card lower
than x.

Then Left’s highest card lower than x is necessarily x 1. In the Augmented game,
by (An), (Bn), Right leads x, L ducks playing x 1. Hence

V(A+ {x+ 1},B+ {x}) V_(A+ {x+ 1)-{x-1},B).
But with x gone, x + and x are equivalent cards, so (A + { x + } { x ), B)
is isomorphic to (A, B), so that

Vn(A+ {x+ 1},B+ {x)) Vn_,(A,B)

in this case, so that (3.10) holds.
Case 2c. x is lower than all cards in A U B.
Hence x 1. Let p be Left’s highest card in A. In the Augmented game by (An),

(Bn) we have: Right leads x, Left wins with p. Hence

Vn(A+ {x+ 1),B+ {x})= + Vn_l(Aqt- {xq- 1}- {p},B).

Now
Vn_ (A + {x+ 1}-{p},B)<=V_(A,B)

holds by (In_ ), because p is at least as high as the highest card in A less than the highest
card in B, and x + 2 is lower than all cards in A t.J B { 3, 4, 2n }. Substituting
this inequality in the previous equation yields (3.10) in this case.

These cases are exhaustive and prove Claim 4.
CLAIM 5. (A_n), (n__<n), (In), (Jn-,) =" (Kn).
Proof. We are given hands (A, B) with b being the lowest card in B and t a new

card higher than all cards in A t_J B. We must show that

(3.11) Vn(A,B-{b}+{t})+l>=Vn(A,B).

We call the state (0, A, B) the Before game and 1, A, B { b } + { t } the After game.
Case 1. Left has a card lower than b.
Let a’ be Left’s highest card lower than b, and a Left’s lowest card. They are both

in Left’s lowest block by hypothesis, so they are equivalent cards. (They may in fact
be equal.)

Before, with Right leading:

a" a
b

After, with Left leading:

I a"-.. a
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In the Before game, by hypotheses (An) and (Bn) Right leads b, and Left ducks
playing a’. Hence

(3.12) V(A,B) Vn_,(A-{a’},B-{b)).
In the After game, Left leads a, and Right wins with t. Hence

(3.13) V(A,B- {b} + {t}) Vn_(A {a},B- {b}).
Since a and a’ are equivalent cards, (A {a’}, B {b }) and (A {a }, B { b }) are
isomorphic games, so the fight sides of (3.12) and (3.13 are equal, whence

Vln(A,B (b} + {t})= Vn(A,B).
Case 2. b is the lowest card in ALI B.
This divides into two cases depending on the size of Right’s lowest block.
Case 2a. b is the only card lower than Left’s lowest card a.
Before, with Right leading:

After, with Left leading:

Let B’ B { b }. In the Before game, Right leads b, which Left wins with his
highest card p. Thus

(3.14) V(A,B) + VIn_(A-{p},B’).
In the After game Left leads a, which Right wins with t. Hence

(3.15) Vln(A,B {b} + {t}) Vn_,(A {a},B’).
Now

(3.16) Vn_l(a-{p},B’)<=Vn_,(a-{a},B’
holds by (In on taking A { a } as A, B’ as B and p, a) as (x, 1) in (In ). Combining
3.14)-( 3.16 yields

Vn(A,B {b} + {t})+ 1>_- V(A,B)
for this case.

Case 2b. Right has at least two cards lower than Left’s lowest card a. Ofthese cards,
b’ is the highest.

Before, with Right leading:

b’ b

In the After game, with Left leading:
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In the Before game Right leads b, which Left wins with his highest card p. At trick
2, Left leads a, and Right ducks by playing b’. Hence

Vn(A,B) 2 + Vn_ 2(A’, B’),

whereA’=A- {a,p},B’=B- {b,b’}.
In the After game, Left leads a, and Right ducks with b’ at trick 1, hence

V(A,B-{b} + {t}) + Vn_(A’+ {p},B’+ {t}).
Thus to show that

+ V(A,B- {b} + {t})>= Vn(A,B)
we need only to show that

V_(A’+ {p},B’+ {t})>= Vn_z(A’,B’).

This follows from (J,_ ) since t is equivalent to the lowest card in B’ + { t } higher than
p. This completes Case 2b.

These cases are exhaustive and prove Claim 5. [2]

This completes the induction step and the proof of Theorem 1.1.

Acknowledgment. The first author thanks Aeryeung Moon for helpful discussions.
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Abstract. This paper addresses the question: how large can a collection of divisors of a square free integer
be, if any pair x and y in the collection so that x divides y, has y/x congruent to mod p? It is shown that if
n has as many prime factors congruent to k and 1/k mod p, and an even number congruent to p l, then the
sum of the largest two binomial coefficients on n is an upper bound to the size of the collection. Asymptotic
bounds are also obtained.
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1. Introduction. Erd6s recently raised the following question: Suppose we have
a prime number p and a collection, C, of divisors of a square-free natural number m,
with m a product of n prime factors. Suppose further that, if a member x of C divides
another, y, then their quotient, y/x, is not congruent to mod p. How large then can
C be? Erd6s conjectured that, if the divisors of m are uniformly distributed among the
nonzero congruence classes mod p, there is an upper bound of the form cC(n, [n/2 ]),
for some constant c.

If, in this situation, the prime factors of m are all congruent to mod p, then no
member of C divides another, and the well-known theorem of Sperner 2 implies that
the cardinality of C is at most C(n, [n/2]). If, on the other hand, all the prime factors
of m are congruent to some nonunit j mod p, then we can have the sum of the p 2
largest n-binomial coefficients members in C by taking all divisors of m that are
of the corresponding p 2 largest ranks among divisors of m, where the rank of a
divisor is the number of its prime factors. For large n this lower bound is asymptotic to
(p 2)C(n, [n/2]) and no upper bound cC(n, [n/2]) with c independent of p is
possible.

In this note, we provide an affirmative answer to this conjecture. We show further
that C(n, In/2]) + C(n, [n/2] + is the exact upper bound here when, for each k,
the same number of prime divisors of n are congruent to k and to /k rood p (and none
are congruent to l; the same bound holds but is not best possible when some of the
prime factors are congruent to rood p).

In the next section the nature of this argument is discussed, and our results are
formally stated. Proofs are contained in 3 which is followed by a discussion ofthe open
questions mentioned above.

2. Method and results. Our basic approach involves defining a new partial order
in which the requirements on C imply that C must be an antichain. We then use various
methods that are known for bounding the size of antichains in order to obtain our
bounds.

The 2 divisors of rn form a partially ordered set isomorphic to the Boolean algebra
of subsets of a set under the order relation of division. We define a new partial order, P,
on the same elements, with a > b if b divides a and a b (mod p). This order retains
some, but not all, of the ordered pairs of the Boolean algebra; there are at least (p
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connected components of this order consisting ofthose divisors in each congruence class
mod p. It is evident that any C obeying the conditions under consideration here must
be an antichain in this order.

At first glance, the order P appears to have a structure that is not easily analyzable.
However, by weakening it still further, we obtain an order, Q, that we can handle quite
easily.

We define Q as follows: a covers b in Q if a b (mod p) and a bcd with c and d
primes, (so that cd (mod p)). It follows that the elements of Q that are products of
an even number of primes, which we call Qe, are entirely disconnected from those,
forming Qo, that are products of an odd number of primes.

We shall show that in a wide variety ofcircumstances, these two orders are "almost"
Sperner, in that the largest possible size of an antichain in either is not much more than
the largest rank size, where rank of a divisor is the number of its prime factors. Our first
main result follows from these arguments.

THEOREM 1. Suppose that m is the product ofn primefactors, that sj of these are
congruent to j mod p with

sj=n/(p-2)+x9 forj> 1,

S0=S1 =0,

andfor allj, ]x[ < un /2 +6 for some constant u and 6 < . Then with no a, b in C with
a bd, d (mod p), ICI can be at most asymptoticfor large n to 2C(n, [n/2]). In
the order in which a covers b ifa bcd with c and dprimes and cd mod p, the even
and odd ranks each are asymptotically LYM.

THEOREM 2. If in Theorem 1, we have

and

s=s/ forp-2>j> 1,

sp_ is even,

SO S1 O,

then C can have no more than C(n, n/2) + C(n, n/2 + elements. Ifs q, then the
exact upper bound on C is"

jt’l, (C(n-q,2j+(n-q)/2)+C(n-q,2j+ +(n-q)/2))C(q,[q/2]+j).

THEOREM 3. The conclusions of Theorem hoM ifm has, in addition tofactors as
indicated, an arbitrary number ofprimefactors congruent to mod p.

Alternate proofs of Theorems and 3 may be obtained by applying Theorem 2. In
fact, the following strengthening of them immediately follows from Theorem 2.

THEOREM 4. Suppose that, with the notation ofTheorem 1, as n increases, the ratio

p-2

Is-s/l/2n
k=2

approaches zero. Then the conclusions of Theorems and 3 follow.
It follows from Theorems and 3, or 4, that if the prime factors ofm are randomly

distributed over the congruence classes mod p, we have a bound that is asymptotic to
2C(n, n/ 2 almost always.
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In proving these we first notice that under the given circumstances, the degrees of
all but a small fraction of the elements of a given rank in the graph of the coveting
relation for Q are not far from the same. This implies an "asymptotic LYM [3], [4],
5 property" for these partial orders, which allows both the stated conclusion ofTheorem
and its extension in Theorem 3.
We prove Theorem 2 by exhibiting an explicit partition ofthe elements ofthe order

into chains with at most the given number of chains.
Theorem 4 is obtained by applying Theorem 2 to a portion of the factors that

approaches one, for every combination of the other factors.
The LYM inequality for the Boolean algebra of subsets of a set is the statement that

the sum, over sets sizes of the proportion of sets of that size in an antichain, is at
most one.

Its original proof is very simple and pretty: consider all maximal chains of subsets.
Each can contain, at most, one member of an antichain. Therefore, the proportion, r,
of these chains that contain a member of an antichain C is the sum, over set sizes, of the
proportion of chains containing a member ofC ofthat size. Since all sets ofany one size
appear in the same number of these chains, the latter sum is the sum over set sizes of
the proportion of sets of that size in C, while the former cannot exceed one.

>= r (proportion ofchains with/-set in C)

(proportion of/-sets in C).

Our general approach for the present problems is to mimic this argument for the
partial order Q. Each element of rank k (with rank defined as in the Boolean algebra on
the same elements) will not lie in the same number of chains, but in almost the same
number, which will replace the last equality by an "almost" equality.

>_-- r (proportion ofchains with/-rank member in C)

proportion of/-rank in C).

This argument can generally be used if one can find any collection of chains such
that C can contain only one member of each chain, and "asymptotically all" elements
of our order of given rank appear in "asymptotically the same number" of chains.

We shall prove Theorem 2 by first treating the prime factors in each pair k and
!k of congruence classes together showing that, using divisibility order relation, these

can be partitioned into chains such that two elements an even distance apart in the same
chain are ordered in Q. We then observe that all products ofthe even and odd subchains
of these chains, with one term per pair of factors (or single factor for k p form
products of chains which can themselves be partitioned into chains in a standard way.
In the resulting chain partition of the entire set of divisors, each chain has a member of
rank n/ 2 or n / 2 + from which the conclusion immediately follows.

3. Proofs.
Proof of Theorem 1. The divisors of m can be classified by the number of

their prime factors in each congruence class mod p. A factor for which these num-
bers are d2, dp_ l, will have "rank" r given by the sum of these numbers. We
assume that m has n/(p- 2) prime factors in each of these classes. A proportion
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2-n/(p-2)C(rl/(p 2) + xj, s) of the divisors of n will have exactly s prime factors in
any one specific congruence class.

Well known properties of binomial coefficients imply that there are a propor-
tionally small number of factors of m for which any of the d values differ by more than
2(n/(p 2)) 1/2 logn from n/2(p 2) + x/2.

If we write

dj= n/2(p- 2 + yj,

we may, in asymptotic considerations, limit ourselves yj whose magnitudes are all less
than 2(n/(p- 2)) (1/2)+a log n.

We set s n/(p 2) in the remainder of this discussion.
The number of divisors that are covered by a divisor having parameters d in chains

in Q as described in the previous section is:

dp_ l(dp-1-- 1)+ 4dl/ 2
j=2

or , (s/2 + y)(s/2 + y,/j)/2- d,_ 1/2,
j=2

which, for any positive e, reduces to

(p- 2)s2/8 + s(r- n/2)/2 + o(ps + 2 +).

It is only the last term here which differs among elements of the same rank, and
this term is small by s -2-, compared to the leading term. The number of divisors of
m that cover a given divisor of rank r is, by the same arguments:

p--1, (s/2 +x- yj)(s/2 +Xl/- yl/)/2-s-x_l + d_1/2,
j=2

which reduces to

(p- 2)s2/8 s(r- n/2)/2 + o(ps + 2 + ).

It follows that the number of coverings by (or of) an element of Q of a given rank
is, for asymptotically all of the elements at near middle rank, almost constant.

If we count the number of chains extending from rank n/2- n 1/2+z to rank
n/2 + n 1/2 + for 0 < z < 1/2 26 e that contain a given element, we find that it is
within an asymptotically negligible factor the same as that containing any other at the
same rank.

Theorem follows by the LYM argument already indicated from these statements.
Proofof Theorem 2. The previous argument was based entirely upon the relative

uniformity of degrees within one rank in the coveting graph here.
We can draw a stronger conclusion by making a more detailed examination of the

structure of this order.
Greene and Kleitman [6] showed that if one has a k-element set X, and colors

k/2 of its elements red, we can partition X’s subsets into chains in such a way that the
difference between any two sets in the same chain, whose sizes have the same parity, is
half red.

We indicate the proof ofthis lemma here for completeness: The "standard" partition
of subsets into chains is obtained by representing the subsets as 0-1 sequences, replacing
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O’s by left parentheses, ’s by fight parentheses, closing all parentheses that close under
the standard rule for closing parentheses, and placing subsets in the same chain if and
only if they have the identical pattern of closed parentheses in the identical locations in
their sequences. If the order of the components used to define the sequences alternates
in color, the chains so produced will have the claimed property.

For our purposes, we let the red elements correspond to prime factors congruent to
k and the others be prime factors congruent to 1/k. The conclusion of the Greene-
Kleitman Theorem then tells us that two elements of the same chain with the same
parity have quotient congruent to mod p. (When k p 1, 1/k k, and an arbitrary
ordering of the components yields the same result.)

Elements of these chains for fixed k correspond to divisors of m that are products
of factors all of which are congruent to k or /k. Divisors of m in general can be cor-
responded with elements in all possible products of these chains for all the various k.

We partition each of our chains into two chains, so that the elements within each
all have the same rank parity, and are therefore chains in Q. When sk S/k as we assume
here (and sp_ is even), all of the resulting chains are symmetric about middle rank.

The products of all the half chains for different k values have the order properties
ofproducts ofchains, and these can themselves be partitioned into chains in the standard
deBruijn, Tengbergen, and Kruyswijk [7] manner. One obtains chains, still symmetric
about middle rank, in which successive elements in the same chain are two ranks apart.
Each chain contains either an element of rank n/2 or one of rank n/2 + 1.

The partitions into symmetric chains here give rise to many more conclusions about
properties of divisors than those mentioned here.

If there are prime factors congruent to mod p, we partition them into chains in
the standard way, and take the product of each of these with the chains obtained for the
rest of the divisors.

The theorem follows immediately from the obvious properties of the chains in-
volved here.

ProofofTheorem 3. Ifm has prime factors congruent to mod p, we can consider
its divisors to form a partial order that is the direct product of the Boolean algebra on
such divisors, and the orders ae and Qo discussed above, on its other divisors. Harper’s
8 ], 9 Theorem tells us that the product oftwo orders each obeying the LYM property,
and each having rank sizes such that the square of the size of the kth rank exceeds the
product of the sizes of the k 1st and k + 1st, also obeys the LYM property. It is
straightforward to extend this theorem to yield the asymptotic LYM property ofa product
given asymptotic LYM-ness of the factors. The conclusion obtainable in this way is
actually stronger than the statement of the theorem. A maximal collection C has an
asymptotic size-bound of

j=n

(C(n-q,2j+(n-q)/2)+C(n-q,2j+ +(n-q)/2))C(q,[q/2]+j),
j=-n

when there are q prime factors of n congruent to mod p.

Proof of Theorem 4. Our plan is to apply Theorem 2 not to m but to m divided
by enough prime factors for that theorem to apply. For each k, we drop sk- sg_
factors when that quantity is positive (and one for p- if sp_ is odd). If q prime
factors are dropped all together, the conclusion of Theorem 2 yields a bound of
(C(n q, (n q)/2) + C(n q, (n q)/2 + ))2 q. This is asymptotic to our desired
expression when the ratio qn approaches zero.

Similar arguments apply when S > 0.
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4. Discussion. Our results show that when sums of the number of prime divisors
congruent to k and /k mod p are much larger than their differences, then the size of C
is asymptotic to twice the largest binomial coefficient on n. Suppose, therefore, we have
the opposite situation, in which for each k, either sk or s/k vanishes, but that the nonzero
s’s were all equal. We might ask, what bound on the size of C must exist under these
circumstances?

A lower bound to the maximum possible size of C of the sum of the largest 3
binomial coefficients on n is obvious under these circumstances. It might be interesting
to investigate upper bounds in this case and in its generalizations.
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PERTURBATIONS OF SHIFTS OF FINITE TYPE*

D. A. LIND,"

Abstract. Shifts of finite type describe the infinite trips on a labeled graph, and provide theoretical models
for data storage and transmission. The consequences of forbidding a fixed word to occur, which can be considered
as a small change or perturbation in the system, are investigated. This situation arises in prefix synchronized
codes, where a certain prefix, used to synchronize code words, is forbidden to occur in the rest of the word. If
T is the adjacency matrix of the graph, and Xr is its spectral radius, then forbidding a word of length k results
in a drop in spectral radius that lies between two positive constants times Xk. The zeta function summarizes
the number of possible periodic trips. The author gives an explicit calculation of the zeta function for the
resulting subshift, which involves the characteristic polynomial of T, a cofactor of tI T, and the correlation
polynomial ofthe word. A modification ofthe Knuth-Morris-Pratt pattern matching algorithm shows that this
calculation can be done in time that is linear in the word length, answering a question of Bowen and Lanford.
The structure of this correlation polynomial is used to obtain sharp bounds on the degree of the denominator
ofthe zeta function. The Jordan form ofthe higher order presentations ofthe shift offinite type is also computed,
and that ofthe perturbation in many cases. Most ofthe results were discovered experimentally with a computer.

Key words, shift of finite type, symbolic dynamics, channel capacity, topological entropy, zeta function,
perturbation, correlation polynomial
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1. Introduction. A dynamical system is a pair (X, a), whereXis a topological space
and a is a continuous map from X to itself. Shifts of finite type are combinatorially
defined dynamical systems that arise naturally in the study ofdata storage and transmission

]. They also play a central role in the analysis of other dynamical systems such as
diffeomorphisms of manifolds [3], an idea which goes back to Hadamard’s analysis in
1898 ofgeodesic flows. Roughly speaking, shifts of finite type are the topological analogues
of the probabilistic Markov chains used in information theory.

There are two equivalent definitions ofshifts offinite type. The first definition begins
with a nonnegative integral matrix T, and forms the directed graph GT having T, distinct
edges from vertex to vertex j. Let o denote the set of edges of GT. The space XT c o z

consists of all bi-infinite sequences from o that give an allowed trip on GT. The map

aT: XT -- XT shifts a sequence one edge to the left. As an example, let T [I ], so that
GT has two vertices, say labeled 0 and 1, and three edges, say labeled 00, 01, and 10. A
sequence "’’i-lJ-I ioJoilJl’’" is in XT exactly when, for every k, the terminal vertex of

ikJk agrees with the initial vertex of ik+ lJk+ l’ i.e., whenj i/ 1.

The second definition starts with a finite alphabet A, and a finite collection of
"forbidden" finite words over A. The spaceX c AZ consists of all bi-infinite sequences
from A that do not contain any word from . The shift map as: X -- X acts as
before. For example, if.4 { 0, } and { 11 }, then X is the set of all bi-infinite
sequences of O’s and ’s that do not contain consecutive ’s.

In each definition there is a distance function on bi-infinite sequences defined by
d( { Xk }, { Yk } 2-n, where n is the largest integer such that x y for -n =< k =< n.
Thus two points are close if their coordinates agree on a large symmetric interval of
indices. The shift map is continuous with respect to the topology induced by the
metric d.
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It is usual to consider two dynamical systems to be the "same" ifone can be obtained
from the other by a continuous relabeling of points. More precisely, we say that (X1, z l)
is topologically conjugate to (X2, z2) if there is a continuous map : X1 -- X2 with a
continuous inverse such that z2 z. The two examples of shifts of finite type given
above are topologically conjugate using the map p: Xr -- Xs given by ( {ikJk ik },
so that assigns to a sequence ofedges the corresponding sequence oftheir initial vertices.

A topological invariant of dynamical systems is an object (real number, group, etc.)
assigned to every dynamical system that is the same for topologically conjugate systems.
Examples of such invariants are entropy and the zeta function, which are defined below.

Our two definitions of shifts of finite type are equivalent in the sense that any
dynamical system constructed using one definition is topologically conjugate to a dy-
namical system constructed by the other. If (Xr, at) is a system from the first definition,
let be the alphabet, and let be the set of pairs of edges satisfying the condition that
the terminal vertex of the first edge is not the initial vertex of the second. Then
(Xs, as) is topologically conjugate to (Xr, at). Conversely, if (Xs, as) is constructed
using the second definition, it is possible to determine, as in 2, a directed graph with
adjacency matrix T so that (Xr, rr) is conjugate to (Xs,

We shall use the first definition of shift of finite type throughout. When a shift arises
by forbidding words, we will convert this to a conjugate shift defined by a nonnegative
integer matrix using the process describe.d in 2. We shall also assume throughout that
for each pair of nodes there is a path from the first to the second or, equivalently, that
ar is topologically transitive. To avoid trivial exceptions, we also require T q: ].

Prefix synchronized codes [7], [8] can be described as follows. Select a fixed block
B, and choose code words ofthe form BA subject to the constraint that B occurs in BAB
only as the first and last subblock. Thus an occurrence ofB guarantees that a decoder is
at the beginning of a code word. In estimating the number of code words available, we
are quickly led to the study of the shift of finite type obtained by forbidding B to occur.
If B is long, this shift can be considered as a small change in the original shift.

Let B e o k be an allowed path in the graph Gr oflength k BI. The shift of finite
type obtained from (Xr, trr) by forbidding B to occur can be presented by a matrix we
denote by T(B) that is typically much larger than T. The details of this construction
are given in 2. For the purposes of this paper we regard passing from ar to rr(B) as a
small perturbation of at, with the perturbation tending to zero as BI o. Our main
theorems give precise information about the resulting changes in topological entropy,
zeta function, and Jordan form.

To describe the change in entropy, let T have spectral radius ,r. The topological
entropy h(ar) is then log ,r. Standard Perron-Frobenius theory 16, Thm. 1.1 (e)] shows
h(trr) h(trr(B)) > 0. During the investigation [5] of the automorphism group of
it was necessary to prove this difference tends to zero as BI [5, Thm. 5.1 ]. The
analysis of the speed of convergence was one motivation for this paper. We show in
Theorem 3 that there are computable constants Cr, dr > 0 so that for all blocks B with
sufficiently large length BI we have

crI1 < h(r)- h(rr())<drI1

The zeta function ofa map was introduced by Artin and Mazur 2 to conveniently
summarize periodic point data. If Nn denotes the number of points in Xr fixed by try,
then the zeta function of trr is defined as
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Bowen and Lanford [4] showed ’r(t) /det (I- tT), which we reformulate differently
as follows. Iff(t) 7/[ t, t -1 is a Laurent polynomial, choose the unique d 7/so that
taf(t) 7/[ t] with nonzero constant term. Let f(t) denote this taf(t). If Xr(t)
det (tI T) is the characteristic polynomial of T, then clearly

’r(t) Xr(t-1)x.
To describe the zeta function of the perturbed matrix, we first recall the notion of

correlation polynomial introduced by J. H. Conway and exploited in a series of papers
by Guibas and Odlyzko 8 10 ]. IfB gk, the correlation polynomial ofB is bB(t)= cjtj- 1, where cj if B overlaps itself in j symbols, and c 0 otherwise. A
recursive description ofthe set ofpossible correlation polynomials is given in 9 ], having
the surprising consequence that this set is independent of g for I1 - 2. These poly-
nomials arise in a wide range of applications, including the computation of the number
of strings of a given length omitting a fixed block 8 ], the analysis of pattern matching
algorithms [9], the study of nerve impulses in crayfish [6], and some astonishing prob-
ability calculations concerning "paradoxical" nontransitive games 10].

Suppose B is a path from node to node j. Call B reduced if no proper subblock of
B determines B. Let cof0. (tI- T) denote (-1 );+ times the determinant of the matrix
tI- T with its ith row and jth column removed. We show in Theorem that

(1.1) ’r(>(t) [xr(t-)4s(t-)+cofo(t-I T)]"
When T [n], so trr is the full n-shift, every block is reduced, and our result sim-
plifies to

Since T(B) has size that is exponential in BI, it is not clear whether there is an
algorithm to compute r()(t) in time polynomial in BI. But since there is a trivial
algorithm to compute (t) in time that is quadratic in B I, one consequence ofTheorem

is the existence of a quadratic-time algorithm to compute ’r(B)(t). This is sharpened
in Corollary 2 to a linear algorithm based on the Knuth-Morris-Pratt pattern matching
algorithm [13 ], answering a question raised by Bowen and Lanford [4, p. 45 ]. Also,
although there are roughly ,r blocks of length k, Guibas and Odlyzko show that there
are only O(k 1o k) distinct correlation polynomials for these blocks. Thus another con-
sequence of our calculation, stated in Corollary 3, is that the number of distinct zeta
functions produced by omitting blocks of length k is only O(kc log k). In Corollary 4 we
show that the number of distinct zeta functions produced by deleting blocks of length k
is the same for all full shifts.

Because of possible divisibility by powers of in r(t), n(t), and cof0. (tI- T),
together with possible cancellations, the formula 1.1 does not immediately yield the
degree of ’n)(t). Using machinery in 2-3, combined with the recursive character-
ization of (t) from [9], we show in Theorem 2 that

[B[-4r-_<deg ’)=< [B[ +r- 1,

where r is the size of T, and that the upper bound is attained precisely when

(1.2) (det T)cbB(O)+cofo(-T)4:0.
In particular, the upper bound obtains for all blocks in a full shift.
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The Jordan form of T is not a topological invariant, but our analysis allows the
determination in Theorem 4 of the Jordan form of all higher block presentations of T.
Also, if (1.2) holds, then the Jordan form of T(B) is obtained from that of the k-block
presentation of T by deleting a single Jordan nilpotent block of size k 1. Again, every
block in a full shift satisfies this condition.

The paper is organized as follows. We begin in 2 by setting up the machinery for
higher block presentations of T. In 3 we determine a low-dimensional subspace con-
taining the "interesting part" of T(B) and compute the matrix of T(B) with respect
to a certain natural basis. This matrix contains the companion matrix of B(t) as a
principal submatrix and is used in 4 to compute r(B)(t) and to estimate
deg ’n)(t). In 5 we first motivate the estimate on decrease in entropy using an ele-
mentary but apparently little-known fact on the rate of change in an eigenvalue with
respect to the matrix entries. We then prove the estimate by using the calculation of
Xr()(t) together with the recursive structure of n(t). Finally, we apply this machinery
in 6 to derive the results on Jordan forms mentioned above.

Most of our results were discovered experimentally using the Matlab interactive
linear algebra computer program. Jim Scherer (private communication) has indicated
to us an alternative approach to an upper bound on deg -1’r(), but his results are not as
sharp as Theorem 2. Razmik Karabed (private communication) has described an inter-
esting method for obtaining an exponential upper bound in Theorem 3, but his method
does not yield either the best exponent or the lower bound.

2. Higher order lresentations. In this section we introduce the linear algebra ma-
chinery we will use to analyze T(B). Our treatment ofhigher block presentations varies
slightly from the standard one, since we use a consistent treatment for all nonnegative
integer matrices rather than just 0-1 matrices.

Let T= [To] be an r r matrix over the nonnegative integers. Let 6e
{ 1, ..., r} be the indexing set of T, and call the elements of S the 1-states. For

-< p -< T/, introduce 1-symbols , and let o {" -< p -< TU, -< i, j <= r}. Thus
o is a labeling ofthe edges ofthe directed graph determined by T. Define beginning and
ending maps r, : g - 6 by (,) and r/(,) j. Thus

To.= { g’/() iand() =j} 1.
Put

Xr= {x (x) g" (x) {3(x+ 1) for n; },
and define the shift at" Xr -- Xr by (arX)n Xn +. Then ar is a homeomorphism of
the compact totally disconnected metric space Xr. The pair (XT, ) is the shift offinite
type determined by T.

Next we recode points in Xr by k-blocks of symbols. For k _-> let

lJk-- k(XT) {1"" "k’gk’(m)--(m+ 1) for <=m<=k- 1}
be the set of allowed k-blocks in Xr. By convention we put 30 9. For k >- 1, let
6etkJ k- denote the k-states and gtkJ 3k be the k-symbols. Note that 5t 6e
and gill . For k >- 2, define , r/: tkl .. 6,tkl by fl(l’" "k) ’" "g- and
0("" ") 2"" "/. Since 6etkJ gtk-l 3_ , we may compose various/’s and
r/’s in any order, and they clearly commute.

We will now define the kth order presentation matrix Ttk of T, which is indexed
by k-states if’ tk. For A, B e 5et define

TtkJ)aB { Ce 8tkl /3(C) A and r/(C) B } 1.
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Note that Ttl is just T. Ifk >= 2, then T[k] is a 0-1 matrix. Let [k] denote Ietkt with
its basis the elementary vectors {etk :A 6etk}. Then Ttk is a linear map oftkl. It
is notationally convenient to have all matrices act on the right. Thus, for k >= 2,

e tak Ttk etk
{Be 6etk] :fiB hA}

PROPOSITION. The systems (XT, aT) and (XTtk, Ttl)are topologically conjugate.

Proof. This holds for k by definition. Suppose k >- 2. Denote a: XTt -- oZ

by a((Cn)nz) (ilk- 1Cn)n," Clearly, a is continuous. Since Cn flCn+ l, we have

so the image of a is contained in Xr. Clearly, rra aart). Define 3" XT -- XTt by
(X)m XmXm+ 1’’" Xm+k-1 C:_ lJk. Then is continuous, and aq and 3’a are the identity
maps. This shows a is a topological conjugacy of aTtkl with aT. []

3. Invariant subspaces for perturbations. Let B k(XT), where we assume from
now on that k ->_ 2. Forbidding B in XT is the same as forbidding the transition from fib
to r/B in T[kl. Thus a matrix presentation of the resulting shift of finite type is
Tt] EE,,,, where E Ea,,, has a in the (BB, B)th place and is zero elsewhere. Let
T(B) T] E denote this perturbed matrix. In this section we will find a Tt]-

invariant subspace Vk tl on which Tt] mimics T. Then we extend V to a T(B-
invariant subspace I/V,, containing the "interesting part" of T(B. Finally, we compute
the matrix of T(B with respect to a certain basis for Wk,. and show how the companion
matrix for the correlation polynomial ofB appears as a principal submatrix.

Define : [l _. tl by

(3.1) k(el ’)) E eta, _--< _--< r.
{Atkl-k- A i}

Note that the sum is over k-states A whose initial state (not initial symbol) is i. Let V
be the image of ff in tg. The eventual range of a linear map on a vector space is the
intersection of the images of its nonnegative powers.

LEMMA 1. The map / in (3.1) is an isomorphism from 1 to Vk, its range Vk is
Tt -invariant andbT Tt /. Furthermore, T is nilpotent on g / Vk so V contains
the eventual range ofTtk.

Proof. Since the sets 3-tg- l)(i) 6etl are disjoint for e re, it follows that is
injective. Recalling our convention that matrices act on the fight, we compute the action
of Ttk on a basis vector el l for e 6’ by

Tt)ff(el ’) Ttk(
{A: k- A= i}

etl | X etakT[k]
/ {A." 3 Ia i}

{A:fl k- A i} {B:3B hA} {C[k] "[Jkc= i}

[k]
tiC"

Similarly,

j 6’ {A: 0 k- A j} C $[k]. 3kc= i}

e[k]C"
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Thus fiT Ttk], which also shows Vk is Ttk]-invariant. To show that T[k] is nilpotent
on t/V, let A 9t have terminal state j n- A. Then

(3.2) e[](Tt])-’= Z e[zl=p(e’])eV.
{Be o’[k] /3 k- IB r/k- 1A}

Suppose B ... k, and thatj n(k- 1) has the property that = Tt 1. Then
the subblock B’ . k- determines B, and forbidding B’ is the same as forbidding
B. Call a block reduced if no proper subblock determines it. We shall prove our results
for reduced blocks. By irreducibility of T, every block oflength k > 2r contains a reduced
subblock of length greater than k 2r that determines it. Hence most of our results hold
for all blocks of length k, perhaps with different constants, by applying them to this
reduced subblock.

Let B e 3k(XT) be reduced. We will enlarge Vk by k dimensions to obtain a
T(B)-invariant subspace Wk Wk,B containing the nonnilpotent part of T(B) and
calculate the matrix of T(B) with respect to a natural basis of

For notational simplicity, let U denote Ttk], and E EB,,n, so T(B) U- E.
.,[k]Also, let e , so the range ofE is e. Since B is reduced, it follows that e Vk, since

otherwise the proper subblock/3k- B would determine B.
The next result shows that the absorption time of e into Vk under U is k 1.
LEMMA 2. With the above notations, min { rn > 0 eU Vk } k- 1.
Proof. By (3.2) the minimum is at most k 1.
Equality is proven by observing that the next to last state in B must be followed

by at least two symbols since B is reduced. Hence, the set of blocks in 6etk] whose
first symbol is the last symbol of B is a proper subset of the set of those whose initial
state is i.

Let ( r/k- B be the terminal symbol of B, and =/3/k- 1B its initial state. Since
B is reduced, j..9o T >- 2. Hence

eUk- 2 ,[k] Ttkl)k_ 2,( , etck]
C" flk- 2c= }

is summed over a proper subset of/-k+, (i). For fixed i, every vector in Vk must have
the same coordinate on each e for C e r-k+ 1( i). Hence eUk- 2 Vk" [-

LEMMA 3. With the above notations, the vectors e, eU, ..., eUk-2 are linearly
independent ofeach other and of Vk.

Proof. Suppose ale + aEeU + + ak-leUk-2 + v 0 for some v Vk. If all
aj 0, we are done. If not, choose j minimal so a 4 0. Applying Uk-J- on the
fight gives

eU2k 3- J)6aeU- v aj + eU- + + a_

contradicting Lemma 2.
In view of Lemma 3, we can introduce the subspace

Wk Wk,B-- Vk,eeU (eUk-2 [k],

having dimension r + k 1, where r dim Vk dim tl is the size of T. Although Vk
depends only on k, note that Wk also depends on B.

LEMMA 4. The subspace Wk is invariant under both U and U- E, and it contains
the eventual range ofboth transformations.

Proof. The invariance of Wk under U is clear. Since the range ofE is e, it follows
that Wk is also invariant under U- E. Since by Lemma we have U nilpotent on
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Rtk]/Wk, and E vanishes there, U- E is nilpotent on Rtk]/W, so the eventual range of
U- E is contained in Wk.

If6 is the map defined by (3.1), by Lemma the set {k(e111) e 6f} forms a
basis for Vg. Hence

B { (e]’l), p(e’]), e, eU, eUk- 2 }
is a basis for Wk.

To describe the matrix of U E with respect to B, let CB(t) :_- Cjtj- be the
correlation polynomial of B ... k, where cj if l’" "j k-+ l’’" k and c
0 otherwise. Note that Ck 1, SO deg CB(t) k 1. Define

C(4,,)

--Ck-1 0 0
--Ck-2 0 0

-c: 66 ..:
-c 0 0 0

to be its companion matrix. Our definition differs from the usual one by permuting the
rows and columns with the permutation -- k i, but the characteristic polynomial is
still b(t). Let e be the r row vector [0...0 0...0], and ef be the transpose of
ei. Denote the m n zero matrix by Om,n

LEMMA 5. Let B 3k(Xr) be a reduced block with initial state [3kB and terminal
statej kB. Then the matrix ofT(B) U- E with respect to is

Ms(U E)=

T -ear 0,._

O_z., C()

Proof. We first compute Ma(U). By Lemma 1, on Vk the matrix of U with respect
to the ff(e1) is just T. Also, by (3.1) and (3.2), (eUk-E)u- ff(ell). Hence if

(3.3) Jo(k- 1)=

0 0 0
0 0 0

666..:i
0 0 0 0

denotes the Jordan nilpotent block of size k- 1, we have

Ms(U) 0_2., Jo(k 1)
e

Next we compute Ma(E). Using (3.1), we see for m 6f that

ifm= i= [3B,
otherwise,
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and for 0 =< m -< k- 2 that

eUm)EaB’nB=
0

Thus

M(E)

Subtraction gives the result.

if riB and fiB overlap in k- m symbols,

otherwise.

Ok- l,r Ok -1,k -2

It is perhaps interesting to note that although U- E is nonnegative integral, we
have represented its "interesting part" by a far smaller matrix Ma( U- E) containing
negative entries.

4. Zeta functions. We will use the results of the previous section to compute the
zeta function of T(B) in terms ofxr(t), B(t), and cof0 tI T described in 1. Recall
our notation from thatf(t) denotesf(t) multiplied by the unique power of making
the product a polynomial with nonzero constant term.

THEOREM 1. IfB E tk(XT) is reduced with initial state kB and terminal state
j rikB, then

g.r()(t) [Xr(t-l)s(t-)+cofo(t-I T)]"
COROLLARY 1. IfT [n], thenfor every B e lk(Xr) we have

’r)(t) nt)ck.(t- )t + "
In particular, ifB has only the trivial overlap with itself, then

’T(s)(t) 1--nt+t"
Proof of Corollary 1. Since r 1, here cofl (t/-T)= 1, and the constant

term of

(t-n)cks(t)+cof (tI- T)

is ns(0) +_ 4:0 since n >_- 2 and B(0) 0 or 1. Hence

[(t-l-n)4s(t-)+ 1]=tg[(t--n)cks(t-)+ 1]

nt)( - )tk- + t.
IfB overlaps itself only in the entire block, then Cs(t) k- 1, completing the proof.

Proof of Theorem 1. Recall from 3 our notations that U T[k], E Eg,
T(B) U E, e e,s, and that T(B) is nilpotent on a kl/Wk,B. The matrix of T(B
on Wk,S is given in Lemma 5, and expansion by the last row shows

(4.1) Xr(B)lWk,s(t) X(t)B(t)+cofo.(tI-- T).

Applying [4, Thm. finishes the proof.
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Bowen and Lanford [4, p. 45] have pointed out that although deg ’)(t) for full
shifts is linear in BI, the straightforward calculation of XT()(t) is exponential in BI,
and they asked whether there is a more efficient algorithm. Our reduction ofRtkl to Wk
provides such an algorithm. The obvious method of computing 4(t) is quadratic in
BI, so Theorem provides a computation of T(a)(t) that is also quadratic in BI.

However, a slight modification of one part ofthe Knuth-Morris-Pratt pattern matching
algorithm 13] actually gives a linear algorithm. (We are indebted to Andrew Odlyzko
for suggesting this possibility.)

COROLLARY 2. Forfixed T there is an algorithm to compute T()( t) in time that
is linear in B I.

Proof. By Theorem 1, we need only find a linear algorithm to compute 4n(t). Let
B ... k. Define f: { 1, ..., k} -- { 0, ..., k- 1} by setting f(j) to be the largest
nonnegative < j such that -. i j -i+ 1" j. As in 13, 2 ], the table of values of
f can be computed in O(k) steps. Our definition of f differs slightly from that in 13 ],
but this has no consequence for the algorithm.

Since f is strictly decreasing, there is a first iterate fS(k) that equals zero. Let
k0 k, k =f(k), k2 =f(f(k)), ..., ks- =fs-(k). We claim

s-1

(t) g .
j=0

For by definition, kl --f(k) records the largest nontrivial overlap of B with itself. It
follows that the next largest overlap ofB with itself coincides with the largest nontrivial
overlap of . .k with itself, which by definition is f(k) kz. This continues until
f(k) becomes zero. ff]

Since the number ofk-blocks is roughly )r, one might expect the number ofdistinct
’r(n) (t) to also have exponential growth. Surprisingly, this number turns out to be quite
small. For k 20 there are only 16 distinct correlations, and even for k 50 there are
only 2,240 [9, p. 29].

COROLLARY 3. If "y > log (-32), then

l{ fr<>(t)"B(Xr) }l O(kg)

Proof. By [9, Thm. 6.1 ],

l{ 4(t):Ol(X)}l O(kl).

Since every block in 3(Xr) contains a reduced subblock of length greater than k 2r
determining it, and the number of the polynomials cof0. (t/- T) is uniformly bounded,
the result follows. []

Another curious fact also follows.
COROLLARY 4. Suppose m, n >= 2. The number ofdistinct zetafunctions produced

by omitting the blocks oflength kfrom thefull m-shift coincides with that from the full
n-shift.

Proof. This follows from Corollary together with the result 9, Cor. 5.1 that the
set of correlations is independent of the size of the alphabet. [2]

Because of the possible cancellation of lower powers of t in (4.1), Theorem does
not immediately yield deg ’)(t). In particular, a good lower bound is not obvious.

THEOREM 2. IfB k(XT) is reduced with initial state and terminal statej, then

k-4r-<deg )(t)<=k+ r- 1.



PERTURBATIONS OF SHIFTS 359

The upper bound is attained ifand only if
(4.2) (det T)o(0) + cof0 (-T) 4: 0,

and this occursfor all blocks in a full shift.
Proof. Using the notations from the proof of Theorem 1, we see that

deg xr(o)l wk(t) dim Wk k + r- 1,

and that T(B) is invertible on Wk if and only if the constant term in (4.1)

Xr(0)a(0) + cof (-T) (det T)cka(O)+cofo.(-T)O.
For full shifts, the proof of Corollary shows the constant term is nonzero for all blocks,
completing the proof of the upper bound statements.

For the lower bound, we will prove by induction on k that the highest power P of
dividing (4.1) is less than 5r. Since the degree is k + r- 1, the lower bound will follow.

For notational simplicity, put c0(t) cof0 tI T). A crucial fact that we use repeatedly
is that co(Xr) 4:0 for all i, j 16, p. 7].

If k -< 4r, then for every B 3(Xr) the degree of (4.1) is < 5r. Also, at Xv
this polynomial has value cof0 (I- T) 4:0 by 16, p. 7]. Hence if k < 4r, the highest
power P of dividing (4.1) has P < 5r.

Now fix k > 4r, and assume our inductive hypothesis for all blocks of length < k.
Let B 6 (Xr). Choose p >_- minimal so B overlaps itself in k p symbols. If B has
only trivial overlaps, define p to be k. This p is the fundamental period of B as defined
in [9 ]. We distinguish two cases, depending on the relationship ofp to r.

First suppose p > r. If p k the result is trivial since then 4o(t)= -l

deg cij(t) _-< r- 1, and c0(Xv) 4: 0, so P _-< r- 1. If p < k, let C PB. Then C has
initial state i, terminal state j, and 4(t) k- + Ckc(t) with deg Oc(t) k p 1.
Since deg xr(t) r, and p > r, the highest power of dividing (4.1) coincides with the
highest power dividing xr(t)ckc(t) + co(t), which is less than 5r by induction.

Next suppose p _-< r. We first treat the case p Xr(t). By the recursive descrip-
tion of 4(t) in [9, Thm. 5.1 ], it follows that

I_(k p )/P_I

(4.3) 4(t) mp + (t),
m=0

where deg (t) < 2p. We claim that for every K >- 1, in the product

(tpI+tp(I-l)+ +tP+ 1)xr(t)

every set of p consecutive powers of in [0, Kp + r] has at least one nonzero
coefficient. For if not, then letting It[ < and K oo shows that (tp )-IXT(t) G

7/[ ], contradicting p /Xr(t). Substituting (4.3) into (4.1) and applying our claim,
it follows that (4.1) has at least one nonzero coefficient of a power of in the range
max { r, 2p } + 1, max r, 2p } + p], showing that P _-< 3r in this case.

Finally, suppose p -< r and v lXr(t). By (4.3),

ck(t) tp+l( tpI-I ) +(t)tP_l

where K =/(k- p 1)/pJ, < p, and deg b(t) < 2p. Let Xv(t) (tp 1)2(t), so
2(Xr) 0. Then

xr(t)ck(t)+ co(t)= 2(t)tp(:+ )++ 2(t)[(tp- )p(t)- tP+] + co(t).
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If p(t) ((t)[(tp 1)(t) p+l] + co(t ), then p(Xr) co(Xr) 4: O, so p(t) is not
identically zero. Also, deg o(t) < r + 2p <- 3r. Since

(k-1 1) k p l>_3r,,p(K+ 1) + l>=p
P

the highest power P of t dividing (4.1) coincides with that dividing o(t), so P =< 3r in
this case. D

5. Entropy. How does entropy change when one long block is removed? Since
h(ar) log Xr, this amounts to determining the change in spectral radius. Standard
Perron-Frobenius theory [16, Thm. 1.1 (e)] shows )r > Xr(B). The following consid-
erations allow us to guess that the difference is exponentially small in BI. We can
consider T(B) to be the end result of U- tE as varies from 0 to 1. To find the change
in eigenvalue, it becomes important to know its rate ofchange, say at 0. Surprisingly,
this rate is a simple function of the left and fight eigenvectors.

LEMMA 6. Let A aij] be a real square matrix with simple eigenvalue X and
corresponding left eigenvector v and right eigenvector w. Then

-w
Proof. Since X is simple, it is known 12, Thm. II. 1.8 that X, v, and w are analytic

functions of ao. Take 0/00 ofAw Xw, use OA/Oao Ej, and multiply by v on the left
to obtain

Ow OX Ow
VAaij

+ vEijw Vaij
w+ )v

aij

Cancelling the terms involving vA Xv shows that l)iWj (vw)(OX/Oaij). Since is
simple, vw 4 O, concluding the proof.

Let the notation f(k) g(k) as k -- mean that there are a, b > 0 so that for
sufficiently large k we have ag(k) <f(k) < bg(k).

Now fix T, and let v > 0 and w > 0 be the left and fight eigenvectors for Xr. Put
c min { vi, wi } and d max { vi, wi }. Recalling the map b defined in (3.1), we have
that (v), (w) are left and fight eigenvectors for U Ttkl, and have entries between c
and d. Since these vectors have length about X, it follows (v)p(w) r. Hence by
Lemma 6, the derivative of v-tE at t 0 is within two positive constants ofXk. If we
were able to extend this estimate of the derivative to all 0 -< =< 1, we would be done.
However, the estimate runs into trouble as becomes positive since the eigenvectors also
vary with t.

Nevertheless, the linear algebra of 3 enables us to prove a sharp exponential estimate.
THEOREM 3. There are constants cr, dr > 0 so that if k is sufficiently large, for

every B 90k(Xr) we have

crXk < h(at) h(aT(B)) < drXrk.

Proof. In the following, the aj are suitable positive constants. Let us first consider
the case T [n] of the full n-shift. Then kr n and kr(B) satisfies (t n)chB(t) +

0. By [8, Lemma 3], I(z)l > a(1.7) for Izl ->- 1.7 and suitable a > 0. Thus if
zl 1.7 we have

I(z-n)cb(z)l >- (0.3)a(1.7)g>
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for k large enough. We use this to count roots by invoking the following result from
complex analysis.

ROUCH’S THEOREM. Let f(z) and g(z) be analytic on { zl <= R } and satisfy
If(z) g(z)l < f(z)l for Izl R. Thenf(z) andg(z) have the same number ofzeros
in{Izl <R}.

Using (5.1) and Rouchr’s Theorem, it follows that (z-n)cba(z) and
(z n)qb(z) + have the same number of roots in Izl >-- 1.7, namely 1. This shows
that h hT(o) >= 1.7. Hence

--< In-,l---- <--

Thus

)kk- 2 k"ff)B )k )kk- 3r_ Ck_ 2 3f. _Jl_ Co )k

-k for B,k(XT) as k-- .In-XT<a> .
We claim that actually In- x<a>l n -k, for which it suffices to show that

In ,r<a> --< an-k for suitable a > 0 since h hr<a> < n. Now

In ),1 =< a3X-k a3n-k log X/log n,

and since In h < a4X -k, it follows, using differentiability of log x at x n, that
-log ),/log n < + ash-k < + as( 1.7)-k. Hence

In- hi <a3n-knaSk(l’7)-k.

Putting

a2 a3 min { n aSk(l’7)-k} < c
l_k<

completes the proof for the full shift.
To extend these ideas to general T, we need a version of (5.1) that works for

smaller Izl.
LEMMA 7. Fix p > 1. Then

inf inf Is(z) -- as k- .
B.,k(XT) Izl-a

Proof. Recall from the proof of Theorem 2 that ifp is the fundamental period for
B, then

t(k p )/P3

)B( t) lk- mp 3f. I/( l),
m=0

where deg if(t) < 2p, and if(t) has coefficients that are 0 or 1. Fix M > 0. Ifp > k/10,
then for all zl --> we have

t9k/10/

[zlmM
m=0

provided k is large enough. Ifp _-< k 10, then for K =/(k- )/pJ we have

s(t) t + if(t),
tP-1
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where l < p and deg 7/(t) < 2p. Hence for all ]zl > O we have that

4)s(z)[ >lzl( z:p-1 )zI; -1
2p

Izl 9g/1- Izl k/ klzlk/5M
Izl k/l + 5

if k is sufficiently large. Vq

We now prove Theorem 3 for general T. We know that k kr(B) satisfies

(5.2) xr(t)4( t) + co(t) O,

where co(t cofo(tI-T) is one of a finite set of polynomials. Since xr(t)=
(t Xr)q(t), where q(Xr) :/: 0, we have

IXT--t[ ci(t)l
I(t)q(t)l

Let the roots ofxr(t) be ),1 r, k2, kr-Fix O with Xr> o > maxz=<j_r[ Xjl. Apply
Lemma 7 to conclude by Rouch6’s Theorem that for sufficiently large k (5.2) has exactly
one solution for It] > p, namely r(B). Hence

cij(XT<))I ---0 ask-.

Since q(z) 4:0 if Izl > p, we have Iq(X<.>)l as k -- . Furthermore, as re-
marked above, the Perron-Frobenius theory shows that cij(Xr) 4:0 for all i, j, so

k
Cij(kT(B))[ as k -- . Since I4(XT())] r(B), we obtain

-k

The conclusion that this forces

IXT- XT(B) ,, .k as k--

follows exactly as in the full shift case. [5]

We remark that these estimates may also be proved using generating functions, in
the spirit ofthe calculations in 8, 2 for the full shift. Let fn) be the number ofblocks
in 90n(Xr) from to j not containing B, and put Fi(z) ,n%o fnij) z-n, and set
F(z) [F/(z)]. Then developing matrix analogues of the polynomial relations in
[8, ], we can show that

F(z)=(I-z-(k-1)E)[zI T+cs(z)-1TE] -I

where E Eo. The largest root of the denominator is Xr(), and we can derive the
exponential estimate ofTheorem 3 from this. The details are more involved than for the
proof given here. This generating function technique could also be used when omitting
a finite number of blocks, as in [10, 2 ]. This yields a nonsingular system of matrix
equations whose solution would allow an estimate of the resulting spectral radius. How-
ever, the results are not nearly as explicit as for one block.

We also remark that much finer information about [T- kT(B)[ can be obtained
from the proof of Theorem 3. For example, if T [hi and B lk(X7) has only the
trivial overlap with itself, then
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Such estimates can be proved directly 8, Lemma 4 ], or with the Lagrange inversion
formula 17, Thm. 2 ].

6. Jordan forms. Let J(T) be the invertible part of the Jordan form J(T) for T,
and j0(T) be its nilpotent part. Williams 18 proved that J(T) is a topological invariant
of at. Although jo(T) is not an invariant, our analysis allows us to compute j0(Ttkl)
and, in many cases, j0 T(B).

Denote by J0(m) the elementary m m Jordan block for eigenvalue 0 as in (3.3),
and by Jo(m) (R)n the direct sum of n copies of Jo(m). We first show that in passing from
Tto Tt21, each Jordan nilpotent block of jo(T) increases by one dimension, and enough
one-dimensional nilpotent blocks are added to account for the rest of dim t2.

LEMMA 8. Suppose T has Jordan form J( T) jo( T), where

jo( T)= Jo( )(R),o Jo(2)(R)n, ()... ()jo(p)(R)np-,.

Then T has Jordan form J(T) (R) j0 T 2]), where

and

J(Tt21) Jo( )(R)n-i () J0(2)(R)no()... () Jo(P+ )(R)np_,

p

(6.1) n_= Z T-dimjX(T)- Z(l+l)n-.
i,j=l l=1

Proof. Since T is assumed irreducible, for each e 6’ we can choose (i) e o with
[2]r/((i)) i. Define g: [1] [2] by g(i= aiel 1]) Ei=I aie(i). Recalling the map

ff defined in (3.1), note that Tt2lo g ft. If {v, Vp} is a Jordan basis for J(T),
then {ff(v), ff(Vp)} is one for J(Tt21) by Lemma 1. Let V denote the span
of the k(Vm). Suppose w e tl generates one of the Jordan nilpotent blocks of size s in
jo(T). Then g(w) generates a Jordan nilpotent block of size s + in jo Tt21) since
g(w) Tt21 if(w). Thus by mapping each Jordan nilpotent generator in jo(T) to its
image under g, we obtain vectors in t2 with nilpotency >= 2 under Tt21 On the subspace
Wgenerated by powers of Tt21 on these vectors the matrix of Tt2 is

J0(2)(R)n(+ J0(3)(R)n (R) ( Jo(P+ (R)np-

For each e 6 let

0(i) { g" r/() i,4: (i)}.
The vectors {e21 ,t21

t;(i) O(i), O } are each annihilated by Tt and span the
remaining part of tl. It follows as in the proof of the Jordan form [10, 7.3] that
V W has a Tt21-invariant complement on which TTM is 0. Since dim t2 0 To,
the dimension n_ of this complement is given in (6.1), concluding the proof. []

Since Ttkl Tt- l)t21, Lemma 8 allows the inductive determination of j0(Ttl).
It is convenient to introduce the sequence { nq( T)" q e 7/} of integers defined as follows.
For q >_- 0 the nq(T) are determined by

jO(T)= () Jo q + 1)(R)nq( T)

q=0

so nu(T) 0 for sufficiently large q. For q < 0 we use the backward recursion

(6.2) nq(T)= Z (Tlql)ij-dim J(T)- ., (l+ 1)nt+q,
i,j=l l=1

where the infinite series is really finite since n+q 0 for large l.
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THEOREM 4. Ifnq( T) is defined as above, then

J(T[k])= () Jo(q+ 1)(R)nq+’-k(T).
q=0

Proof. If k this follows by definition, while Lemma 8 shows this to be true for
k 2. The general result follows by induction on k.

For a concrete example, consider the full 2-shift T 2 ]. The theorem implies that
for all k >_- 3 we have

j0(Ttgl) J0(1)(R)2k-3@ Jo(2)(R)2k-4() () Jo(k-2)(R)20@ Jo(k- ).

Mike Boyle (private communication) has pointed out to us that

(6.3) rk (Tt)p rk Tt + q)+

for l, p >_- 0 and k >- 1. The proof is analogous to that of Lemma 8. If S is any matrix,
then the number of Jordan nilpotent blocks of size m >= is rk (S / ) 2 rk (Sm) +
rk (S ). Hence (6.3) yields an alternative proof of Theorem 4.

We now show that under some circumstances we can determine the Jordan form
ofT(B).

THEOREM 5. Suppose T is invertible, that B (X) is reduced with initial state
and terminal state j, and that

(6.4) (det T)(O)+cofo.(-T)O.

This condition is met by all blocks in afull shift. Then T(B) is invertible on , J T(B)
isjust the Jordanform ofthe restriction ofT(B) to I/V, and jo( T(B) is obtainedfrom
j0(Ttgl) by deleting one copy ofJ(k ).

Igl E E,, and Vg andProof. Use the notations of 3, with U Tkl e e,,
I47 the subspaces described there. Since T is invertible, there is a v e Vg such that
vU- eU- . Since eU- 2 Vk, it follows that w e v generates a nilpotent Jordan
block under U of maximal size, and that W is the direct sum of the corresponding
subspace and V. The proof of the Jordan Theorem [10, 7.3] shows that there is a
Jordan basis for U with w as one of its generating basis vectors. Since E vanishes on the
direct complement of W, it follows that passing from U to U- E T(B) preserves
the direct complement Jordan structure. By (6.4), it follows as in Theorem 2 that U-
E is invertible on W. Thus in passing from U to U E, one Jordan nilpotent block of
size k combines with V to form the subspace Wg on which the invertible part of
U- E acts, while the remaining Jordan nilpotent blocks remain undisturbed.
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IDENTITIES SATISFIED BY ITERATED POLYNOMIALS
AND (Q, x)-BINOMIAL COEFFICIENTS*

C. L. MALLOWSf

Abstract. Lagarias and Reeds showed that iterates Qti)(x) Q(Qti-)(x)) of a polynomial Q(x) satisfy
certain identities. It is shown that their result can be interpreted as a symbolic generalization of the result "the
(p + )st-difference of a polynomial of degree p is zero," in which powers of an independent variable are
replaced by iterates of a polynomial transformation. (Q, x)-binomial coefficients [7]o,x are defined where Q is
a polynomial and x a scalar, which are defined by a two-term recurrence showing that [’]o,x are in the
polynomial ring 7[ Q, x] generated by x and the coefficients of Q. For polynomial P(x) ofdegree n, the iterates
Qtk)(x) satisfy the identity P(Q’+)(x)) Zj’=0 (-1)J []]o,x P( QtJ)(x) ). If Q(x) qx + a is linear, then
[jn]O,x a%J)[nlq where [.]qj is a q-binomial coefficient. It is shown by example that other q-formulae have
Q, x)-analogues.

Key words, recurrences, q-binomial coefficients

AMS(MOS) subject classifications. 11B37, 05A30, 11T41

1. Iterated polynomials. We work throughout in a commutative ring A, with unit.
We consider iterates of a polynomial recurrence: Q A -* A, where Q is a polynomial
(of degree d, say), with coefficients in A. We write

Qk)(x Q( Q<k- l)(x))
and

Q<)(x)=x, Q<)(x)=Q(x).

We also consider a second polynomial transformation P:A - A of degree p and the
corresponding sequence of quantities

pk=P(Q<k)(x)) k=0, 1, ....
Lagarias and Reeds ([ 3, Thm. 3.2 ]) established the following identities for such quantities.

THEOREM (Lagarias and Reeds). There exist coefficients bp(j O, 1, p)
Z[Q, x] (polynomials in x and the coefficients ofQ, but independent ofthe coefficients
ofP) such that

p

(1) P(Q<P+ l)(x))= bpiP(Q(i)(x))
i=0

as aformal identity.
The proof in 3 is given only for the case p d but extends easily to the general

case p 4: d. They ask ([3, 1]) whether these identities have an interesting algebraic
interpretation. We shall show that is an analogue of the familiar result, valid for all
polynomials of degree -< p,

(2) P(x+p+l) Z (-1)’-J
p+I

P(x+i)
i=0

which asserts that the (p + )st-difference ofa polynomial of degree p is identically zero.

Received by the editors June 27, 1988; accepted for publication (in revised form) November 23, 1988.
f AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
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2. The linear case. Let us first take Q(x) x + a. Then

Qt’)(x) x + ka k= O, 1,

so P(Qt’)(x)) is a polynomial in k, of degree p. By (2) we have that holds, with

bpi (-1)P( P + )
Now take Q(x) qx + a. Then

(3) Q(’)(x) qkx + q’- a + q- 2a + + a.

Following Lagarias and Reeds, we can determine the coefficients bz,o, bpp by solving
the system of equations (which they must satisfy, if they exist in Z(Q, x))

Vb c+

where

(4) bp=(bp0, ,bpp)t,p+ l=(X,Q(p+ ’)(x),(Qz’+ )(x)) -, ,(Qp+’)(x))P)

and Vp is a Vandermonde matrix with

(Vp)i=(Q)(x)) O<=i,j<=p.

The solution of (4) is, formally,
p Qz,+ )(x)_QJ)(x)

(5) bpi(Q’x)= ol--[ Qi)ix)_Qj)(x i=0, 1, ,p,

j4=i

which clearly depends (in general) on both Q and x. However, when Q) is given by
(3), the dependence on x drops away, and

bpi qi_ qj
-1)p- q( ’-

q
j4=i

where [PT ]q is a q-binomial coefficient, defined for 0 =< =< n as

q
(q)i 0 q n q

where

(a)i 1-a)(1 -aq)(1 -aq2) .( 1-aqi- l)

(see, for example, 1, p. 15 ).
We shall find it convenient to write

so that

bpi=(-1)p-i(P+l)
q
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These modified coefficients satisfy the recurrence

(6)
q i--lq iq

which provides an immediate demonstration (by induction) that they are polynomials
in q.

3. The general case. Now we take Q to be a general polynomial of degree d >= 1.
The formal result (5) still holds, and Lagarias and Reeds proved (in the case p d) that
it does in fact determine bpi as a polynomial in x and the coefficients of Q. We shall
establish this by proving the following theorem.

THEOREM 2. Equation holds with

bp;=(-1)p-i(p+I)
Q,x

where the quantities (1])Q,x (0 <--_ <-- p) are polynomials in x and the coefficients of Q,
defined by the recurrence

(7) (p+l p P

I-[ Q’(Q(i)(x), Q(J)(x))
Q.a(x) j 0

j4i

where Q’(x, y) is the polynomial defined (uniquely!) by

(x- y)Q’(x, y) Q(x) Q(y),

and the initial conditions are

=0 p=O,
Q,x

=0 =-1,1,2,-..
a,x

Explicitly, O,x (I) Q,x 1,

2

1)Q,x

QZ)(x)-Q(x)
Q(x)-x

=Q’(x,Q(x))

QZ)(x)-x
bl Q(x)-x

+ Q’(x, Q(x))

3 2 I-I Q’(x, QJ)(x))
0 Q,x 0 Q,Q(x)j=I

Q’(Q(x), QZ)(x))Q’(x, Q(x))Q’(x, Q(Z)(x)).

Proof. We show by induction that the polynomial recurrence (7) satisfies the formal
definition (5). So, suppose this is true for p 0, 1, n 1; then for p n we have
to show that
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But the fight-hand side is

{ Q(i) Q() fI]-1=o (Q(i)_Q(k))
(Q(p+ l)_Q(k))

=1
ki ki

}_(Q(i+ 1)_Q(p+ 1)) I-[ (Q(p+
k=l

k#i+

which collapses to equal the left-hand side of (7).

4. Further generalizations. In the linear case, Q’(x, y) q, and (f)Q,x (f)q,
independent of x; this suggests that it may be productive to search for (Q, x)-general-
izations of other q-formulas. As an example, we consider Theorem 3.3 of Gessel and
Stanton 2 ], called by them a "q-analogue of Lagrange inversion for x/( x)." As
they point out, Gessel and Stanton’s result is equivalent to the assertion that the following
triangular matrices are mutual inverses:

(Aqk)n-kq-nk,Bnk-- Ok<=n

B-t =(-1 )k-t(Aqt)-lqk-]+’)+kt
(q)k-t

O<=l<=k.

where

verses"

Bt-1 q-’- ’)- (t)O-/l (- )-l
(Aq)-
(q)_

The matrix entries are still not polynomials, unless A qa for some positive integer a;
henceforth we assume this. Now we "replace q by Q(k)(x)," as far as possible. There
are many ways of doing this; the simplest we have found gives the following (Q, x)-
generalization of Gessel and Stanton’s result.

THEOREM 3. The following matrices have polynomial entries and are mutual in-

(Q(a+k))n_ k
Bnk qn 0 <= k <= n

(Q)n-k

B-t =(-1)
Q +

(Q)k-i
O<=l<=k

k

(Q(n))k= H (x-Q(n+j-1)(x))
j=l

and the coefficients q are polynomials in 77[Q, x], and satisfy the recurrence
k-I Q(k j+l

q= ., (-1 )k-j-1 ))J
j=O (Q)J

qj k= 1,2, ....

First we must write this result in a form involving polynomials in q. To avoid negative
powers of q we work with

Bn* q()+(k] 1)Bnk (Aqk)n-q(nfk)
(q)n-k
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Proof. Straightforward substitution shows that the assertion of the theorem is for-
mally correct; we have only to verify that the coefficients { qk } and the matrix entries are
indeed polynomials. For this, it is sufficient to prove that the quantities

{a+k}k Q k I X Q a +J-kk -( -(7) )j=l

are polynomials. But this is evident from the fact that they satisfy the recurrence

with the initial conditions

for a >_- 0.
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PERFECT GRAPHS AND ORTHOGONALLY CONVEX COVERS*

RAJEEV MOTWANIf, ARVIND RAGHUNATHAN:I:, AND HUZUR SARAN:I:

Abstract. The combinatorial structure of visibility in simple orthogonal polygons is studied. It is shown
that the visibility graph of a horizontally or vertically convex polygon is a permutation graph. In general,
orthogonal polygons can have concavities (dents) with four possible orientations. In the case where the polygon
has three dent orientations, it is shown that the visibility graph is weakly triangulated. Since weakly triangulated
graphs are perfect, a polynomial algorithm for this polygon covering problem is obtained. Furthermore, the
following duality relationship is obtained. The minimum number of orthogonally convex polygons needed to
cover an orthogonal polygon P with at most three dent orientations is equal to the maximum number ofpoints
of P, no two of which can be contained together in an orthogonally convex covering polygon. Finally, it is
shown that in the case of orthogonal polygons with all four dent orientations, the above duality relationship
fails to hold.

Key words, orthogonal polygons, perfect graphs, minimal coverings, weakly triangulated graphs

AMS(MOS) subject classifications. 05, 51, 68

1. Introduction. One of the most well-studied class of problems in computational
geometry concerns the notion of visibility. Two points in the plane are said to be visible
to each other in the presence of obstacles (that are generally polygonal) if there exists a
straight-line path between the two points that does not meet any of the obstacles. Other
notions of visibility involve paths that are not straight lines, e.g., rectilinear or staircase
paths. There is an intimate connection between visibility problems and polygon coveting
problems. In his recent book on the Art Gallery Problem, O’Rourke [22 states that the
fundamental problems involving visibility in computational geometry will not be solved
until the combinatorial structure of visibility is more fully understood. In this paper (and
a companion paper [21 ), we attempt to study this combinatorial structure. A visibility
graph has vertices that correspond to geometric components, such as points, lines, or
regions, and edges that correspond to the visibility of these components to each other.
Here, we will be concerned with the visibility graphs for regions inside a simple orthogonal
polygon. We show that certain special classes of these visibility graphs are perfect. We
use this property of the visibility graphs to devise polynomial algorithms for a class of
polygon coveting problems that are NP-hard in general.

For our purposes, a polygon is a closed, connected set ofpoints in the plane, bounded
by several (circular) sequences of straight-line segments. The segments are called edges,
their endpoints are called vertices, and their union is called the boundary ofthe polygon.
In our definition, we allow the limiting case where parts ofedges ofthe polygon boundary
may coincide. Thus, in the limiting case, we could get "necks" of zero width, and even
polygons of zero area. The limiting case can be avoided if polygons are defined as open
sets rather than closed sets. The essence of our results is unaffected by the choice of
definition, although in the limiting case the details ofour proofs differ. The closed version
appears more natural and makes our proofs more elegant. A polygon is said to be simple
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if it has no holes, i.e., the polygon boundary is composed ofa single sequence of straight-
line segments. In this paper, we are only concerned with simple polygons.

An orthogonal (or rectilinear) polygon (OP), P, is a polygon with all its edges
parallel to one ofthe coordinate axes. Let n denote the number of edges on the boundary
ofP. (Note that we are only concerned with simple orthogonal polygons.) An orthogonal
polygon is said to be horizontally convex (or vertically convex) if its intersection with
every horizontal (respectively, vertical) line segment is either empty or a single line
segment (or a point in the limiting case of a "neck" of zero width). An orthogonally
convex polygon (OCP) is both horizontally and vertically convex. An orthogonally star
polygon Q contains a point p, such that for every other point q Q, p, and q are contained
together in an OCP contained in Q. A collection of polygons, C { P1, P_, Pr )
where Pi P, is said to cover a polygon P if the union of all the polygons in C is P.
Whenever we speak of a set of coveting polygons for an arbitrary polygon P, it will be
assumed that each coveting polygon is totally contained in P.

The following classification oforthogonal polygons is due to Culberson and Reckhow
7 ]. Consider the traversal of the boundary of P in the clockwise direction. At each
corner (vertex) ofP, we either turn 90 fight outside corner) or 90 left inside corner).
Since a 180 vertex is the limit of two 90 vertices as the length of the edge between
them goes to zero, we regard a 180 vertex as two outside corners with an edge of length
zero between them. Note that in this case, the "neck" of zero width gets traversed in
both directions. Thus, when we say a polygon P has n edges, we count the edges of each
"neck" twice. A dent is an edge ofthe perimeter ofP, both ofwhose endpoints are inside
corners. The direction of traversing a dent gives its orientation: for instance, a dent
traversed from west to east has an N orientation. We will use the natural definition of
the compass direction, i.e., the positive direction along the y-axis will be referred to as
the north direction and so on. Figure illustrates the N, S, E, and W dents. For a dent
D, o(D) indicates its orientation. Two dents D and D2 are said to be similarly oriented
if o(D o(D2). D and D2 are said to be oppositely oriented if o(D N, o(D2)
S (or vice versa), or, if o(D E, O(DE) W (or vice versa). Otherwise, D and D
are said to have orthogonal orientations. An OP is classified according to the number of
orientations of its dents. A class k OP has dents of k different orientations. A class 00P
does not have dents and is an OCP. A vertically or horizontally convex polygon is a class

E

FIG. 1. Orientation ofdents.
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FIG. 2. A vertically convex polygon.

20P that has only opposing pairs of dents, i.e., either N and S or E and W (see Fig. 2).
A class 30P without N dents is shown in Fig. 3.

The problem ofcoveting general (nonorthogonal) polygons by simpler components
has received considerable attention in the literature [5], [6], 17 ], 18], [29]. It turns
out, however, that most of these problems are NP-hard, whether or not the polygon to
be covered has holes ], [8], [29]. The various kinds of orthogonal coverings studied
earlier include coverings by rectangles, orthogonally convex polygons, and orthogonally
star polygons. Several algorithmic results have been obtained for coveting orthogonal
polygons. For instance, Franzblau and Kleitman have an O(n-) algorithm for covering
a vertically convex orthogonal polygon without holes with a minimum number of rect-
angles 10]. Keil has provided an O( nE) algorithm for coveting similar polygons with a
minimum number of orthogonally convex polygons 19 ]. Reckhow and Culberson [24]
later provided an O(n2) algorithm for coveting a class 2 orthogonal polygon with a

W

FIG. 3. A class 3 polygon (no N dents).
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minimum number of orthogonally convex polygons. Recently, Motwani, Raghunathan,
and Saran 21 have obtained an O(n8) algorithm for minimally coveting class 4 polygons
with orthogonally star polygons, and an O(n 3) algorithm for minimally coveting class 3
polygons with orthogonally star polygons.

In this paper, we are more concerned with combinatorial results concerning coveting
problems for orthogonal polygons. Let an independent set of points in a polygon P, with
respect to a class of coveting polygons C, denote a set of points in P, no two of which
can be covered by any coveting polygon from the class C. A duality theorem for coveting
problems is of the following form. The size of the minimum cover by polygons from
class C is equal to the size ofthe maximum independent set of points with respect to the
class C. Many interesting duality theorems have been obtained for polygonal coveting
problems. Chvfital [10] conjectured that a duality theorem holds for the problem of
coveting orthogonal polygons by rectangles. This conjecture was shown to be false by
Szemeredi and Chung (cited in 4 ). However, Chaiken et al. 4 showed that the duality
theorem holds for polygons that are orthogonally convex. Gyrri 14] then showed that
the duality relationship holds even if the polygon is only vertically (or horizontally)
convex. Later, Saks 26 showed that a graph determined by the boundary squares of
the grid induced by the vertices of an OCP is perfect. Other related work includes that
of Shearer 28 ], Boucher 3 ], and Albertson and O’Keefe 2 ]. The duality theorem has
now been shown to hold for coveting orthogonal polygons with orthogonally star polygons
in [21 ].

The purpose of this paper is three-fold. First we show that the visibility graph of a
vertically convex orthogonal polygon is a permutation graph 12 ], [20 ]. Then we show
that the visibility graph of a class 3 polygon is a weakly triangulated graph 15 ]. Fur-
thermore, we prove that a minimum clique cover of the visibility graph corresponds
exactly to a minimum cover ofan orthogonal polygon by orthogonally convex polygons.
Thus, we reduce the polygon coveting problem to the problem of covering a weakly
triangulated graph with a minimum number ofcliques. Since weakly triangulated graphs
are perfect 15 ], we get the following duality relationship for a class 3 polygon P: the
minimum number oforthogonally convex polygons needed to cover an orthogonal poly-
gon/’is equal to the maximum number ofpoints ofP, no two ofwhich can be contained
together in an orthogonally convex coveting polygon. Furthermore, the ellipsoid method
ofGrftschel, Lovfisz, and Schrijver 13 gives us a polynomial algorithm for the problem
of coveting a perfect graph with a minimum number of cliques. In practice, however,
the ellipsoid method suffers due to severe problems with numerical instability [27 ]. One
reason for this bad performance is that the number of iterations depends on the sizes of
the numbers in the input (in other words, it is not strongly polynomial). Therefore, the
algorithm of 13 can by no means be considered an efficient solution. Hayward, Hoang,
and Maffray [16] have obtained an O(v 5) algorithm for the minimum clique cover
problem for weakly triangulated graphs, thus providing us with a purely combinatorial
algorithm for the polygon coveting problem under consideration. Here, v is the number
of vertices of the graph. Since this algorithm is combinatorial, it does not suffer from the
same drawbacks as the ellipsoid method. The running time for this algorithm has now
been improved to O(v4) [23 ]. Finally, we show that the visibility graph is not perfect
for general (class 4) polygons. Furthermore, we show that the above duality relationship
fails to hold for general (or class 4) orthogonal polygons.

We wish to make the point that perfect graphs play a crucial role in polygon coveting
problems. As pointed out in the previous paragraph, every known instance ofthe problem
ofcoveting orthogonal polygons with a minimum number ofOCPs that has a polynomial
time solution can be formulated as the minimum clique coveting problem of a perfect
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TABLE
Classes ofpolygons and perfect graphs.

Polygon class

Class 2

Class 3

Class 4

OCP

Permutation

Weakly Triangulated

Not Perfect

Star

Chordal

Chordal

Weakly Triangulated

graph. By using this graph theoretic technique, Motwani, Raghunathan, and Saran [21
have resolved the problem of coveting class 3 and class 4 orthogonal polygons with a
minimum number of star polygons by suitably defining a visibility graph that is once
again perfect. In fact, the main emphasis ofthis line ofresearch is to exhibit the relationship
between perfect graphs and polygon coveting problems and not to provide the most
efficient algorithms. Table displays the types of perfect graphs to which the visibility
graphs ofthe various classes of orthogonal polygons belong, for the problems of coveting
with orthogonally convex and star polygons.

Culberson and Reckhow 7 independently reached the conclusion that a subgraph
of the visibility graph of an orthogonally convex polygon with two dent orientations,
called the source graph, is a comparability graph 12 ], [20]. However, permutation
graphs are a subset of comparability graphs, and, as such, we believe that our result is
stronger. Again, in the case of coveting a polygon with three dent orientations, Reckhow
[25 has independently shown that the source graph is weakly triangulated 12 ], [20].
He also provides an O(n2) geometric algorithm to cover a class 3 polygon with a minimum
number of orthogonally convex polygons.

This paper is organized as follows. In 2, we develop some of the tools required to
analyze this problem. Some of the definitions and facts we use are due to Reckhow and
Culberson [24 ]. Section 3 discusses the connection between the coveting problem for
vertically convex polygons and permutation graphs. In 4, we state our main results for
coveting class 3 polygons. Section 5 gives a proofofa technical lemma called the Crossing
Lemma that we use to show that the coveting problem for class 3 polygons reduces to
the clique coveting problem for weakly triangulated graphs in 6 and 7, giving us the
duality relationship mentioned above. Section 8 shows why we feel that the above tech-
niques will probably not extend to the more general problem ofcoveting a class 4 polygon.
We also show that the duality relationship fails to hold for these polygons. In 9 we will
consider possible extensions of our results.

2. Preliminaries. In this section we develop some of the tools required to analyze
the problem of finding minimum orthogonally convex covers for orthogonal polygons.
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Some ofthe definitions and observations stated here are due to Reckhow and Culberson
24 ]. Throughout this paper, P refers to the simple orthogonal polygon to be covered.

2.1. Staircase paths and visibility. A maximal OCP in P is an OCP contained in
P, but not contained in any other OCP contained in P. A staircasepath in P corresponds
to a sequence ofpoints u x0, x, Cr V contained in P such that (a) each adjacent
pair ofpoints, xi and ci- 1, determine a vertical or horizontal line segment that is contained
in P, and (b) in traversing the staircase path from u to v, the edges corresponding to the
adjacent pairs ofpoints are traversed in at most two ofthe four possible compass directions.
More informally, a staircase path is a connected sequence ofhorizontal and vertical edges
such that the path alternates between left and right turns. We say u v (read as u sees
v) if there exists a staircase path joining u and v. Note that staircase paths can share
points with the boundary of P, as P is a closed set. Thus, two points u and v that lie on
the same edge ofP are visible to each other. We will denote by s( u, v) any fixed staircase
path with u, v P as its two endpoints. The following two observations 24 demonstrate
the inherent relationship between staircase paths and covers by OCPs. Observation 2 is
obvious, and requires no proof.

OBSERVATION 24 ]. For any two points u, v P, u v ifand only ifsome OCP
(contained in P) includes them both.

Proof. Let an OCP, P’, include both u and v. If u and v lie on a horizontal or
vertical line in P’, then the line segment between them is contained in P’, and hence
u v. Otherwise, without loss of generality, let v lie to the northeast of u. Construct a
path in P’ from u to v as follows. Starting at u, repeatedly perform the following in order
until no further increment to the path is achieved.

Go north until a horizontal edge ofP’ or the horizontal line through v is reached
(whichever comes first).

(2) Go east until a vertical edge of P’ or the vertical line through v is reached
(whichever comes first).
If we reach v, we have a staircase between u and v, and u v. Otherwise, let w, such
that w 4: v, be the point reached. We consider two cases. First, let w lie on the same
horizontal (respectively, vertical) line as v. We then have that points neighboring w along
the horizontal to its east (respectively, along the vertical to its north) are not in P’. Thus,
the horizontal line segment (respectively, vertical line segment), -, joins two points
contained in P’, but is not fully contained in P’. This contradicts the definition of an
OCP. Second, let w lie neither on the horizontal nor on the vertical through v. By con-
struction, w is a point on the boundary of P’, such that points neighboring w to its east
along the horizontal through w, and points neighboring w to its north along the vertical
through w are not in P’. Also by construction, v is to the northeast of w. Now, since P’
is connected, some curve c in P’ joins v and w. Since v is to the northeast of w, this curve
c will intersect either the vertical through w to its north or the horizontal through w to
its east. Thus, there exists some line segment, horizontal or vertical, joining two points
in P’, and not completely contained in P’. This contradicts the fact that P’ is an OCP.
Thus if an OCP includes u and v, we have that u v.

Conversely, if u v, then a staircase path in Pjoins u and v. This staircase path is
trivially an OCP that is contained in P, as required.

OBSERVATION 2 [24 ]. Any covering ofP by OCPs can be made into a covering of
P by the same number ofmaximal OCPs.

We say that a staircase path from u to v goes southwest if, in traversing it from u
to v, we go west on all the horizontal segments and south on all vertical segments. Thus,
staircase paths between u and v can be offour possible orientations: northeast, northwest,
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southeast, southwest. However, depending on the direction oftraversal, the same staircase
path might be viewed as a northwest/southeast path in one case, or a northeast/southwest
path in the other. Thus, we classify staircase paths into two types: In a type I staircase
path, we may travel northwest or southeast on it and in a type II staircase path we may
travel northeast or southwest on it. A vertical or horizontal staircase path (line) is both
of type I and II.

2.2. Dent lines and zones. For each dent D of the polygon P, we define the notion
of a dent line D below.

DEFINITION 1. Let D be a dent in an orthogonal polygon P. The dent line D of D
is defined to be the maximal line segment that is completely contained in P and that
contains the dent edge D.

Note that under this definition, D is constructed by extending D in both directions
as long as it is contained in P. The orientation ofD is the same as the orientation of D.

D consists of two disjoint line segments Dt and Dr, one on each side of D. For a
dent of S orientation, let Dt be the line segment to the left of D and let Dr be the line
segment to the fight of D (see Fig. 4). Dt and Dr for dents of other orientations are
distinguished by rotating the S dent appropriately.

To simplify stating the following terms and definitions, let o(D) S. However, it
should not be hard to see that similar statements hold for the other three orientations of
dents. Consider P’ P- D. The set of all connected components of P’ meeting D to
their north are collectively termed the B zone, or B(D). The set of all connected com-
ponents of P’ meeting D to their south, together with D are collectively termed the A
zone, or A (D). Since by definition A(D) includes D, it is a connected polygon. B(D)
can be further subdivided into two zones Bt(D) and Br(D), as follows. The connected
components ofB(D) meeting Dt are together called Bt(D) and the connected components

D

Bt{D) Dt Dr

FIG. 4. Dent lines and zones.

Br(D)
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ofB(D) meeting Dr are together called Br(D). Note that under this definition, no point
of D is in B(D). Also note that under this definition Bt(D) and Br(D) need not be
connected sets. A B zone is disconnected exactly when two dents with the same orientation
share the same dent line. Figure 4 shows how zones are delineated. In our definition of
zones, A (D), P Bt(D), and P Br(D) are all three connected subsets of P. For any
two points u e BI(D), v e Br(D), there will not exist any staircase path between u and v
and, thus, u v. We now observe the following facts about dents and zones.

OBSERVATION 3. Let u and v be two points in P. Ifu v then there exists a dent
D such that u e BI(D), v e Br(D) or v e Bt(D), u e Br(D).

Proof. Assume to the contrary that there exist points u and v in P, such that u
v and that there exists no dent D in P such that u e Bt(D), v e Br(D) or v e Bt(D), u
Br(D). Now, construct a connected polygon P’ from P as follows. For each dent D,
discard from P the appropriate zone, Bt(D) or Br(D), such that it contains neither u nor
v. P’ thus defined is guaranteed to contain both u and v. P’ is also guaranteed to be
connected, as at each stage of the construction, we discard only a B zone of a dent (see
the paragraph above). Moreover, P’ contains no dents. To see this, observe that each
time we perform the construction of discarding the appropriate B zone of each dent D,
exactly one new boundary edge is introduced, and this edge is never a dent of P’. Thus,
at each stage of the construction, at least one dent is destroyed. Therefore P’ is an OCP
that includes u and v. By Observation 1, we conclude that u v, a contradiction.

In the case where there is a dent D that satisfies the hypothesis of Observation 3,
we say that D separates u and v, and D itself is called a separating dent for u and v. In
general, there may be more than one dent separating two points in P. In this case, we
will focus our attention on any one separating dent.

OBSERVATION 4. Let u, v, and w be three points in P such that a dent D separates
ufrom v. Ifu w and v w, then w e A(D).

Proof. Dent D separates u from v, so we can assume without loss of generality that
u e Bt(D) and v e Br(D). Since u w, we have that either w e Bt(D) or w e A (D).
Again, since v w, we have that either we Br(D) or we A(D). Since BI(D)
Br(D) , we have that w e A (D), as required.

For a dent D, let L(D) denote the infinite line containing D. The following obser-
vations are stated for particular dent orientations. However, it is not very hard to see
that they hold in all of their reflection and rotation symmetric versions.

OBSERVATION 5. Let D be a dent and u, w be points such that u e B(D and w
A (D), and let u =- w. Without loss ofgenerality, let o(D) N. Then u lies in the half-
plane to the north of L(D) and w lies either on or in the half-plane to the south
oiL(D).

Proof. The boundary between A (D) and B(D) is . Any path from a point in
A(D) to a point in B(D) must necessarily meet D, which is of N orientation, u w,
implying that there is a staircase from u to w in P. Any staircase from B(D) to A (D)
must cross D from north to south. Since u e B(D) and w e A (D), we conclude that the
staircase from u to w travels southward from u.

OBSERVATION 6. Let u, v, and w be points in P such that u lies to the northeast of
w and v lies to the northwest of w. If w u, w v, and u v, then there is a N dent
separating ufrom v.

Proof. If no N dent separates u and v, then D, a dent separating them, must be a
S, E, or W dent. IfD is an S dent, then by Observations 4 and 5, both u and v must be
to the south of D and w must be either on D or to the north of it. Thus, u and v must
be to the south of w. But we already have that u and v lie to the northeast and northwest
of w, respectively. If D is a W (respectively, E) dent, then we can show in a similar
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fashion that u (respectively, v) lies to the west (respectively, east) of w, again a contra-
diction. So D can only be a N dent.

2.3. Regions. The set of all dents ofP subdivides P into regions, as defined below.
For each point p and each dent D of P, we can uniquely specify whether p belongs to
Bt(D), Br(D), or A (D). Let the dents of P be linearly ordered, and let the zone vector
of a point in P be the correspondingly ordered list of the (unique) zones of each dent to
which the point belongs. Let us say that two points p and q of P are related under R if
and only if their zone vectors agree. Note that R is an equivalence relation.

DEFINITION 2. The equivalence classes under R are called the regions of P.
The zone vector ofa region is the zone vector of a point in that region. It is easy to

see that a region is a connected subset of P. For if no two dents of the same orientation
share the same dent line, then all zones are connected and a region is the intersection of
(a finite number of) zones, and is therefore connected. Iftwo dents ofthe same orientation
do share the same dent line, then the connected components of their respective B zones
are clearly in different regions, and the same argument applies. It is further clear from
the above that the boundary of a region is composed of polygon edges and dent lines.
Since there are only O(n) polygon edges and dent lines, and the number of cells created
in any arrangement [9] of O(n) lines in the plane is O(n2), there are only O( n 2) regions.
Note that a region can be a line segment or a point, and thus have zero area under this
definition. Figure 5 indicates a polygon with regions that are line segments (marked 9,
10, 11, and 12) and a region that is a point (marked 13 ). In the following, we relate the
notion of visibility by staircase paths with the coveting problem.

DEFINITION 3. Let u’ and v’ be regions in P. We say that u’ sees v’ if and only if
some OCP (contained in P) includes both u’ and v’.

OBSERVATION 7 [24]. Let u’ and v’ be regions in P, and let u and v be arbitrary
points in u’ and v’, respectively. Then, there is a staircase path between u and v ifand
only ifu’ sees v’.

Proof. If u’ sees v’, then some OCP (contained in P) includes both u’ and v’. Hence,
by Observation 1, there is a staircase path between u and v.

Conversely, let there be a staircase path between u and v. It is clear from the definition
of separation by a dent that there exists no dent D that separates u and v. Thus, there

11 13 10

FG. 5. Regions.
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exists no dent D such that u e Bt(D) and v Br(D), or vice versa. This implies that the
connected polygon P’ obtained from P by discarding the appropriate B zone of each
dent, such that neither u nor v is in it, will contain u and v. Since the zone vector of
every point in a region is identical, both u’ and v’ are completely contained in P’. By our
construction above, P’ cannot have any dents, and is therefore an OCP by definition. V1

2.4. The visibility graph. Having defined regions and the notion ofvisibility between
regions, we now study the combinatorial properties of visibility thus defined. The tool
we use to study these properties is the visibility graph of P.

The visibility graph, G(V, E), for the polygon P, is defined as follows. The vertex
set V of G contains a vertex corresponding to each region in P. Two vertices u’ and v’
are adjacent in the graph G if the corresponding regions in P can be covered by a single
OCP. We will use the same notation for a region of P and the corresponding vertex in
V. Thus, we have that ( u’, v’) E if and only if u’ sees v’. It follows from Observation
7 that (u’, v’) E if and only if there is a staircase path from each point in the region
u’ to each point in the region v’. The following lemma provides the relationship between
the coveting problem for P and the visibility graph G.

LEMMA 1. Let H(V’, E’) be a complete subgraph (clique) ofG. Then, the regions

of V’ can be covered by a single orthogonally convex polygon.
Proof. Let u’, v’ V’. Clearly, u’ sees v’. Thus, for points u u’ and v v’, no dent

D separates u and v. By the definition of regions, we have that there is no dent D such
that u’

_
Bt(D) and v’

___
Br(D), or vice versa. In other words, if some w’ V’ is in Bt(D)

(respectively, Br(D)) for a dent D, then every v’ V’ is in A (D) U Bt(D) (respectively,
A (D) t_) Br(D)). It now follows that for every dent D, there exists a B zone, either Bz(D)
or Br(D) that does not contain any of the regions of V’.

As in the proof of Observation 7, we can now obtain a connected polygon P’ from
P by discarding such a B zone for each dent D. P’ will contain every region of V’, and,
by construction, has no dents, implying that it is an OCP. [3

Since the regions u’ and v’, such that u’ does not see v’, cannot both be covered by
an orthogonally convex polygon, Lemma implies that a minimum clique cover of G
(that is, a minimum cardinality set of cliques of G with every vertex of G belonging to
some clique) corresponds exactly to a minimum cover of P by orthogonally convex
polygons. Finding a minimum clique cover is NP-hard for general graphs 11 ], and this
formulation of the problem does not give us an algorithm immediately. However, there
is an important subclass ofgraphs (called perfect graphs) for which the minimum clique
cover problem can be solved in polynomial time 20]. We will show in a later section
that the visibility graph for a class 3 polygon is perfect. Independently, Reckhow 25
has shown that a subgraph of the visibility graph, called the source graph, is perfect. See
the Appendix for a definition of source graphs.

3. Vertically convex polygons and permutation graphs. In this section, we show
that the visibility graph G of a vertically convex polygon P is a permutation graph 12 ],
20 ]. A vertically convex polygon is a class 2 polygon with N and S dents only.

A comparability graph is one that can be obtained from a partially ordered set Q
by taking the elements of Q as its vertices and joining two elements if and only if they
are comparable. In other words, it is the undirected version of the transitive closure of
Q. We now define permutation graphs. Although permutation graphs were originally
defined differently, we provide an equivalent definition 20 that is suitable for this paper.

DEFINITION 4. A graph G is a permutation graph if both G and its complement are
comparability graphs.
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Comparability graphs are known to be in the class of graphs called perfect graphs
20 ]. It follows that permutation graphs are also perfect graphs.

For every region u’ of the vertically convex polygon P, we pick an arbitrary repre-
sentative point u and argue about this set ofpoints. Recall that, by Observation 7, regions
u’ and v’ see each other if and only if u v.

The following lemma shows that visibility in a vertically convex polygon is in some
sense a transitive property.

LEMMA 2. Let points u, v, and w be in P, a vertically convex polygon. Let u v,
such that the staircase s( u, v)from u to v is horizontal, northwest, or northeast, and let
v w, such that the staircase s(v, w)from v to w is horizontal, northwest, or northeast.
Then, u w.

Proof. We consider two cases.
Case 1. If both staircases are horizontal, clearly u w.
Case 2. Let at most one staircase be horizontal. Without loss of generality, let

s(u, v) go to the east or northeast from u. Ifs(v, w) goes either north or northeast from
v, then u w. Assume to the contrary that u w. Thus, s(v, w) is west or northwest
from v. By Observation 6, a W dent separates u and w. Since P is vertically convex, we
obtain a contradiction.

Given the visibility graph G, we construct a directed graph Ha from G as follows.
The undirected version of Ha is G. Edge (u’, v’) of G is oriented from u’ to v’ in Ha
(denoted by u’ -- v’) if the representative point u is to the south of the representative
point v. Iftwo points u and v see each other along a horizontal line, then the edge between
them is oriented from west to east. Note that Ha is constructed from G with respect to
a particular set of representative points. By our construction of orienting the edges of G,
Ha is acyclic. To prove that Ha is the transitive closure ofsome partial order, all we need

Wto show is that if edges u -- v’ and v’ -- w’ exist in Ha, then the edge (u’, ) exists in
G. But exactly this is shown in Lemma 2: if edges u’ -- v’ and v’ -- w’ exist in Ha, then

Wu, v, and w satisfy the hypothesis of Lemma 2, and hence edge (u’, ) does exist in G.
We have thus shown the following lemma. We note that independently, Culberson and
Reckhow 7 have shown that the source graph of a vertically convex polygon is a com-
parability graph.

LEMMA 3. The visibility graph G ofa vertically convex polygon P is a comparabil-
ity graph.

Let us now make the following observation.
OBSERVATION 8. Let P be vertically convex. Let u, v, and w be points in P such

that u is to the west ofv, and v is to the west ofw. Furthermore, let u w. Then, either

Proof. Since u w, there is a staircase between u and w that goes either northeast
or southeast from u. Without loss of generality, let it go northeast from u. This staircase
has a point, p say, either vertically above or below v, as v is to the west of w and to the
east of u. Since P is vertically convex, the line segment vp is completely contained in P.
Let p be vertically above v. v has a northeast staircase to w by following the vertical
segment from v to p and thence to w. Similarly, if p is vertically below v, then v has a
southwest staircase to u.

We now show that the complement graph G is also a comparability graph. As
before, we construct a directed graph HGc from Gc, such that the undirected version of
HGc is Gc. The orientation of an edge (u’, ) is from to if representative point u is
to the west of representative point v. (Note that since P is vertically convex, zero area
regions can only be horizontal line segments. Hence, we can always pick our set of
representative points so that no two such points fall on the same vertical line.) As before,
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Hc is acyclic. Again, as before, we need to show that if u’ -- v’ and v’ -- w’ are oriented
edges in Hat, then (u’, w’) is in G. If (u’, w’) is not present, then u w. In this case,
u, v, and w satisfy the hypothesis of Observation 8. Thus, we have that either v u or
v w, a contradiction.

The preceding arguments have established the following lemma.
LEMMA 4. Gc, the complement ofthe visibility graph G, is a comparability graph.
Now, Lemmas 3 and 4 together imply Theorem 1.
THEOREM 1. The visibility graph G of a vertically convex polygon is a permuta-

tion graph.

4. Polygons with three dent orientations. In this section, we state our main results
concerning orthogonal polygons with three dent orientations (class 3 polygons). We first
assert that the visibility graph of a class 3 polygon is perfect. In a perfect graph G, the
size of a minimum clique cover of every induced subgraph G’ is equal to the size of a
maximum independent set of G’. We then state the duality relationship for class 3 poly-
gons. We first need the following definition.

DEFINITION 5. A graph G is weakly triangulated if neither G nor Gc, the complement
of G, contain induced cycles of length greater than four.

The following theorem, proved by Hayward 15], will be useful.
THEOREM 2 (Hayward). Weakly triangulated graphs are perfect.
We now state our main theorem, the proof of which is contained in the next three

sections.
THEOREM 3. The visibility graph ofa class 3 orthogonal polygon P is weakly trian-

gulated.
Theorem 2, together with Hayward’s Theorem, provides us with the following duality

relationship.
COROLLARY (The Duality Relationship). The minimum number oforthogonally

convex polygons needed to cover an orthogonal polygon P with at most three dent orien-
tations is equal to the maximum number ofpoints ofP, no two ofwhich can be contained
together in an orthogonally convex covering polygon.

Since the source graph (see Appendix) is an induced subgraph ofthe visibility graph,
by Theorem 2, it must be perfect. Moreover, the induced subgraphs of a weakly trian-
gulated graph are also weakly triangulated. By Lemmas and 1’ (see the Appendix), we
have that a minimum clique cover ofthe source graph corresponds to a minimum cover
of P by maximal OCPs. Hayward, Hoang, and Maffray [16] have devised an O(v 5)
algorithm to compute the minimum clique cover of a weakly triangulated graph, where
v denotes the number of vertices of the graph. This has recently been improved to an
O(v4) algorithm 23 ]. This is a significant improvement over the ellipsoid method gen-
erally used for perfect graphs. The main advantage ofworking with source graphs is that,
in a class 3 polygon, the number of sources must be O(n) (see the Appendix). It is not
very hard to see that a minimal cover by OCPs can be efficiently constructed given the
minimum clique cover of Gs. Thus, we have an O(n4) algorithm for the convex cover
problem for class 3 polygons. We note that, independently, Reckhow [25] has an O(n2)
algorithm for this problem.

5. The crossing lemma. In this section we prove a technical lemma, called the
Crossing Lemma, which will be required in the proof of Theorem 3. Two staircase paths
are said to cross ifthey meet at some point. We will only be considering pairs of staircase
paths which cross and have distinct endpoints. Observations 9 and 10 are concerned with
pairs ofcrossing staircase paths that are ofthe same type and ofdifferent types, respectively.
These observations are valid in all their reflection and rotation symmetric versions.
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OBSERVATION 9. Let points Ul, vl P be such that ul v and u lies southwest
ofv. Let points u2, v2 P be such that u2 v2 and u2 lies southwest ofv2. Ifstaircase
paths s( u, v) and s( u2, v2) cross, then u2 v and u v2. Moreover, u and u2 lie
southwest ofv2 and v, respectively.

Proof. s(u, v) travels southwest from v to u. s(u2, v2) travels southwest from
v2 to u2 and meets s(ul, vl at some point, say p. Thus, we can take s(u, v) from v
to p and then take s(u2, v2) from p to u2, establishing a southwest staircase from v to

U2o Similarly, there is a southwest staircase from v2 to ul. V1

OBSERVATION 10. Let points u, v P be such that u v and u lies southwest
ofv. Let points u2, v2 P be such that u2 v2 and u2 lies southeast ofv2. Ifs( ul, v)
and s( ua, v) cross and u u2, then an S dent separates u from u2.

Proof. As before, let s(u, v) meet s(u2, v2) at p. Now, p sees u to its southwest
and u to its southeast. By Observation 6, there is an S dent separating ul and u2. [3

Let G’(V’, E’) be a subgraph of the visibility graph G(V, E). For every vertex v’
V’, fix a point (called v) that lies in the region ofP corresponding to v’. For every edge
(u’, v’) E’, fix a staircase path s(u, v) from point u to point v. We call this collection
of points and staircase paths an instantiation of the subgraph G’. Two staircase paths in
an instantiation are said to be nonadjacent if the corresponding edges in G’ are nonad-
jacent.

Let C be a k-cycle, k >_- 4, in the graph G such that V(C) { v, v’, v_ 1}
and (v}, v} + ) E(C), for each (all indices here and in the rest of the paper are mod-
ulo k).

LEMMA 5 (Crossing Lemma). IfC is an induced cycle ofG i.e., C has no chords)
then some pair ofnonadjacent staircase paths must cross in some instantiation ofC (see
Fig. 6). We can actuallyprove the stronger result that somepair ofnonadjacent staircase
paths must cross in every instantiation ofC. However, the weaker result suffices for our
purposes.)

Proof. Consider C’, an instantiation of C. Assume to the contrary that none of the
nonadjacent pairs of staircase paths cross in C’. Let v0 be a northernmost point of C’.

I/0

R1

D

FIG. 6. Proofofthe Crossing Lemma.
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Let q be the last point that s(v0, I)1 and S(Vo, ve-1) have in common, when moving
away from Vo. Let s(q, Vl and s(q, ve be the appropriate portions ofthe two staircase
paths. Since re- i I)1, a dent D separates Vl and re- . Without loss ofgenerality, assume
that v e BI(D) and ve- e Br(D). Since q sees both Vl and re-, Observation 4 implies
that q A(D), and that s(q, Vl) and s(q, ve-1) intersect D. Let the intersection points
be r and rk-, respectively. Let R denote the polygon bounded by the line segment
rrk-, s(q, rl), and s(q, re-), where the staircases s(q, r) and s(q, rk-) are defined
in the natural way. Thus, R is an OCP.

To simplify the presentation of the proof, we observe that if points q and Vo are not
the same, then there is an instantiation of Cwhere S(Vo, Vl and S(Vo, re- ) are the same
between Vo and q. This observation is easy to prove and is left to the reader. Let S(Vo, q)
denote this common staircase. In the rest ofthis proof, we assume that C’ is an instantiation
with the above property.

We now assert that some point, say vi { v2, v3, Vk-2 } must lie in R. Since
R is an OCP, this would imply that the vertical line segment going north from vi to
either s(q, r l) or s(q, rk-1) exists in P, thus providing a staircase from vi to Vo. This
would in turn imply that vi Vo, a contradiction. The rest of this proof is devoted to
proving the above assertion. We will now assume to the contrary that no point ofthe set
{ v2, v3, Vk- } is in R.

Since Vo is a northernmost point, we can cut P by a horizontal line l passing through
Vo, and discard the portion of P lying to the north of l, to give us P’. Let P" P’ R.
P" can in turn be cut by S(Vo, q) to give us two disjoint sets RI and Re-. R1 is the set
that contains v, and Re- is the set that contains ve- . It is easy to prove that no point
of R1 is in B(D) and no point ofRe- is in BI(D).

We claim that no staircase corresponding to an edge (V’l, v),...,
v,_) can intersect S(Vo, r 1), the portion of S(Vo, v) between Vo and r l. To see
this, note that Vo is the northernmost point in C’, and S(Vo, q) is shared by both
S(Vo, v) and S(Vo, ve-), and by assumption, no two nonadjacent staircases cross.
The only staircase that can cross s(q, r) is S(Vl, v2). However, s(v, v2) cannot
cross s(q, rk-), as s(q, rk-1) is part of S(Vo, Vk-) and the corresponding edges are
nonadjacent when k >_- 4.

We further assert that no staircase corresponding to an ed (v’, v),...,
(v_ 2, v_ ) can join a point in Rl and a point in Re- by crossing Dr. Assume to the
contrary that such a staircase exists. Such a staircase cannot join a point in R that is in
A(D) to a point in Re-l, since Rk- does not contain a point in Bt(D). Thus, it joins a
point in R that is in Bt(D) to a point in Re- that is in A (D). Hence, this point cannot
be Vk- and the staircase is not S(Vk_ _, Ve--). Moreover, this staircase is now forced to
cross s(q, rk-). Since the only staircase that can cross s(q, rk-1) is S(Vk_ 2, Vk-), we
obtain a contradiction.

By the above arguments, we have shown every point of { v2, v3, ve-_ } to be
in R. We have further shown that S(Vk-, Ve-) cannot leave Rl. But, ve- Re-,
and this is a contradiction. Therefore, there must be a point vi { v2, v3, re-2 } in
R, and we have proved the lemma.

OBSERVATION 11. Suppose C is an induced k-cycle ofG, where k >= 5. Let C’ be
an instantiation ofC with two nonadjacent staircases that cross. Any such pair ofcrossing
staircases in C’, s(vi, vi /l) and s(v, v/1) say, must be ofdifferent types.

Proof. Assume to the contrary that s(vi, vi / ) and s(vj, vj /l) cross and are of the
same type, say type I. Assume, without loss ofgenerality, that v and v lie to the southeast
of vi / and v+ l, respectively. By Observation 9, we have that vi vj / and v vg / 1.
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Thus, (v, vj+l ) E(C) and (vj., V+l ) E(C). Since k >= 5, one of these edges will
cause a chord in C and give us a contradiction. [3

6. Induced cycles in the visibility graph. In this section we prove the first part of
Theorem 3. We show that for a class 3 polygon P the visibility graph G has no induced
k-cycles, for k > 4.

LEMMA 6. Suppose P is a class 3 polygon (with W, S, and E dent orientations).
Then, the visibility graph, G, cannot have induced k-cycles, where k >-_ 5.

Proof. Assume to the contrary that C is an induced k-cycle in G. Let V(C)
{ v, v’, v_ } denote the set of vertices of C in the cyclic order. By the Crossing
Lemma, there exists some instantiation C’ of C such that some pair of nonadjacent
staircase paths, s(vi, vi/ l) and s(vj, vj+ 1), cross in C’. Let us say that they cross at point
q. By Observation 11, the two staircase paths must be ofdifferent types. Assume, without
loss ofgenerality, that s(vi, vi + is oftype I and s(v/, v + is oftype II. We may further
assume, again without loss of generality, that vi lies to the southeast of vi + 1. We do not
specify the relative positions of v and v.+l fight now, but instead say that Va lies to the
southwest of vb, where the sets { a, b } and { j, j + } are the same. Since P has only
three dent orientations, W, S, and E, we assert that vi+ vb. If this were not the case,
then, by Observation 10, there would be an N dent separating the two points, giving us
a contradiction. Since the indices of the vertices increase in the cyclic order, and C has
no chords, it must be the case that b j + 2 and a j + + 3. To prevent
chords, we have that vi vj, vi v/+ and vi +1 v+ 1. By Observation 10, there must
be an E dent, DE, separating vi from v/. Similarly, there must be an S dent Ds, separating
vi from v+ l, and a W dent Dw, separating vi + from vj + (see Fig. 7).

By Observation 4, q A(Dw) and q A(DF) ogether imply that A(Dw) N
A(DF) . Therefore, must lie to the east of Dw. We now know that v+l
Br(Dw) and viBt(D) (see Fig. 8). Moreover, it is clear that viA(Dw) and
l)j+ ( A(De).

Consider the set of staircase paths that remains after the removal of s(vi + 1, vs) from
the instantiation of C. Since vs+ B(Dw) and viA(Dw), some staircase in the sequence

Dw DE

D$

FIG. 7. ProofofLemma 6.
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Dw

v./+l
0

DE

(C)

FIG. 8. ProofofLemma 6.

of paths from l)j+ to )i, S(1)k, Vk+l)say, must be the first staircase path to intersect with
Dw. We will assume that k + # i; otherwise, k # j + (since k >- 5 and we can argue
symmetrically about De. Let the intersection point of S(Vk, Vk 41) and v be called p
(see Fig. 8). Note that vk Br(Dw) and Vk +1 A Dw).

Since vi / sees vi to its southeast, and p is to the south of the point of intersection
ofDw and s(vi, vi / 1), there is a northwest staircase path from p to vi / 1. If the staircase
path s( vk, vk / is oftype I (that is, southeast from vk to Vk / ), then vk / has a northwest
staircase path from vk / to p, and thence to vi+l. Thus, vk/ vi/ 1. Since k + #
and k + # j, we have a chord from uk / to vi / 1, a contradiction. If, on the other hand,
S(Vk, Vk+l) is of type II (that is, northeast from vk to vk+), then again Vk+l Vi/l;

otherwise, p sees vi / to its northwest and vk + to its northeast, implying that there must
be an N dent separating vk / from vi / 1, by Observation 6. Since N dents do not occur
in P we again have a chord from )k + to Vi + 1, a contradiction. []

7. Induced cycles in the complement of the visibility graph. In this section, we
establish the other part of the proof of Theorem 3, namely, that the complement graph
Gc of the visibility graph cannot have any induced cycles of length five or more. The
following definitions will prove useful in establishing this result. Let C be a k-cycle in
the graph Gc, where k >- 5. Let V(C) { v, v’, v_ } denote the vertices of C in
a cyclic order. As usual, for each region v V(C), we pick an arbitrary representative
point (called vi), and work with this set of points. For each ve V(C) we have
{v-l, vi+l’ } N(vi; Gc), the set of vertices adjacent to v’i in Gc. Recall that vie
N(vi, Gc) if and only if vi vj. Hence, C is an induced k-cycle if and only if for each
v it is the case that N(v, Gc) N V(C) { v_ 1, v / }.

From Observation 4, we have that if vi v then there must be a dent that separates
the two vertices. Let Di denote the dent that separates the points v and vi + (recall that
all indices are modulo k). Thus, the k-cycle C determines a sequence of k dents corre-
sponding to the k cycle edges in C. We first claim that if any two of these k dents are of
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the same orientation, then there exists a chord for the cycle C, unless these two dents
correspond to neighboring edges. Assume, without loss of generality, that the three dent
orientations in P are W, S, and E.

LEMMA 7. Suppose the dents Di and Dj are of the same orientation, where edges
( v, v+ ) and ( v’j., vi+ ) are nonadjacent; then C cannot be an induced cycle.

Proof. Assume, without loss of generality, that o(Oi) o(Oj) S_,and the dent
line Di lies on the same vertical level or to the north of the dent line Dj. Note that
Di and D could in fact be the same dent. We are assured that the edges (v/ l, vj /
and (v, vj> cannot be present in G since they would be chords for the cycle C. We are
further assured that at least one of ( v;, v)+ ) and ( v; +1, 1))) cannot be present in Gc as
k>=5.

Since k >= 5, there must be a vertex in V(C) that is adjacent to neither v nor
v/ in Gc, otherwise there would be chords in C. This would imply that there is a vertex
that is adjacent to both v and v+l in the visibility graph G. By Observation 5, we have
that both vi and vi / must lie to the south of the dent line Di. A similar argument also
shows that both v and v+5 must lie to the south of the dent line D, and thus, also to
the south of the dent line Di.

We now assert that vj A(Di). Suppose vj did lie in the zone A(Di). We know that
the edge (v, vj>, being absent in Gc, is present in G, and hence, vi-- v. We also know
that vi is in one of the B zones of Di. By Observation 5, vj. must be either on Di or in the
halfplane to the north of L(Di) and hence, in the halfplane to the north of L(D) also,
which is a contradiction. A similar argument shows that vj+l A (D;) since the edge
(I)+ 1, l)j’+ must be present in the visibility graph G, and v+l lies in the halfplane to
the south of L(Di).

Assume without loss of generality that vi BI(Di) and that vi/ Br(Di). It then
follows from the above argument that v Bl(Di) and v+l Br(Di), since there are
staircase paths from vi to vj. and from vi / to vj. +1. Recall that if there is a staircase path
between two points inside the polygon, then they cannot lie in different B zones of some
dent. Thus, I) z l)j+ and v /)i+1, implying that both of (v, V)+l> and (I)+1,
are edges of G, a contradiction.

We are now ready to complete the proof of Theorem 3.
LEMMA 8. IfG is the visibility graph ofa class 3 polygon P, then G cannot have

an induced cycle oflength five or more.

Proof. Assume to the contrary that C is an induced k-cycle in the graph Gc. It is
clear that k >= 6 since an induced 5-cycle in G would imply the existence of an induced
5-cycle in the visibility graph G. From Lemma 7, it follows that dents of the same
orientation cannot correspond to two nonadjacent edges of C. Thus, we cannot have an
induced k-cycle where k >= 7 since only three dent orientations are permitted in P. We
now complete the proof of the lemma by showing that, given Lemma 7, even induced
6-cycles are not possible.

Consider the case where k 6. From Lemma 7, it follows that we can renumber
the vertices of C to ensure that o(Do) o(D1 W, o(D2) 0(93) S, and 0(94)
o(Ds) E.

Since C is a 6-cycle in Gc, there must exist vertices in C that are adjacent (in G) to
all of v, v’, and v, e.g., v. Observation 5 then implies that the points v5 and Vo must
lie in the halfplane to the east of the L(Ds). Similarly, we can show that the points v0
and Vl must both lie in the halfplane to the west of L(Do). Thus, v0 is a point that is
both to the east of L(Ds) and to the west of L(Do). This can only happen if L(Do) lies
in the halfplane to the east of L(Ds). Now, since the point v3 has staircase paths to v0,

Vl, and vs, Observation 5 tells us that it must lie on D5 or to the west of L(D), and on
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o or to the east of L(Do). But every point in the halfplane to the west of L(Ds) is in
the halfplane to the west of L(D0) also. Therefore, v3 cannot see all three of v0, vl, and
vs. Hence, one of the edges (v, v), (v, v’ ), or (v, v) must be a chord for C. This
gives us the desired contradiction. U]

8. Orthogonal polygons with four dent orientations. In this section, we demonstrate
arbitrarily large induced odd cycles in the source graph of an orthogonal polygon with
four dent orientations. This would show that the source graph, and hence, the visibility
graph ofa class 4 polygon is not perfect 12 ], 20 ], and would also imply that the duality
relationship of Corollary does not hold for class 4 polygons.
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FIG. 9. P5 with induced 5-cycle.
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FIG. 10. P7 with induced 7-cycle.
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Consider the polygon Ps, shown in Fig. 9. There are exactly five sources, but the
source graph is a 5-cycle without chords, which is not perfect. Also note that P5 requires
three OCPs in any cover, but the size ofa maximum independent set in P5 is two. Hence,
the duality relationship fails to hold.

Note that BI(D,) c:. Bl(Dl ). If we now modify Bt(D2) to obtain the polygon P7,
shown in Fig. 10, we find that the source graph is a 7-cycle without chords. A similar
construction to P7 would give a polygon whose source graph is a 9-cycle with no chords,
and so on to obtain arbitrarily large induced odd cycles.

9. Further work. The main contribution of this paper has been the demonstration
of the intimate connection between minimum orthogonally convex polygon covers and
classes of perfect graphs, and deriving the duality relationship of 4. The main tool of
our analysis has been the visibility graph for regions inside an orthogonal polygon. We
have demonstrated certain interesting combinatorial properties of these kinds of graphs.
At present, most ofthe interesting special cases ofthe problem of coveting polygons with
simpler polygons that have polynomial time solutions give rise to visibility graphs that
are perfect 21 ], 25 ], 26 ], 28 ]. In the cases of coveting simple polygons with convex
or star polygons, the visibility graphs are not perfect, and the problems are both NP-hard

], 8 ]. Again, in the case of covering orthogonal polygons with a minimum number
of rectangles, the visibility graph is not perfect and this problem is also known to be NP-
hard 8 ]. It is our belief that a careful examination of the combinatorial structure of
different kinds of visibility graphs may lead to the solution of other open problems in
computational geometry.

(1) For the problem of coveting class 4 orthogonal polygons with a minimum
number of OCPs, the visibility graph is imperfect, as shown in 8. We conjecture that
this problem is also NP-hard.

(2) Is the visibility graph for the problem of coveting orthogonal polygons with a
minimum number of rectangular stars perfect? A rectangular star, or an r-star 7 is a
polygon that contains a point q, such that every other point p of the polygon can be
contained together with q in a rectangle (contained in the rectangular star).

Appendix. Implementation issues: the source graph. Let us define a region DAG
(directed acyclic graph) for a simple orthogonal polygon P as follows. This definition is
slightly different, though equivalent, to the region DAG ofReckhow and Culberson 24 ].
We find our viewpoint more convenient to deal with. For each dent D, let us say that
Bt(D and Br(D are both dominated byA(D), while Bt(D and Br(D) are incomparable.
For convenience, we also say that Z(D) dominates itself, where Z(D) is one of Bt(D),
Br(/9), orA (/9). We say that region u dominates region v ifevery term ofthe zone vector
of u dominates the corresponding term of the zone vector of v. In this case, we also say
that v is dominated by u. We say that u and v are incomparable if some term ofthe zone
vector of u is incomparable with the corresponding term ofthe zone vector of v. Otherwise,
we say that u and v are comparable. The region DAG is the underlying partial order of
the graph obtained by placing a vertex for each region and adding a directed edge from
vertex v to vertex u ifregion v is dominated by region u. Note that u and v are comparable
if and only if u v. Otherwise there is a dent D that separates u and v, implying that u
and v are incomparable.

A source is a region of zero in-degree in the region DAG (see Fig. ). Let us call
a dent line of a dent D as pure if is not shared by some other dent/9’, such that D
and D’ have opposite orientations. Let us further say that two regions u and v are neighbors
if there is a path from a point in u to a point in v that never leaves u t_J v. We now claim
that no source is bounded by more than one pure dent line of a given orientation. To
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FIG. 11. Identifying sources.

see this, we reason as follows. Two pure dent lines D1 and D2 of the same orientation, S
say, are parallel to each other, such that every point on D1 (respectively, on D2) or
neighboring D (respectively, neighboring D.) to its north is in A(D) (respectively, in
A (D2)). Without loss of generality, let D be to the south of D2. A region u ofP that is
bounded by both D and D2 has points that are in A(D), and in fact, includes points
on D1 (note that D is pure). It should be pointed out that p_,oints to the north of D
(respectively, O2) can belong to a source ifD (respectively, D2) is not pure. Let p u
be a point in u. Let v be a region that neighbors u across the common boundary D. Let
point q belong to region v. We now claim that u dominates v, and hence cannot be a
source. By our choice of u and v, v cannot dominate u. If u and v are incomparable,
then either some dent separates the two regions, or there exists some dent D such that
u
_
B(D) and v A (D). Both of these are impossible. To see this, note that u and v

are neighbors across D, and there is a path joining p and q that only intersects D.
Moreover, D1 is pure, implying that every dent D that has D1 as dent line is of S orien-
tation, and hence u A (D) and v

_
B(D). Therefore, u dominates v, and cannot be

a source.
In a class 3 polygon without N dents, every S dent line is pure. It now follows that

a source in a class 3 polygon can be bounded by at most one horizontal dent line. It is
thus clear that every source in class 2 and class 3 polygons is bounded by some part of
the polygon boundary. To count the number of sources of a class 3 polygon, we reason
as follows. Let the points where a dent line meets the boundary of P be called pseudo-
vertices. Since there are at most n dent lines, there are at most 4. n pseudovertices. There
are two kinds of sources in a class 3 polygon: those that are completely bounded by the
polygon boundary, and those that are partly bounded by the polygon boundary and
partly by dent lines. The first kind of source always includes a vertex of P. The second
kind of source includes the point where a dent line that is part of its boundary meets a
polygon edge that is also part of its boundary. In other words, it includes a pseudovertex.
The above argument shows that class 2 and class 3 polygons have only O(n) sources.
The following result from 24 shows the importance of sources.

LEMMA 1’ 24 ]. If[3 is a set ofmaximal orthogonally convex polygons that includes
every source ofP, then includes every region ofP.

Proof. Let M be a maximal OCP that includes a source u. Let v be a region such
that u is dominated by v. From the preceding definitions, we have that every term ofthe
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FIG. 12. The source graph.

zone vector of v dominates every term of the zone vector of u. Let p be an arbitrary
point in M. It follows from Observation that p sees every point in u. Thus, there is no
dent D such that p Bt(D) and u Br(D), or vice versa. From this and from the
domination of v over u, we can conclude that if u

___
Bt(D) for some dent D, then, v

___
A (D) U Bt(D) andp A(D) U Bt(D). A symmetric statement can be made about Br(D).
Also, if u

___
A (D), then v c_ A (D). This shows that there is no dent D that separates p

and v. Hence, every point in M sees every point in v. Therefore, v is contained in M, as
M is maximal.

To complete the proof of Lemma ’, we note that every region that is not a source
dominates some source. We can, therefore, conclude the hypothesis ofthe lemma, rq

We can now construct the source graph Gs(Vs, Es) as follows (see Fig. 12). The
vertex set Vs has a vertex corresponding to each source region of P. As before, we have
the edge ( u, v) in Es if and only if u sees v. Clearly, V

___
V and the source graph G is

a vertex induced subgraph of the visibility graph G.
Two sources u and v, such that u does not see v, cannot both be covered by an

orthogonally convex polygon. Thus, Lemmas and 1’ together imply that a minimum
clique cover ofGs corresponds exactly to a minimum cover ofPby maximal orthogonally
convex polygons. The advantage ofthis formulation is that, instead ofdealing with O( n2)
regions, we need deal with only O(n) sources for class 2 and class 3 polygons. Furthermore,
we can enumerate the sources ofa polygon in O(n2) time [24]. However, implementation
issues are not central to the thrust of this paper, and will not be described in any further
detail.

Let u and v be sources ofP. It is easy to see that we can check if u v by comparing
the corresponding terms of their zone vectors and looking for a separating dent. Thus,
in O(n 3) time, we can construct Gs for a class 3 polygon.
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RANDOM SEQUENTIAL ADSORPTION ON GRAPHS*

NICHOLAS PIPPENGERf

Abstract. This paper analyzes a process whereby the vertices ofa graph are considered in a random sequence,
and each considered vertex is "occupied" unless it or an adjacent vertex has previously been occupied. The
process continues until no more vertices can be occupied, at which point the "jamming limit" has been reached.
The case in which the graph is regular (so that every vertex has degree d >= 2) and has "few short cycles" is
treated. In particular, the results apply to infinite regular trees, to finite graphs obtained from them by forming
quotient graphs, and to random regular graphs. It is shown that the probability that a vertex is occupied at the
jamming limit tends to 1/(d- ):/a-:z))/2 as the length of the shortest cycle through it tends to . Also
treated are graphs that have short cycles but for which every edge is in at most one cycle; in this way approximations
are obtained to the occupancy probabilities for two-dimensional triangular, square and hexagonal lattices. Finally,
a similar problem is treated in which edges rather than vertices are occupied, and the occupation of an edge
prevents the later occupation of edges incident with it. In each case the solution gives the dynamic evolution
of the occupancy probabilities, as well as their values at the jamming limit.

Key words, packing, monomers, dimers

AMS(MOS) subject classifications. 60K35, 82A31, 82A68

1. Introduction. We consider the following random process on a graph. A Poisson
stream of "molecules" arrives at each vertex ofthe graph, the streams arriving at different
vertices being independent. When a molecule arrives at a vertex, it "occupies" the vertex,
unless that vertex or a vertex adjacent to it has previously been occupied. The process
continues until no more vertices can be occupied; this situation is called the "jamming
limit." We are interested in determining the density of occupied vertices at the jamming
limit. More generally, we are interested in the dynamic evolution of the process as time
varies from zero (when no vertices are occupied) to c (when the jamming limit is
reached). We may take the unit of time to be the mean interarrival time of the Poisson
arrival process. Since the various connected components of a graph do not interact in
any way during the process, we may assume that the graph is connected.

This process has been studied by chemists and physicists under the name "random
sequential adsorption." It is relevant in situations where the reverse process of"desorption"
or "evaporation" occurs so slowly that the relaxation time of the system toward equilib-
rium is long compared with the time of observation. The graphs of interest to chemists
and physicists are primarily those modeling polymers and crystal surfaces.

The only graphs for which we know of an exact solution to this problem are those
that are essentially "one-dimensional." The simplest of these are those in which each
vertex has degree ("coordination number") at most two, in which case the graph must
be a path (finite or infinite) or a cycle (finite or infinite). Flory [F] showed that the
expected fraction of occupied vertices in a long path or cycle tends to e-2)/2 as the
length tends to c. Further results on one-dimensional cases have been presented by
Page Pa], Downton D], McQuistan and Lichtman McQL], and McQuistan McQ].

In this paper we present a method for solving this problem on regular graphs without
many short cycles. Among these are the infinite regular trees ("Bethe lattices"), finite
regular graphs obtained from them by forming quotient graphs ("Bethe lattices with
periodic boundary conditions"), and random regular graphs (for which the number
of cycles of any given length remains bounded as the number of vertices tends to ).
We show that the probability that a vertex is occupied at the jamming limit tends to
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(1- 1/(d- 1)2/(d-2))/2 as the length of the shortest cycle through it tends to ,
where d> 2 is the degree. (As d- 2 we have 1/(d-l)2/(d-2) -- e-2, so, in a
sense, this expression is correct for d 2 as well.)

We may also consider a process whereby "dimers" arrive at the edges of a
graph, and the occupation of an edge prevents the later occupation of an edge incident
(sharing a vertex) with it. (For the case d 2, the two processes are equivalent, but
for d > 2 they differ.) The method of this paper is applicable to this process as well,
and shows that the probability that an edge is occupied at the jamming limit tends to
(1 1/(d- )d/(d-2))/d as the length of the shortest cycle through it tends to .
(Again the correct value for d 2 emerges as d -- 2.)

It would of course be of great interest to obtain corresponding results for the tri-
angular, square, and hexagonal ("honeycomb") lattices in two dimensions. While no
exact solutions have been reported, Monte Carlo estimates have been made. Widom
[W ], W2] gives 0.38 _+ 0.01 for the occupancy of the hexagonal lattice; Meakin et al.
Me give 0.36413 _+ 0.00001 for the square lattice and 0.23136 +_ 0.00001 for the
triangular lattice.

In the final section of this paper, we compare these Monte Carlo estimates with
exact solutions for lattices that are similar to the two-dimensional ones as regards their
degree and their girth (that is, the length of their shortest cycle), yet are sufficiently tree-
like to allow the methods of this paper to be applied. The simplest such tree-like lattices
are of course the infinite regular trees themselves. For degrees 3, 4, and 6, our results
give -38 0.375, 0.3333.-- and (1 (1/2)/2)/2 0.27369..., respectively. While
the first of these falls within the error bars of the available Monte Carlo estimate, the
other two are disappointing. We can improve these approximations by taking account
of the shortest cycles in the two-dimensional lattices, ignoring longer cycles. When this
is done, the result for degree 3 and girth 6 is 0.37649... for degree 4 and girth 4,
0.35071-.- and for degree 6 and girth 3, 0.2222.... The last two values match the
corresponding Monte Carlo estimates much more closely than those obtained by ignoring
all cycles.

2. Random sequential adsorption on graphs. Let G (V, E) be an undirected graph
with vertices Vand edges E. Associate with each vertex v e Va stationary Poisson stream
.4 (v) of independent arrivals, with the streams corresponding to different vertices being
independent. We shall assume that each arrival process starts at time zero and that the
mean interarrival time for each stream is 1. For the process we are considering, only the
first arrival in each stream is important, since only the first molecule to arrive at a vertex
has any chance to occupy that vertex. Thus we may turn our attention from A (v) to the
first-arrival time t(v) for the vertex v. Each first-arrival time has an exponential distribution
with density e-t on the interval 0, ], with the first-arrival times for different vertices
being independent.

If v is a vertex in a finite graph G with n of vertices, then there are just n! possible
orders of first arrivals. For each of these, v is either occupied or "vacant" (that is, not
occupied) in the jamming limit; thus, the probability that v is occupied in the jamming
limit is a rational number with denominator dividing n!. If G has an automorphism
group that acts transitively on the vertices, then this probability is the same for all vertices,
and we may speak without ambiguity of the "occupancy probability in the jam-
ming limit."

If v is a vertex in an infinite graph G, more must be said. Suppose that all vertices
in G have degree at most d. Let us say that a sequence v0, vl, "’, vt is a "decreasing
path" of length l from v0 to vt if/)m is adjacent to/)m -1 and t(/)m) < t(/)m -1) for =<
m -< l. Let Dv) denote the event "there exists a decreasing path of length k from v."
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LEMMA 2. I.

Pr[D(O>]<=d(d l)k- /(k+ I)!.

Proof. There are at most d(d- )k- simple paths of length k from v, and the
probability that such a path is decreasing is / (k + (since each ofthe (k + possible
orders of arrival is equally likely, and exactly one of them is decreasing). [3

Let Ekv) denote the event "there exists a decreasing path of length k from some
vertex that is at distance at most k from v."

LEMMA 2.2.

Pr [EV)] <=d2(d

Proof. There are at most

+d+d(d- 1)+... +d(d- 1)g-=<(k+ 1)d(d- 1)-
vertices that are at distance ofat most k from v, and for each such vertex w, the probability
that there is a decreasing path of length k from w is as given by Lemma 2.1.

Suppose that t(v) is the first-arrival time for v. Then v will be occupied at t(v)
unless some vertex v adjacent to v has arrival time t(v) < t(v). In the latter case, v
will be occupied at t(v) unless some vertex v2 adjacent to v has arrival time t(v2) <
t(Vl). Continuing in this way, we see that whether (and if so, when) the vertex v is
occupied depends only on the first-arrival times of vertices on decreasing paths from v.
In particular, the occupancy of v is well defined unless there is an infinite decreasing path
from v, and the occupancies of all vertices are well defined unless there is an infinite
decreasing path from some vertex in G. If there is an infinite decreasing path from some
vertex in G, then infinitely many of the events { E(kV)}O_k<o Occur. By Lemma 2.2, the
expected number of such events that occur is, Pr[E(kO)]<=dZe(a-)/(d 1) 2.

0_k<c

By the Borel-Cantelli Lemma, with probability one, only finitely many of these events
occur. Thus, with probability one, the occupancy of every vertex in G is well defined.

Let G(k) (the "ball of radius k with center v") denote the subgraph of G induced by
the set of vertices at distance of at most k from v. Let 0G(k) (the "sphere of radius k with
center v") denote the set of vertices in G(k) that are adjacent in G to some vertex not in
G(k). A vertex in 0G(k) is at distance at most k from v, since it is in G(k). If a vertex in
OG(k were at distance at most k from v, then the vertices adjacent to it would be at

(v)distance at most (k + k from v, and thus would also be in G(k). Thus, OGk
comprises just those vertices at distance exactly k from v in G.

Let [0, o] be some fixed time. Let M() denote the probability that the vertex
v is occupied at time in G, and let M(k) denote the probability that the same vertex is
occupied at the same time in k

LEMMA 2.3.

M(V)-M,)I <=d(d-1)-/k!.

Proof. The occupancy of v in G can differ fromthe occupancy of v in Gk) only if
there is a decreasing path from v to some vertex in OGkv). If there is such a path, its
length must be at least k, and thus its initial segment oflength k establishes the occurrence
of Dtk). Since the occupancies of v in G and Gkv) can differ only if Dk) occurs, Lemma
2.1 completes the proof.

In the case ofan infinite graph G, Lemma 2.3 shows that the occupancy probability
of a vertex is approximated by the occupancy probability of that vertex in a sufficiently
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large but finite neighborhood of the vertex. In particular, it shows that occupancy prob-
abilities in computable graphs (that is, graphs for which the relation of adjacency is
effectively computable) are computable real numbers (in the sense that approximations
of prescribed accuracy are effectively computable). Lemma 2.3 is significant even for
finite graphs; it shows that long-range correlations are weak, and that graphs that are
locally similar have similar occupancy probabilities.

3. Regular graphs with few short cycles. A regular graph without cycles is an infinite
regular tree, or "Bethe lattice." By imposing "periodic boundary conditions" on such a
lattice, a finite regular graph with large girth is obtained (see Margulis [Ma] and Imrich
[I ]; the girth grows logarithmically with the number of vertices). In a regular graph with
degree d and girth g, balls of radius less than g2 are trees, in which all vertices are either
"internal" vertices with degree d or are "leaves" with degree one. We shall determine
the occupancy probability for a vertex that is far from the leaves of such a tree; this result
will apply to the vertices of regular graphs without short cycles by Lemma 2.3.

A random regular graph with degree d and n vertices (that is, a graph chosen at
random with equal probabilities from the set of all such graphs) will probably have some
short cycles. A simple calculation shows, however, that the expected number of cycles
of length at most k is bounded by a constant depending on k and d, but independent of
n. In a large random regular graph, then, most vertices will not lie on any short cycles,
and the results of this section will apply to them by Lemma 2.3. Thus, in a random
regular graph, the expected fraction of occupied vertices will be the same as in a regular
graph without short cycles, although there may be a small number ofexceptional vertices
with occupancy probabilities much higher or lower than this average.

Let d >= 2 be a natural number. We shall begin by determining the occupancy prob-
abilities, as a function of time, for certain vertices in certain trees. Let A0 be a tree
containing a single vertex, called its "root." For k >= 1, ifAk- has been defined, let Ak
be the tree obtained from a new vertex, called its "root," together with d disjoint
copies ofAg_ 1, where the root ofA is adjacent to the roots of the copies ofA_ 1.

Let Q(t) denote the probability that the root ofAk is vacant at time t. Clearly, we
have Q0(t) e-t. The key step of our derivation is the following observation:

(3.1) Q(t) 1- Q_l(S)a-e-Sds,

for k >= 1. To show (3.1), it suffices to show that the integrand is the rate at which the
root is occupied at time s. The rate at which first arrivals occur is e-s. This must be
multiplied by the probability that the d- vertices adjacent to the root are vacant at
time s, which is just Q_ l(s)a- (The vacancies of the d- vertices adjacent to the
root are not independent, but if the first arrival at the root occurs at time s, then the
root is vacant throughout the interval [0, s), and the vacancies of the d- vertices
adjacent to the root, conditioned on this event, are independent.)

To determine the asymptotics of Q(t) as k -- oe, let us consider the fixed point
of the transformation Qk_ - Q, that is, the solution Q of the integral equation

(3.2) Q(t) Q(s)a- e-S ds.

Differentiation of (3.2) with respect to yields the differential equation

(3.3) Q’(t)=-O(t)a-e-t,

together with the initial condition Q(0) 1.
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The only difficulty in (3.3) comes from the factor e-t, which is the density of first
arrivals. This difficulty can be removed by the substitution -In r), r e-t,
which "uniformizes" the distribution of r over the interval [0, ]. Setting

P(r)=Q(-ln(1-r))

for 0 -< r < 1, we have

(3.4) P’(r)=-P(r)-,
together with the initial condition P(O) 1.

Since (3.4) does not involve r explicitly, it can be solved by quadratures:

P() dx
7 xd_

-ln P(z), ifd 2,

-(1 1/P()a-)/(d-2), ifd> 2,

where the lower limit of integration is the initial condition P(0) 1. Thus,

e ifd= 2,
(3.5) P(r)=

1/((d-2)r+l) l/(a-2), ifd>2.

This is the desired solution of the transformed version,

(3.6) P(r)= p(tr)a-1 dtr,

of(3.2).
To apply this result, let us now define

P,(r)=Ok(-ln (1-r)),

for k >- 0. Clearly, P0(r) r. From (3.1) it follows that

(3.7) Pk(r) P_ l(tr)d- dtr,

for k >= 1. We shall show that P(r) -- P(r) uniformly in r as k -* oo.
To this end, let A(r) P(r) P(r). Since 0 -< P0(r), P(r) =< 1, we have

A0(r)l =< 1. From (3.6) and (3.7) it follows that

Ak(’/’) P(ff)d-l--Pk_l(tr)d-ldo"

Ak_ (tr)(P(tr)a-2 + +P_l(a)a-2),

for k >= 1. Since 0 <- P(r), P_ l(r) =< 1, we have

IAk(r)l =<(d- 1) [mk_ l(tY)[ da.

It follows by induction on k that

(3.8) IAk()l <-(d- 1)krk/k!.
Thus Pk(r) -- P(r) uniformly in r as k --* oo.
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For k >= 1, let A be the tree obtained from a new vertex, called its "root," together
with d disjoint copies ofAk 1, where the root of A is adjacent to the roots ofthe copies
ofAk_ 1. Let Q(t) denote the probability that the root of A?, is vacant at time t. By an
argument analogous to that used to establish (3.1) we have

Setting

we obtain

(3.9)

Q?, Qg_ l(s)de-Sds.

P(r) Q?, (-ln (1 r)),

P?, (r) 1- ek_l(a)dda.

Define

(3.10) P* (-r) 1- P(a)adr.

Then we have the following.
LEMMA 3.1.

+ e-2")/2,
P*(r)=

(1 + 1/((d-2)-r+ 1)2/(d-2))/2,

Proof. From (3.10) and (3.4) we have

P*(z) 1- P(a)dda

+ P( o’)P’(o’) do"

P(r)

=1+ xdx
dP(0)

=1+
e(-r)2- P(0) 2

ifd= 2,

ifd> 2.

The lemma follows by substitution of (3.5).
LEMMA 3.2.

P(z)-P*(z)I <=d(d- 1)-’/k!.

Proof. This follows by an argument analogous to that used to establish (3.8).
These lemmas give us the limiting value of the vacancy probability for a vertex far

from the leaves of a large regular tree. The analysis in this section is summarized by the
following theorem.

THEOREM 3.3. Let v be a vertex in a regular graph G ofdegree d >= 2, and suppose
that there is no cycle oflength at most 2k + through v. Then

IQ()(t)-Q*(t)l <=2d(d-1)c- l/k!,
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where

+ e-2(1 -e-t))/2, ifd= 2,
Q*(t)=

(l+l/((d-2)(1-e-t)+l)Z/a-2))/2, ifd>2.

Proof. By the hypothesis on v in G, there is an isomorphism between Gv) and
A? that maps v to the root of A?. Thus QV)(t) Q?,(t). The theorem then follows
from Lemmas 2.3, 3.1, and 3.2. U3

We conclude this section with the remark that a similar analysis applies to the
process whereby "dimers" arrive at the edges of a graph, and the occupation of an edge
prevents the later occupation of an edge incident with it. In this case, the occupancy
probability in the jamming limit is 1/(d )a/a-2))/d.

4. Regular graphs with nonoverlapping short cycles. We shall now consider some
infinite regular graphs with many short cycles. If all simple cycles have a common length
g, are uniformly distributed (in the sense that the same number c of simple cycles pass
through each vertex), and are nonoverlapping (in the sense that at most one simple cycle
passes through each edge), then the methods of the preceding section can be adapted to
determine the occupancy probability. (The differential equations that arise in this way
will in general not be solvable in closed form, but can easily be integrated numerically.)
By varying the degree d, the girth g, and the parameter c, a variety of exactly solvable
lattices can be obtained. Our main interest in these lattices is as "approximations" (in
some sense that we shall not make precise) to the two-dimensional triangular, square,
and hexagonal lattices. The simplest and crudest such approximations are the infinite
regular trees of degree 6, 4, and 3. The result of the preceding section gives occupancy
probabilities in the jamming limit of (1 (1/2)/2)/2 0.27639... ] 0.33333...
and 0.375, respectively.

Consider the infinite graph obtained by joining triangles so that three triangles meet
at every vertex and there are no other simple cycles. This lattice, which corresponds to
the choice d 6, g 3, and c 3, may be regarded as the Cayley graph of a free product
ofthree copies ofthe integers modulo 3; it has the same degree and girth as the triangular
lattice, but differs in that every vertex is in three triangles rather than six, and every edge
is in one rather than two. The lattice is sufficiently tree-like so that the methods of the
preceding section can be adapted to determine the occupancy probability in the jamming
limit. The differential equation analogous to (3.4) is

P’(z) e(-r) 4,

with the initial condition P(0) 1. This is the same as for the infinite regular tree with
d 5, and the solution is P(z) / 3r + 1/3. The occupancy probability in the jam-
ming limit is

o
P(r 6 dr

0.2222"

considerably closer to the Monte Carlo estimate 0.23136 given by Meakin et al. [Me
than the value 0.27639... obtained by ignoring all cycles.

Consider now the infinite graph obtained by joining squares so that two squares
meet at every vertex and there are no other simple cycles. This lattice, which corresponds
to the choice d 4, g 4, and c 2, may be regarded as the Cayley graph of a free
product of two copies of the integers modulo 4; it has the same degree and girth as the



400 NICHOLAS PIPPENGER

square lattice, but differs in that every vertex is in two squares rather than four, and every
edge is in one rather than two. The differential equation analogous to (3.4) is

2P(r) +
p’(z)

3

with the initial condition P(0) 1. Integrating numerically yields P( 0.43066....
The occupancy probability in the jamming limit is

f0’ fe(1)2x3+(-P’(z))2 dr dx-sv(o) 3

3-P(1)4-2P(1)
6

=0.35071.

which is considerably closer to the Monte Carlo estimate 0.36413 given by Meakin et
al. Me than the value 0.33333- obtained by ignoring all cycles.

Finally, consider the infinite graph obtained by joining hexagons and edges so that
one hexagon and one edge meet at every vertex and there are no other simple cycles.
This lattice, which corresponds to the choice d 3, g 6, and c 1, may be regarded
as the Cayley graph of a free product of the integers modulo 6 with the integers modulo
2; it has the same degree and girth as L3, but differs in that every vertex is in one hexagon
rather than three, and every edge is in zero or one rather than two. There are now two
differential equations analogous to (3.4)"

and

P’(z) -P2(r)

Pz(r)
2Pl(r) + 10Pl(’r)2 + 3

15

with the initial conditions Pl (0) P2(0) 1. Differentiating the first with respect to r,
substituting the second, multiplying by the integrating factor 2P’ (), and integrating
yields

p(.r)2 2Pl(’r)6 + 20P1(’)3 + 18Pl(’r) + 5
45

where the constant of integration has been chosen to satisfy the initial condition
P’ (0) -P2(0) -1. Taking square roots (the initial condition shows that the neg-
ative root must be taken) and integrating numerically yields Pl( 0.30738... and
P’l -0.49700.... The occupancy probability in the jamming limit is

fol (-P(r))( P’2(r))dr fP2(l)

xdx-t/P2(0)
l-P2(1)2

2

-P’(1)2

2

=0.37649....
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Both this and the value 0.375 obtained by ignoring all cycles are within the error estimate
0.01 for the Monte Carlo value 0.38 given by Widom [W ].
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A RAMSEY-TYPE THEOREM FOR ORDERINGS OF A GRAPH*

VOJTECH RODL" AND PETER WINKLERf

Abstract. It is shown that for any graph G on n vertices, there is a number N(of order at most r/3(log r/) 2)
and a graph H on N vertices such that for any ordering of the vertices of G and any ordering of the vertices of
H, there is an order-isomorphism from G into H.
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Many Ramsey-type theorems have the following flavor. For each fixed object B of
size n, there is an object C (of size f(n)) that is so thoroughly saturated with copies of
B that copies of B in C satisfying certain additional conditions can always be found. In
the situation considered here, B is an ordered graph G (that is, a graph with linearly
ordered vertices); f(n) is roughly of order n 3; and C is a graph H all of whose orderings
contain a monotone isomorphic copy of G.

We in fact obtain a slightly stronger result, where the edges of G are labeled and H
is required to work simultaneously for all orderings of G.

Considerations of size aside, the existence of such an H has been known for
many years.

THEOREM 1. For every ordered graph G there is a graph H such that every ordering
ofthe vertices ofH contains a monotone copy ofG, that is, a subset whose induced edges
and induced order constitute an isomorphic copy ofG.

Theorem is a consequence of the following result.
THEOREM 2 3 ]. For every directed acyclic graph D there is a directed acyclic graph

D’ such that every two-coloring ofthe arcs olD’ contains a monochromatic copy olD.
To get from Theorem 2 to Theorem l, note that the graph G ofTheorem (without

its vertex order) may be assumed to be asymmetric, that is, to have no nontrivial auto-
morphism; for otherwise G may be isomorphically embedded in a larger graph with this
property. Let D1 be obtained by orienting the edges of G in accordance with the vertex
order, and let D2 be a copy ofD with the directions of the arcs reversed. Let D be the
disjoint union ofD and D2, and choose D’ to satisfy Theorem 2. Let Hbe the undirected
mate to D’. We associate a 2-coloring of the arcs of D’ to an ordering of the vertices of
H by coloring an arc "red" if it is oriented along the ordering, and "blue" otherwise. A
red copy of D in D’ is then the union of a monotone G and an antimonotone G in H,
and a blue copy likewise.

The existence ofH is critical in the proof of a result from 2 having (seemingly)
nothing to do with ordering. In any class of finite structures with a notion of embedding,
we say that a structure A is ramsey if for any B there is a C such that if all the A’s in C
are 2-colored, then there is a copy of B in C all of whose A’s receive the same color.

THEOREM 3 [2]. In the category ofgraphs andgraph embeddings, a graph is ramsey
ifand only if it is either complete or independent.

The case A K, B Kn, and C Kr<n) is the classic Ramsey Theorem. However,
it is the "only if" part of the theorem whose proof utilizes Theorem 1. Note that the
vertices of a graph A that is not complete or independent may be given two orderings
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This research was supported by Office of Naval Research grant N00014-85-K-0769.
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such that the resulting ordered graphs, say Gl and G2, are not isomorphic. Choose H1
and HE as in Theorem l, so that any ordering of Hi contains a monotone copy of Gi.
Let B be the disjoint union of H and HE. Then in any graph C, we may order the
vertices arbitrarily and color a copy ofA red when its induced order is isomorphic to G,
and blue otherwise. But then every copy ofB in C will contain both red and blue copies
ofA.

The proofofTheorem 2 in 3 produces a D’ that is superexponential in size relative
to the size of D. Thus it is perhaps surprising that an H of Theorem can be found
whose size is only polynomial in the size of G. In fact, a technique used in and [4]
for similar problems can be used to obtain an H with roughly n4 vertices, where n is the
number of vertices of G.

The technique used below employs the projective planes of[l] and [4] but in a
somewhat more sophisticated manner, "blowing up" points to a certain size. The result
is a bound of n log 2 n; we also will show that the exponent "3" is, in our formulation,
the best possible.

DEFINITION. Letf(n) be the smallest integer N satisfying the following. Let

c:E(Kn)’- 1,2,
2

be a labeling of the edges of Kn; then there exists a labeling

C’E(KN)-- 1,2,-.
2

of the edges of KN such that for every ordering < of the vertices V(KN), and every
ordering <’ of the vertices V(Kn), there is a monotone isomorphic embedding from Kn
to KN, i.e., a 1-1 mapping b: V(Kn) -- V(KN) satisfying the following:

(i) (u) < (v) for u <’ v; and
(ii) C({(x), (y)}) c({x, y}) for every {x, y} e E(Kn).
THEOREM 4. There are constants c and c2 such that cn3 <= f(n) <= c2n3 log 2 n.
Proof. We begin by establishing the upper bound.
Let m be the nearest prime power to 5n log n and let P be a projective plane

of order m 1. Each point p of P is now "blown up" n times to obtain a set B(p). To
each line L of the P we then assign a blown-up line B(L) t_J B(p): p e L }, so that
B(L)[ mn 5n2log n.

Let B(P) be the set of all points of the blown-up projective plane P, i.e., B(P)
tA{B(p): p e P}. Then B(P)I N, where N n(m m + 1) 25n log n. Let
Ksbe the complete graph on vertex set B(P), and let Kn be the complete graph on vertices
1, 2, n. Our aim is to color pairs { u, v }, u B(p), v B( q), p q, randomly by
() colors in such a way that with large probability (i) and (ii) will be satisfied.

Let us denote by G a complete n-partite graph with partition classes V, V2, "",

Vn, each of size m. Let

e’(a= v - ,
be a coloring of the edges of G that satisfies ?(vi, vj) c(i, j) for every i, j and vie Vi,
ve.

For each "blown up" line B(L), let

s(z,): V(G)--- B(L)
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be a random mapping of G onto the points of B(L), where B(L) and B(L’) are chosen
independently for L 4 L’. We are now ready to define a random mapping ( that will,
with probability approaching one, satisfy our requirements. For u B(p), v B(q),
p 4 q, set

( u, v) e(-((u), ,(v))
where L is the line determined by p and q.

For now, we fix orderings < of B(P) and <’ of V(K,). We wish to estimate the
probability that there is no order- and color-preserving isomorphism from K, into KN;
we begin by bounding the probability that there is no such isomorphism inside B(L) for
fixed L.

To that end we call a bijection (z.): V(G) -- B(L) bad if there is no order-
preserving map k: V(K,) -- B(L) satisfying c( i,j) C()( i), k(j)). (Here C is determined
by qs(r) in the same way that ( is determined by s(a).)

Without loss of generality, we now assume that <’ 2 <’ <’ n; let qs() be a
bad bijection. We define a sequence of points { ai } <, as follows.

Let a, be the first point (with respect to <) of I’B(L)(V1), and let Pl be defined by
a, B(pl).

Suppose al, ai and Pl, Pi are defined; let ai+l be the <-first point of

( )qcr)( Vi+ 1)- [,-J B(p,) fq { a" a> ai}
j=l

and let Pi + be such that ai + B pi + ). Ifan exists, then ) -- ai is a mapping satisfying
c(i, j) C()(i), ,(j)), thus contradicting our choice of n.). Let k be the smallest
number for which ak fails to exist; then define a0 to be the <-first point, and ak the
<-last point, of B(L).

We then have that each bad bijection gives rise to a sequence of k <- n intervals
ai-1, ai), 1,2, k, with the property that

[ai-l,ai)f"l n(L)(V/)-- [.-J B(pj) (3.
j=l

For each 1, 2, ..., k, set
k-I

Bi ai- i, ai) I..J B(pj).
j=l

Then the following observations can be made:
The set Bi does not contain any part of (z)(Vi) and the set B(L) decomposes

as shown in Fig. 1;
(2) [t3/l1B(pi)[ n(k- 1) < n2;
(3) Thus, /k= [Bi[ >= n(m n)
(4) There are fewer than

+ +...+
2 n-1

systems of points al < a2 < < a_ 1, k -< n.
Combining )-(4) and using the fact that each of the sets V,. can be permuted in

m! ways, we infer that the number of bad bijections B(z) is bounded from above by

mn)(m!)n(n- )n(m-n)nn2.
n
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FIG.

On the other hand, the total number ofbijections xBL)" V(G) --* B(L) is equal to
(mn)! > (mn/e)mn. Thus for a random bijection B(L), we have

Prob q(L) is bad < (m!)n(n-1)n(m-n)nn2(mn)(mn/e)mn n

Stirling’s formula implies that m! < (m/e)m7V and thus the left-hand side of (,)
can be further bounded from above by

(mn)(m/e)mn(n--1)n(m-n)nn2emn(7m)n/2n (mn)n(m-n)(mn) n2 <(1 1)n(m-n)(7m)nl2(me)n

<en-m(6Om3)n/z.
On the other hand, there are N/n lines and the mappings ) are indepen-

dent of one another. We can thus conclude that if E is the event that there is no map
: V(K) --. V(KN) such that c(i, j) t(X(i), (j)) and (i) < (j) whenever
<’ j, then

Prob (E) < (60m3)n/Zen- m]U/no
There are N! orderings < ofB(P) and n! orderings <’ of V(Kn), and thus if

P Prob (orderings <, <’ exist for which E holds),

then
p< N!nn[(6Om3)n/2en- m]N/n < [Nn(60m3)n/2en- m]N/n.

It follows that

log P
N/n

n
3)<n log N+-- log (60m + n- m

3 n
3n log n+ n log (25 log2 n)+-n log n+ log (60 log n)+ n- 5n log n

(3)3+-5 nlogn---

so that P -- 0. It follows that most collections of mappings nz) yield a graph with the
desired properties; since the cardinality ofthis graph is N 25n logz n, the upper bound
in Theorem 4 is established.
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To prove that f(n) > c in 3, it suffices to show that f(n) > f(n 2) + 6c in
2 for

sufficiently large n. We do this for c .
Fix a large number n and a bijective edge-labeling c: E(Kn) -- { 1, 2, () }. Set

N f(n) and let C be a labeling of the edges of Ks by the same label set such that for
any ordering < of V(Ks) and any ordering <’ of V(Kn), there is a color- and order-
preserving isomorphism of Kn into Ks.

Let j be the least-represented color in Ks, so that

[{eE(KN)" C(e)=j}[ -<
2

<
n---"

We claim that KN contains a set X of at least 2n2/5 vertices such that no two
vertices in X are connected by an edge of color j. For, let H be the graph on vertices
{ 1, 2, N} whose edges are exactly the j-colored edges of our KN; then by Turhn’s
Theorem 5 ], ifHhas no independent set ofsize =< .4n 2 then the edges ofHmust number
at least

(.4n2- )( IN(’4n2-12)]) 1.25N2

2n

contradicting the above bound.
We now restrict the ordering <’ of V(Kn) so that the first two vertices are x and y,

where c( { x, y } j. Next we specify that the elements ofX precede all other vertices
ofKN in the ordering <.

As a result any color- and order-preserving isomorphism of Kn into KN sends at
most one vertex of Kn into X; thus, by extending any ordering of V(Kn) { x, y } and
any ordering of V(KN) X, we may use , to embed Kn-2 into Ku-.4n2 with appropriately
restricted coloring C.

It follows thatf(n 2) -< f(n) .4n 2 and the proof of Theorem 4 is complete.
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NODE-PACKING PROBLEMS WITH INTEGER
ROUNDING PROPERTIES*

S. K. TIPNISf AND L. E. TROTTER, JR.:l:

Abstract. This paper considers an integer programming formulation of the node-packing problem
max 1. x: Ax <= w, x >= O, x integral }, and its linear programming relaxation, max 1. x: Ax <= w, x >= 0 },
where A is the edge-node incidence matrix of a graph G and w is a nonnegative integral vector. An excluded
subgraph characterization quantifying the difference between the values of these two programs is given. One
consequence of this characterization is an explicit description for the "integer rounding" case. Specifically, a

characterization is given for graphs G with the property that for every subgraph of G and for any choice of w
the optimum objective function values of these two problems differ by less than unity.

Key words, node-packing, integer rounding, optimization gap
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1. Introduction. Let G (V, E) be a graph with node set V and edge set E. We
restrict attention throughout to finite, undirected, loopless graphs. An independent (stable)
set of nodes is a subset S

___
V such that no two nodes of S are joined by an edge of G.

Let a(G) denote the size of a largest stable set in G. A subset F
___
E is an edge-cover if

every node ofG is the endpoint ofsome edge in F. Denoting di(G) as the size ofa smallest
edge-cover in G, G is called a K6nig graph when a(G) 6(G). A well-known theorem
of K6nig states that bipartite graphs without isolated nodes are K6nig graphs. It is not
difficult, however, to see that the converse is false, even for graphs without isolated nodes.
Characterizations ofK6nig graphs are given in Deming 1979 ], Sterboul 1979 ], Korach
1982], and Lovfisz and Plummer 1986]; the latter reference contains a thorough dis-

cussion of the subject.
We model the problem of determining a(G) as follows. The edge-node incidence

matrix of G is the [EI V[ matrix A [ae] given by

_{l, if edge e is incident to node v;
otherwise.

For w a nonnegative, integral vector whose components correspond to the edges of G,
we consider

aw(G)=-max { 1. x:Ax<= w,x>=O, xintegral },

with denoting an appropriately dimensioned vector ofones. We denote the correspond-
ing linear programming relaxation by

w(G)- max { 1. x:Ax<= w,x>=O }.

Then the quantities aw(G) and w(G) are finite if and only if G has no isolated nodes.
When aw(G) is finite, we have a(G) a (G) and

6(G) min { 1. y: yA >= 1, y >= O, y integral }.
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A subdivision of G is obtained by replacing the edges of G by simple paths, i.e., by
inserting new nodes of degree two into the edges. An even subdivision results when the
number of new nodes inserted into each edge is even. Thus a graph is bipartite if and
only if it contains no subgraph that is an even subdivision of K3, the complete graph on
three nodes. It is well known that when G is bipartite, aw(G) w(G) for all nonnegative,
integral w; this follows from total unimodularity of the matrix A for bipartite graphs.
Thus aw(H) w(H) for all subgraphs H of G and each nonnegative, integral w if and
only if G contains no even subdivision of K3. Here, H (W, F) is a subgraph of G
(V, E) provided W

_
V and F

_
{ { u, v } E: u, v W}. Note, in particular, that we

do not exclude the case in which H contains an isolated node, as we still have aw(H)
&w(H) + in this case.

In this paper we give a similar characterization of graphs G for which w(H)
aw(H) < holds for all subgraphs H of G and each nonnegative, integral w. Note that
if G is an even subdivision of K4, then the solution xo 1/2 for all nodes v achieves the
value (G) 2, but differs from a(G) by unity. Similarly, if G consists of two
node-disjoint even subdivisions of K3 (i.e., two node-disjoint odd cycles), then again
(G) a(G) 1. In 3 we show that w(H) aw(H) < for all subgraphs H of G
and each nonnegative, integral w ifand only ifG contains neither ofthe two configurations
just mentioned. We thus obtain a graphical characterization of edge-node incidence ma-
trices having certain "integer rounding" properties (see Trotter 1985]). Linear pro-
gramming duality shows that the equality a(G) tS(G) implies the equality al(G)
I(G), and hence the relation w(G) aw(G) < may be viewed as a "near-Krnig"
property.

2. a-Critical graphs. A graph is a-critical if, for each edge, its deletion increases
the stability number by one. The following important property of a-critical graphs was
given by Hajnal 1965].

THEOREM (Hajnal). IfG V, E) is an a-critical graph with no isolated nodes,
then the degree ofeach vertex is at most VI 2(a) / 1.

This theorem can be used to characterize a-critical graphs with small values of the
parameter p V[ 2a(G). Let I p be the collection of all a-critical graphs such that
p VI 2(G) and let Fp be the collection of all connected graphs in Fp. Let G e

Fp. If p 0, then the degree of each node of G is at most one, and hence the graph
defined by a single edge is the only member of Ic. Ifp 1, then the degree of each node
of G is at most two. The only connected graphs of this type are simple paths and cycles.
Now, simple paths and cycles of even length are not a-critical. Hence Fc consists ofodd
cycles. Andrisfai [1967] proved the following theorem for p 2, thus characterizing
members of I’c2.

THEOREM 2 (Andrfisfai). IfG (V, E) is a connected a-critical graph with V
2a(G) 2, then G is an even subdivision ofK4.
The collection ofall graphs in I" 2 without single edges or isolated nodes as components

is, by Theorem 2, the collection of all even subdivisions of K4 or graphs consisting of
two components, each an odd cycle. Lovfisz 1978 has established that for larger values
ofp, as well, there is a "finite basis" characterization of the members of I’. That is, for
each nonnegative integer p, there exists a finite collection ofgraphs (a basis) whose even
subdivisions are (precisely) the members of I’c. (see Lovfisz and Plummer 1986, Chap.
12]). The basis is known for p 3 (Lovsz 1983]), and we discuss this case in greater
detail at the end of 3.
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3. "Near-Kiinig" graphs. Let A be the edge-node incidence matrix of graph G
(V, E) and let w (We: e E) be a nonnegative, integral vector. We first state a well-
known and useful property (see, e.g., Nemhauser and Trotter 1974 ofthe polyhedron
of feasible solutions to the linear programming problem that determines &w(G).

LEMMA 1. Let x be an extreme point of { x" Ax <- w, x

_
0 }. Then 2x has integer-

valued components. Thus, when w(G) < +, there is an optimum solution x*, i.e.,
1. x* aw( G), such that 2x* is integer-valued.

By this lemma we know immediately that w(G) aw(G) is an integer divided by
two; when G contains an isolated vertex, i.e., when w(G) aw(G) +c, we adopt
the convention that w(G) aw(G) 0. Let fP be the collection of all graphs G such
that w(H) aw(H) < p2 for all subgraphs H of G and each nonnegative, integral w.
Recall that I’p is defined above to consist of all a-critical graphs with VI 2a(G) p.
We have observed thatw(H) aw(H) for all subgraphs HofG and for each nonnegative,
integral w if and only if G is bipartite. That is, G 6 ft if and only if G contains no
subgraph in I’ We now show that this relation remains valid for all p > O.

LEMM 2. Suppose p is a positive integer and G is a graph. Then G 2 ifand
only ifG contains no subgraph in I’.

Proof. Suppose G’ (V’, E’) is a subgraph of G and G’ 6 I’p. Since G’ 6 PP, we
have V’I- 2a(G’)= p, and we may remove isolated vertices (if any exist) from
G’ to obtain a subgraph H= (W,F) of G for which WI- 2a(H)>=IV’I-
2a(G’) p. Now (H) < + and clearly (H) WI/2, as the solution xo 1/2 for
all v W is feasible for the problem defining (H). Hence 2((H)- a(H))>-_
W[ 2a(H) >_- p, and it follows that G ftp.

To establish the converse, suppose G fP and select a subgraph H (W, F) of G
and a nonnegative, integral vector w so that 2(w(H) aw(H)) >- p with the quantity
W + Z(We" e F) as small as possible. We will show that H I’P. Let x* denote an

optimum linear programming solution yielding value 1. x* w(H); Lemma assures
us that we may select x* so that 2x* is integer-valued.

We first argue that Xv*=1/2, for all vW, and We= 1, for all eF. Con-
sider Y defined by ?v Ixv*/, for all v W, and define v w A, .f x* 2, where
A is the edge-vertex incidence matrix of H. It is straightforward to see that solves
max { .x: Ax _-< v, x _-> 0 }. Thus (H) w(H) 1. Y. Similarly, since Y is integral,
a(H) + 1.Y -< aw(H), and hence

p/2 <= w(H)- aw(H) <= (H)- a(H).

Minimality of WI + Z(We: e F) and the fact that # =< w imply that v w. Thus
AY 0 and, as w(H) > aw(H) implies H has no isolated nodes, we conclude that
Y 0. It follows that x* < 1, for all v 6 W, which then implies that We =< 1, for all
e 6 F. Furthermore, if xo* 0 for some v 6 W, then w(H\v) w(H) and aw(H\ v) -<
aw(H). Thus we have

p/2 -<- w(H) aw(H) <= w(H\v aw(H\v

again contradicting minimality of lWI + Z(We" e F). Thus we must have xo* 1/2, for
all v W. This also forces We 1, for all e F.

H must also be a-critical, for if not, a(H\e) a(H) for some edge e F. Since
(H\e) >= (H), we would have that

p -_< 2(a (H)- a, (H)) _-< 2((H\e)- a(H\e)),

in contradiction with the minimality assumption on H.
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Finally, we show that wI 2a(H) p. Since x* 1/2, for all v 6 W, we have
l(H) W[/2. Hence

P<=2(al(H)--al(H))=2(I Wl/2-al(H)) WI--2al(H).

To see thatp >_- WI 2al(H), pick v6 Wfor which al(H\v) al(H). Now xo* 1/2,
for all v e W, implies l (H\v) >_- l(H) 1/2, from which it follows that

p>2(al(H\v)-al(H\v))>=2(&l(H)-1/2-al(H)) [W[-2al(H)- 1.

Thus p >_- wl 2al (H).
We have thus shown that H is an a-critical graph for which [W[ 2al (H) p.

That is, H rp and the proof is complete. D
Applying Lemma 2 in the case p 2 now gives our main result.
THEOREM 3. The inequality w(H) aw(H) < holds for all subgraphs H ofG

and each nonnegative, integral w ifand only if G contains neither ofthe following two
types ofsubgraphs: (i) two node-disjoint odd cycles; (ii) an even subdivision ofK4.

Proof. Set p 2 in the definition of 2p above. Then ftp ft 2 is exactly the class of
graphs such that &w(H) aw(H) < for all subgraphs H of G and each nonnegative,
integral w. Thus when G e f 2, Lemma 2 implies that G contains no subgraph in r 2 and
hence no subgraph as in (i) and (ii). On the other hand, if G g ft 2, then, as in the proof
ofLemma 2, G contains a subgraph in I’ 2 without single edges or isolated nodes. By the
development of the previous section, this subgraph is as in (i) or (ii). ff]

We may use Theorem 3 to obtain a combinatorial max-min statement relating
node-packings and edge-covers in graphs containing neither of the configurations for-
bidden by the theorem. Specifically, let G be a graph containing neither two node-disjoint
odd cycles nor an even subdivision of K4 and let A be the edge-node incidence matrix
of G. Then, for any nonnegative, integral vector w,

max { 1. x:Ax <- w,x>=O, xintegral }
=[max {1. x:Ax<= w,x>=O } J

=[1/2 max {2.x’Ax<=w,x>=O}l

=L1/2 min {w.y’yA>=Z,y>-O}J

(by Theorem 3)

(where 2 2, 2))

(by linear programming duality)

1/2 min { w. y’yA >= 2, y >= O, y integral }/,

where the last equality follows from the fact that the polyhedron { y: yA >= 1, y _>- 0 } has
only (0, 1/2, )-valued extreme points. Thus, e.g., when G has no isolated nodes (otherwise
both sides of the max-min relation are + ), the stability number of G is equal to the
"floor" of one-half the value of a 2-cover of nodes by edges in G.

IfA is any matrix with nonnegative, integral entries, we say that the integer round-
down property holds for A provided

max { 1. x" Ax <- w, x >- O, x integral } I_ max { 1. x: Ax <-_ w, x >= 0 } 1,

for all vectors w with nonnegative, integral components (see Baum 1977 ], Chandra-
sekaran 1981 ], Marcotte 1982 ], Orlin 1982 ], Trotter 1985 ], Tipnis 1986]). Thus
Theorem 3 characterizes those graphs for which each subgraph has an edge-node incidence
matrix satisfying the integer round-down property. Similarly, the integer round-up property
holds for A when min { .x: Ax >= w, x >= O, x integral } min { 1-x: Ax >= w, x >= 0 } ]
for all nonnegative, integral w. For G (V, E) with edge-node incidence matrix A and
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W 1, ), the integer programming problem here is known as the node-covering
problem for G. We denote by z(G) the value of the node-coveting problem for G and
say that G is z-critical when the deletion of each edge of G leads to a reduction in z(G).
Since the node)-complement of any node-packing in G is a node-cover, and vice-versa,
we have that a(G) + z(G) V and consequently that G is a-critical if and only if G
is z-critical. Thus the characterization given by Andrfisfai 1967 in Theorem 2, along
with an analysis similar to that provided above, leads to a node-coveting analogue of
Theorem 3 and the corollary that (precisely) for the class ofgraphs specified in Theorem
3, each subgraph has an edge-node incidence matrix satisfying the integer round-up
property.

We also point out that Chandrasekaran 1981 and Odin 1982] have given poly-
nomial-time algorithms for solving max ( 1.x: Ax <= w, x >= O, x integer }, where A is a
matrix with nonnegative, integral entries and w is any nonnegative, integral vector, pro-
vided that A satisfies the integer round-down property. Hence when the graph G is of
the type specified in Theorem 3, the node-packing problem for G can be solved in poly-
nomial time. The related recognition question remains open, i.e., whether one can de-
termine in polynomial time that G meets (or fails) the stipulation of Theorem 3.

Finally, we return to the result of Lovfisz [1983 on a-critical graphs for p 3
alluded to at the end of 2. This characterization leads, in fact, to a result similar to that
ofVizing 1964 on the edge-chromatic number ofa simple, loopless graph. First consider
Vizing’s Theorem. A k-edge-coloring of a loopless graph G (V, E) is an assignment
of k colors to the edges of G such that no two adjacent edges have the same color. The
edge-chromatic number, x(G), ofa graph G is the minimum k such that G has a k-edge-
coloring. Let A be the maximum degree of a node in G. Then Vizing’s Theorem asserts
that X(G) A or X(G) A + for any simple, loopless graph G. Now let the rows of
M be the (edge-)incidence vectors of matchings in G. Then,

X(G) min { 1- y: yM>= 1, y _>- 0, y integral },

and it follows from linear programming duality theory that

x(G)=> min {1.y:yM>= 1,y>-0) =max {1.x:Mx<= 1,x->0}.

Furthermore, max {1.x: Mx<= 1, x>=0} >-A, since the incidence vector of
edges adjacent at a node gives an x satisfying Mx <= 1, x O. Thus, Vizing’s Theorem
implies that the difference between the optimum objective function values of
min 1.y: yM -> 1, y >= O, y integral } and its linear programming relaxation is at
most one.

Now, Lovfisz 1983 has proved that I’ has a basis consisting of the four graphs
shown in Fig. and further graphs obtained from these by the following operation:
replace a node by two new nodes, each of degree at least one, and create a third new
node joined to each of these. Since we know that w(G) aw(G) is an integer divided
by two, I" 3 can be used in Lemma 2 (i.e., the case p 3) to obtain a characterization of
graphs G, for which w(H) aw(H) =< for all subgraphs H ofG, and each nonnegative,
integral w.
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FIG. 1. Basic graphs in F 3.
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GAUSSIAN ELIMINATION WITH PIVOTING IS P-COMPLETE*

STEPHEN A. VAVASIS

Abstract. Gaussian elimination with partial pivoting is the standard numerical algorithm
for solving unstructured linear systems. Here it is shown that Gaussian elimination with partial
pivoting or complete pivoting is log-space complete for P. This provides theoretical evidence that
these algorithms cannot be efficiently implemented on a highly parallel computer with a large number
of processors. Since other algorithms for linear systems that are efficient on parallel computers are
already known, this suggests that elimination-based approaches should not be pursued in a parallel
environment with many processors.

Key words. Gaussian elimination, pivoting, P-complete, parallel algorithms, computational
complexity.

AMS(MOS) subject classifications. 65F05, 68Q15

1. Introduction. In this paper we show that Gaussian elimination with partial
pivoting is P-complete. Gaussian elimination is the oldest and best known method for
solving systems of linear equations, and partial pivoting is the most common technique
to make elimination numerically stable.

In addition, the proof will be extended to show that complete pivoting is P-
complete. Complete pivoting is a less common technique to maintain stability. Partial
and complete pivoting are described in the next section. The two pivoting techniques
are shown to be P-complete via a log-space reduction from the circuit value problem;
the circuit value problem is described in 3. The reduction will show that partial piv-
oting (but not complete pivoting) is P-complete in the strong sense that the numbers
used in the reduction all have bounded size.

These results imply that there is probably no NC algorithm for solving systems of
equations based on Gaussian elimination with pivoting. The class ofNC languages was
first defined by Pippenger [10]. An NC language is accepted by an algorithm running
on a parallel computer with a shared memory (the PRAM model) that satisfies the
following resource bounds: a polynomial number of processors and a time-bound of
O(logk n) for a fixed k. This time bound, which is asymptotically better than O(n)
for any positive e, is the reason why NC algorithms are considered to be efficient in
a parallel environment with a large number of processors. P-complete problems are
sometimes called "inherently sequential" because if any P-complete problem were in
NC, this would imply P-NC, which is generally believed to be false. Thus, the present
state of knowledge is that P-complete problems cannot be solved with a parallel
polylogarithmic time bound.

The proof below will show that Gaussian elimination with pivoting is a "P-
complete algorithm" in the sense that the problem of generating the pivot choices
of partial or complete pivoting is P-complete.
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Anderson and Mayr [2] introduced the notion of P-complete algorithms to explain
instances when the steps of a particular algorithm are P-complete even though a
different approach to the problem might achieve parallel polylog time.

As a recent example of a different approach to solving linear systems, Pan and Reif
[9] proposed a parallel algorithm based on Newton iterations. Their algorithm runs
in polylog time and uses O(n3) processors (fewer if asymptotically efficient matrix
multiplication techniques are used).

The search for NC algorithms for linear systems goes back at least to Csanky [4],
whose NC algorithm of 1976 was based on subdeterminants.

Thus, solving linear systems is an example where the common sequential algo-
rithm is P-complete even though the underlying problem can be solved in NC using a
completely different algorithm. Other examples of this phenomenon have been found
in recent years; for example, Reif [11] showed that finding the depth-first search order
of a graph that would be found by the standard sequential depth-first search proce-
dure is P-complete, but Aggarwal and Anderson [1] have shown more recently that a
depth-first search order (not necessarily the same one) can be produced in randomized
NC. The algorithm of Aggarwal and Anderson differs substantially from the simple
sequential approach; their algorithm builds the tree up from paths grown all over the
graph.

2. Gaussian elimination. In Gaussian elimination, the variables are eliminated
one at a time from left to right. The matrix of coefficients A is transformed to an
upper triangular matrix U by elementary row operations. The multipliers used for
elimination may be assembled into a lower triangular matrix L such that A LU.

In plain Gaussian elimination, the elements along the diagonal are used to elim-
inate the entries in the columns below them. The numbers on the diagonal used for
elimination are called pivots. A problem arises if zero or a very small number appears
in the pivot position. For example, in the following matrix, the first pivot is zero:

0 1
1 0)"

This matrix is invertible and generally well behaved.
A solution to this problem with the elimination algorithm is to swap the rows of

the matrix before each selection of a new pivot. In particular, when the algorithm
starts to eliminate entries below the diagonal in column i, it first searches all the
entries in the column from downward to find the entry with the largest magnitude,
say at position (r, i). Then row is swapped with row r in order to bring the larger
number into the pivot position. This row-swapping technique is called partial pivoting.

Intuitively, partial pivoting is a sequential process because the selection of the
pivot in column 2 depends on the pivot in column 1, and so forth. In the next section
it will be proved that the algorithm is inherently sequential because the sequence of
pivot choices can be used to simulate a Boolean circuit.

If all the pivot positions were somehow known in advance, then the Gaussian
elimination could be carried out in NC. This is because the rows could all be exchanged
to their final positions at the start of the algorithm in a single parallel step (O(n2)
processors working together to move the elements of the matrix). Then each element
of the final LU factors of Gaussian elimination can be realized as a large rational
function of the original matrix entries. These rational functions can be evaluated
quickly in parallel using the technique of Valiant, Skyum, Berkowitz, and Rackoff [13]
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for polynomial evaluation in tandem with the technique of Strassen [12] to change
the rational function into a polynomial. This method for computing LU factors in
parallel is discussed by Borodin, von zur Gathen, and Hopcroft [3]. The numerical
stability of this approach has not been analyzed.

Partial pivoting is the preferred method for solving general systems of linear equa-
tions. Accordingly, it is surprising that the numerical stability of Gaussian elimination
with partial pivoting is not completely understood. Stability refers to the question of
whether roundoff errors introduced by computer arithmetic get magnified into large
errors in the results. Although it is possible to construct examples where partial piv-
oting behaves in an unstable way, years of empirical evidence have shown that partial
pivoting is a stable algorithm.

There are good theoretical bounds that show that another technique, complete
pivoting, is numerically stable. The complete pivoting algorithm swaps both rows and
columns in order to bring the largest element in the remaining uneliminated submatrix
into the pivot position. This is more costly to implement because of the additional
searching and the need to keep track of the permuted variables; consequently, it is
used less often. For a discussion of the stability of partial and complete pivoting, as
well as detailed listings of the algorithms, see Golub and Van Loan [6, Chap. 4].

3. Gaussian elimination with partial pivoting is P-complete. The main
result of this paper is the following theorem.

THEOREM 3.1. Gaussian elimination with partial pivoting on square matrices
over the real or rational numbers is P-complete.

Before stating the proof, we need to explain how Gaussian elimination can be
formulated as a language recognition problem. Following are two possible candidates
for languages based on elimination.

(a) Given a matrix A and indices and j, is it true that when Gaussian elimina-
tion with partial pivoting is done on A, the pivot used to eliminate the jth
column entries will be taken from (initial) row i?

(b) Given a matrix A and an index j, is it true that when Gaussian elimination
with partial pivoting is done on A, the pivot value for column j will be
positive?

The following proof will show that both (a) and (b) are P-complete.

Proof of Theorem 3.1. The first part of the proof is to show that Gaussian elimi-
nation with partial pivoting is in P. The standard algorithm takes O(n3) arithmetic
operations, so the only question about membership in P is the size of the numbers
involved. Gaussian elimination with pivoting is in P for exact rational arithmetic as
observed by Edmonds [5] because the numerators and denominators of the numbers
are determinants of minors. It is also in P for decimal arithmetic rounded to a fixed
number of decimal places (a more realistic model) because of bounds on the element
growth (see Golub and Van Loan[6]). The reduction that follows will work for either
exact arithmetic or arithmetic rounded to two decimal places.

For the proof of P-hardness, we will use a reduction from the circuit value problem.
The circuit value problem asks, given an acyclic circuit made of Boolean gates and
wires with several inputs and one output, and given the Boolean input values to
the circuit, determine the output value. This problem is almost trivial to solve on
a sequential computer, but no one knows how to speed it up to polylog time on a
parallel computer. This is because the circuit value problem is known to be log-space
complete for P, a result due to Ladner [8]. Since log-space reductions are transitive
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(see Lemma 13.3 of Hopcroft and Ullman [7]), this reduction will show that Gaussian
elimination with partial pivoting is also log-space complete for P.

We will assume that the given circuit C is composed entirely of 2-input NAND
gates (all other logic gates can be expressed as a fixed combination of NAND gates).
Also, we will assume that the NAND gates and the circuit inputs together are num-
bered 1,..., n in a way that is consistent with the partial order of the circuit, and
that each gate knows its two fanins and its fanouts. Note that a general circuit can be
transformed into a circuit that satisfies all these properties using a simple log-space
translator.

In this reduction, each gate of the circuit C will be transformed into two rows
and one column of a 2n x 2n matrix Me. In particular, gate j will be encoded in
rows 2j 1 and 2j and in column j.

The left half of the matrix (first n columns) is the important half; the other half
exists to ensure that the matrix is nonsingular. We want the matrix to be nonsingular
to avoid any sort of numerical difficulties, as will be explained below.

A gadget for gate j will appear at matrix elements (2j- 1, j) and (2j, j). A
gadget for a wire between gate j and k will appear at matrix elements (2j- 1, k) and
(2j, k), and a second gadget for the wire will appear at entries (2k- l, j) and(2k, j).
All entries in the left half of the matrix other than these gadgets will be zeros.

Specifically, the idea of the reduction is that row 2j 1 of Mc will be the pivot
choice for column j if the output value of gate j in C is 1, or else row 2j will be the
pivot choice for that column. Gate j will influence other gates via the gadgets for the
wires when elimination takes place in column j. The two rows 2j- 1 and 2j will be
called "partners."

For a gate j that is a 1-value circuit input, the contents of positions (2j l, j)
and (2j, j) will be

Note that in this submatrix, the pivot in column j will be taken from row 2j- 1.
For the 0-valued circuit inputs, the contents of positions (2j- l, j) and (2j, j)

will be:

Observe that this time, the pivot value for column j is in row 2j.
If j is a NAND gate, the two entries will be:

As we shall see in the proof, 4.0 will be chosen as the pivot unless a small constant
is subtracted from the second entry as a result of earlier pivots. We will call the entries
in column j of rows 2j- 1 and 2j the "heavyweight" entries. The gadgets for the wires
are as follows: If gate j is an input to gate k, then the entries at positions (2j 1, k)
and (2j, k) of Me looks like this:

(1).
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FIG. 1. This circuit is translated into matrix M1.

The plan is that, if row 2j- 1 is selected as the pivot for column j, then nothing
will be subtracted from the heavyweight entry in position (2k, k) during elimination
in column j, otherwise the 1 entry, scaled down, will be used during elimination.

If gate j is an input to gate k, then matrix entries at positions (2k- l, j) and
(2k, j) will look like this:

These entries force elimination in column j to affect row 2k.

All entries in the left half of the matrix not covered by the above cases are zeros.
Thus, all entries in the left half of the matrix that are not heavyweight entries are 0
or 1 initially. Finally, in the right half of the matrix, the entry at (2j, n + j) will be 1
for all j. All other entries of the right half will be zero.

As an example of the reduction, the circuit in Fig. 1 (which happens to be an
implementation of XOR) would be transformed to the matrix M1 below. The rows
and columns arenumbered according to the numbers of the gates, and dots indicate
zeros. Note that gates 1 and 2 are the circuit inputs. Everything in this transformation
can be computed in log-space.
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1

1 (-3.9
0

2

3 0
1

4 0
1

5

6

2 3 4 5 6

0 0
1 1 1

-3.9 0 0
4.0 1 1 1
0 -3.9 0 0
1 4.0 1 1 1

0 -3.9 0
1 4.0 1

0 0 -3.9 0
1 1 4.0 1

0 0 -3.9
1 1 4.0

Informally, when a gate j has an output value of 0 and fans out to gate k, the
gadget for the wires will cause exactly 0.25 to be subtracted from the ’4.0’ heavyweight
entry in column k. This will be enough to force elimination in column k to select the
pivot from row 2k- 1 (corresponding to an output value of I from gate k). Otherwise,
the pivot in column k will be selected from row 2k. This is what we want, since gate
k should put out a 1 if and only if one or more of its inputs is a zero.

The fact that this matrix will simulate the circuit will be proved by the following
induction lemma. Part (a) is the main step toward proving Theorem 3.1; the other
parts are needed to carry the induction along. When we discussed the partial pivoting
algorithm earlier, we described it in terms of swapping rows so that the pivots were
always in diagonal positions. In the notation of this lemma, however, we will refer
to the rows of the matrix Mc by their original indices for the sake of convenience;

(j)accordingly, the pivots will occur in off-diagonal positions. Let (alto) denote the
entries of the matrix Me after elimination with partial pivoting has been done for
columns 1 to j with the rows preserved in their original order.

LEMMA 3.2. For any j between 0 and n, after doing the Gaussian elimination
on Mc for columns 1 up to j, the following statements hold:

(a) The pivot in column j will have value -3.9 and will be taken from row 2j- 1

if the output of gate j is 1, else it will have value 4.0 and be taken from row

2j.
(b) All of the columns 1 to j have had a pivot in them, and, for each h <_ j, one

of two partner rows 2h- 1 and 2h has had a pivot but not the other.
(c) Suppose > j and gate is a real NAND gate (not a circuit input). Then the

heavyweight entry in row 21 will satisfy:

a(j) 4.0 0.25. tj)
21,1

Here, tj) is the number of O-valued inputs to gate that are indexed <_ j; thus

tj) e {0, 1, 2} always.
(d) As above, ill > j and gate is a real NAND gate, then all the entries of row

21 in columns j < q <_ 2n will satisfy

[a(j) a()21,q 21,q] <-- 0.25"
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(e) Suppose q <_ 2j and row q has not had a pivot; let >_ j. Then if the output
(J) output of gate is 1, then la)l <_of gate is O, then laqt <_ 1.5. If the 2.5.

Proof of Lemma 3.2. First, a general comment about the elimination procedure:
observe that, by construction, there is only one nonzero entry in an odd-numbered
row 2j 1, namely, the heavyweight entry in column j. Thus, none of the pivots in
columns 1 up to j- 1 can affect this row. Moreover, if we pivot in column j in this
row, then it does not affect any matrix entries in columns j + 1 up to 2n. These facts
will be used several times in the following proof.

The lemma will be proved by induction on j. Note that all the statements are

clearly satisfied in the case that j 0 (for statements (c) and (d), t) 0 for all
1). Suppose the lemma is true up to j- 1, and now we must prove the case for j.
Accordingly, we have pivoted on every column up to j- 1 and now we are looking
to do the pivot in column j. Suppose j is a real NAND gate (rather than a circuit
input). Consider the entries in column j. In rows 2j 1 and 2j are the heavyweight
entries; in rows q < 2j- 1 that have not had a pivot, all the entries are bounded by
2.5 according to (e). All the entries in rows below 2j in this column are bounded by
1.5, because (d) tells us that they could not have strayed from their original vMues (0
or 1) by more than 0.5. Thus, the pivot will be one of the two heavyweight entries in
this column. Now, observe that in part (c), all inputs to gate j are indexed j 1,
so the quantity t tj will be equal to the number of 0-valued inputs to gate j.

If t 0 (both inputs to gate j are 1) then (c) tells us that a(j-) 4.0 Also,2j,j

a(J-1)
2j--l,j -3.9 in all cases because row 2j- 1 is not affected by previous pivots. Thus,

pivot will be in row 2j with value 4.0. This is the pivot for column j; it represents a
0 in the circuit. Note that part (a) is now satisfied since the inputs to this gate were
both l’s (we hypothesized t 0).

If t > 1, then by part (c), 0 < aj5) < 3.75 but -(J-)
2j--l,j --o. SO the pivot will

be in row 2j- 1 and have a value -3.9. ain, part (a) is satisfied. Finally, if gate j

is a circuit input, then 2j-l,j a ,j and u2J-(J--1),J a(0)2j,j because all entries to the
left of these were originally zeros, so no pivots in columns up to j- 1 have affected
these rows. Thus, we conclude that part (a) holds by construction for the original
entries for gate j when j is a circuit input.

This concludes the induction proof for (a) and (b); now we show that executing
the elimination for column j preserves (c) and (d).

First, observe that if we pivoted in row 2j- 1 for column j, then no entries in

columns > j are affected as mentioned earlier. In addition, tj) tj-) for all
in this case by definition of the t’s (because pivoting in row 2j 1 means that the
output value of gate j was 1), hence parts (c) and (d) carry through immediately by
induction.

Accordingly, we consider the case that we are going to pivot in row 2j for column
j. This means that either j was a "0" circuit input or that gate j was a NAND gate
with output value 0, hence with both inputs set to 1. In either case, all the entries
in row 2j in columns j to 2n are equal to their original values by part (d), because

tj-l) 0.
Examine some row 21 > 2j. There are two cases to consider: either gate j is an

input to gate with value 0 or gate j is not an input to gate I. If j is an input to
with value 0 then the original entry at position (2j, l) was a 1 by construction, so the
new entry after step j 1 has its original value as mentioned above.

It also happens to be true that the entry at position (2/,j) will be its original
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value, which is 1. The proof that the (2/,j) entry is unchanged until the jth pivot
is by contradiction. Suppose that the pivot in column q, row 2q changed the (2/,j)
entry (so q < j). Then row 2q must have been nonzero in column j when the q pivot
was made. By the induction hypothesis (part (d)), if row 2q had a pivot then all its
entries from q to the right were their original values when the pivot was made. Thus,
the only way 2q could have a nonzero in column j is if gate q was a "0" input to gate
j. But this is impossible for a NAND gate, because we are assuming that the output
value of gate j is a 0.

Thus, we see that (j-l) a(j-l) 1 and a(j-l)a2j,j 4.0, 2j,l 21,j 1. Also, by induction
hypothesis on (c),

a(j-) 4.0 0.25. t}-)21,1

Then, by the definition of the Gaussian elimination step,

1 1
a(j) 4.0 0.25. t!j-)2, 4.0

Since tj) tJ-)+ 1 by definition of the t’s, this proves statement (c) for the case that
j is an input to of value 0. Note that these calculations are the same in two-place
arithmetic.

Let us also do (d) for this case. We have seen that when we pivot in row 2j, the
pivot value is 4.0, the entry at (2j, l) is 1, and all the entries to the right of the pivot
are either 0 or 1. This means that, as above, an entry in row 21 will change by either
0 or -0.25. In either case, the induction on part (d) goes through because tt increases
byl.

The other case is that j is not an input to gate 1. The original entry at position
(2/,j) was 0 by construction. The claim is that it is still zero when the column j
pivot is executed. To see this, suppose some earlier pivot in row 2q, column q affected
it. Then the same contradiction derived above would apply: this would mean q was
an input to j of value 0, which contradicts the hypothesis that the output of j is 0.
Thus, the entry at position (2/, j) is 0, so pivoting in column j does not affect row 21.
This completes the induction for (c) and (d).

Now we must do (e), for which we use a more informal induction. Call a row q
"abandoned" if it has not had a pivot in columns 1 up to [q/2]. Clearly, once a row is
abandoned, we want it to stay that way until the circuit is completely simulated, i.e.,
until there have been pivots for the first n columns. When a row is first abandoned, all
of its entries will be bounded by 1.5; this follows from (d) and the fact that the entries
were originally 1 or 0. Let us examine an entry at position (q, l) of an abandoned
row. We have seen by the other parts of the lemma that this entry can be affected by
pivots in columns 1 to 1 only if there is an input to gate of value 0, i.e., only if
the output value of gate is a 1. Thus, if the output of gate is a 0, entry (q, l) will
stay bounded by 1.5, which proves the first half of (e).

If the output of gate is 1, then pivots in columns 1 to 1- 1 could affect the
(q, l) entry; in particular, for each input h to gate whose value was 0, the pivot in
column h could affect this entry. However, in the previous paragraph we derived the
fact that the entry at (q, h) never gets bigger than 1.5 (because the output of h is

0), the pivot value itself is 4.0, and the entry at (2h, l) is either 0 or 1, so the pivot
in column h could change (q, 1) by at most 1.5/4.0, which is bounded by 0.5. Thus,
the entry at (q, 1) could never grow past 2.5 because there are at most two pivots
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that could augment it by 0.5. This proves the second part of (e) and concludes the
lemma. Again, note that the computations of the last three paragraphs work out for
two-place arithmetic.

Lemma 3.2 completes the proof of Theorem 3.1, because part (a) shows that after
the reduction and the Gaussian elimination, we can determine the value of any gate
in the circuit by checking whether a particular pivot was used in a particular column,
or whether a particular pivot was positive or negative. This means that we can tell
the final value of the circuit based on the position or value of the nth pivot choice, so
we have reduced the circuit value problem to Gaussian elimination with pivoting.

At this point we want to demonstrate that Me is nonsingular because Gaussian
elimination on rank-deficient matrices can introduce numerical difficulties if inexact
arithmetic is used. We would like to show Me is full-rank to demonstrate that the
preceding proof does not hinge on a numerical technicality.

This is easily seen by the following observation of Allen Van Gelder: rearrange
the rows of Me so that the odd numbered rows are written as the top n rows, and the
even numbered rows are written as the bottom n rows. Then this modified version of
Mchas the form:

L 0

where L is diagonal with -a.9 on the diagonal, and I is the identity matrix. This
makes it clear that Mc is nonsingular.

4. C,laussan elimination wth complete pvotng s P-complete. This sec-
tion will be devoted to extending the proof used in 3 to prove that Gaussian elimi-
nation with complete pivoting is P-complete. Either of the two language-recognition
versions described above is suitable. The extension is as follows. First, we alter the
construction so that instead of-3.9 as a heavyweight entry we use -4.0 + e (e to be
chosen below). Analying the steps of the above proof tells us that if 0 < e < 0.215
then everything works in the same way.

Choose a convenient 0 < e < min(0.1, l/n) and define the matrix Mc that uses
-4.0 + e instead of-3.9. The proof in 3 still goes through to show that elimination
with partial pivoting on this matrix simulates the circuit. Now define 2n x 2n matrix
Nc so that rows 2j 1 and 2j of Nc are copies of the corresponding rows in matrix

Mc multiplied by the scalar factor 3n- j. Note that Nc can easily be constructed
in log-space. We claim that the pivots chosen for the first n eliminations in Nc under
complete pivoting will be the same as the pivots chosen in Mc under partial pivoting.
Suppose it is true inductively for the first j- 1 pivots; this means that the rows of
Nc after j- 1 pivots (assuming the induction hypothesis) will be the rows of Mc
after j- 1 pivots multiplied by the scaling factor, because elimination is a linear
transformation on the rows. Accordingly, we are now looking for the jth pivot. We
want the two contenders to be the two heavyweight elements in rows 2j- 1 and 2j; we
know that the magnitude of the larger of these two will be at least (4.0 e)(an j),
since the pivot magnitudes in Mc were always at least 4.0- e. If q < 2j- 1 and row q
has not seen a pivot, then we know that the elements in row q of Mc have maximum
magnitude 2.15 by Lemma a.2(e), so the maximum magnitude of the corresponding
elements in Nc is 2.(an-/) (where is the number so that either q 21 or q 21-1).
Then we compute that

2.5(3n-/) _< 7.5n
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7.8n

3.9(3n n)
3.9(3n j)
(4.0 e)(3n j).

Thus, the two heavyweight elements in rows 2j- 1 and 2j dominate everything in
previous rows. Suppose now that q > 2j; then the largest element in row q is its
heavyweight element; in Nc the magnitude of this entry is bounded by 4.0(3n- 1),
where _> j / 1. We compute"

4.0(3n -l) 4(3n j 1)
12n-4j-4

12n 4j 3ne

(4.0 e)(3n j).

Thus, the larger of the heavyweight elements in rows 2j- 1 and 2j is the only suitable
contender for the jth pivot. But they are weighted equally, so whichever would have
been picked in Me will also be picked in Nc.

The question of fixed-precision arithmetic becomes murkier in this reduction,
because the number of digits needed to write the matrix entries and compute the
elimination grows logarithmically with the size of the circuit, instead of staying fixed.

5. Conclusions. These results show that Gaussian elimination with pivoting
is P-complete, which suggests that elimination is the wrong approach if one wants
an extremely fast algorithm for LU-decomposition on a massively parallel machine.
Other techniques deserve consideration in this case.

6. Open questions. We suspect that the algorithm is still P-complete if scaling
is used. Scaling, i.e., multiplying the rows or columns by scalars to bring their entries
into a desired range, is a technique sometimes used in conjunction with pivoting to
improve stability. A new reduction would be needed, however.

There are other numerical algorithms that use interchanges; for example, column
interchanges are used in QR-factorization if rank-deficiency is a possibility. This may
also lead to a P-complete problem.

Finally, the reduction for the partial pivoting case used all bounded numbers
for matrix elements and a fixed number of decimal places, but the reduction for the
complete pivoting case needed elements that could grow arbitrarily as the circuit gets
large. Is there a reduction in the complete pivoting case that also uses bounded
numbers?
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THE ASYMMETRIC ASSIGNMENT PROBLEM AND SOME NEW
FACETS OF THE TRAVELING SALESMAN POLYTOPE ON A

DIRECTED GRAPH*

EGON BALAS"

Abstract. An assignment (spanning union of node-disjoint dicycles) in a directed graph is called asymmetric
if it contains at most one arc of each pair (i, j), (j, i). The asymmetric assignment polytope is the convex hull
of the incidence vectors of all asymmetric assignments. A class of facets is described for this polytope defined
on a complete digraph, associated with certain odd-length closed alternating trails. The inequalities defining
these facets are also facet inducing for the traveling salesman polytope defined on the same digraph. Furthermore,
this class of facets is distinct from each of the classes identified earlier.

Key words, asymmetric assignment problem, traveling salesman polytope (facets of), directed graphs,
alternating trails

AMS(MOS) subject classification. 05C35

1. Introduction. Let G (N, A) be the complete digraph on n NI nodes with
no loops or multiple arcs, and with costs c;j for every arc (i, j). An assignment in G is a
spanning subgraph that is the node-disjoint union of directed cycles, and the assignment
problem AP is

min 2 (cijxi:i,jN, i4:j)

s.t. ,(xi:jN-{i})= iN
(2)

_,(xi’ieN-{j}): j6N

(3) XijC={O 1} iN,jeN- {i}.
The assignment problem is a frequently used relaxation of the traveling salesman

problem (TSP), which (on a digraph asks for a minimum cost directed Hamilton cycle.
The TSP on a digraph, often called the asymmetric traveling salesman problem (ATSP)
to distinguish it from the TSP on an undirected graph, can be stated as having the
objective function and a constraint set consisting of (2), (3) and

(4) (xij’i,jS, i4:j)<= IS[- 1, SN,2 < IS[ =<[n/2j.

An asymmetric assignment is one that contains at most one member of every pair
ofarcs (i, j), (j, i), i.e., contains no directed 2-cycles. The asymmetric assignmentproblem
(AAP) has the objective function ), and the constraint set (2), (3) and

(5) Xij 4c- Xji i,je N, :/:j.

Clearly, (5) is the subset of (4) corresponding to sets S c N such that SI 2.
Thus AAP is also a relaxation of ATSP, stronger (tighter) than AP. In fact, although
AAP is closely related to AP, unlike the latter it is NP-complete (see Vornberger [1980]
for a proof; see also Garey and Johnson [1980] and Sahni [1974] for a proof of the NP-
completeness of the related problem of minimizing (1) subject to (2), (3), and
xij + x <- 1, { (i,j), (k, 1) e S, where S is an arbitrary subset ofA A ). The asymmetric
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assignment (AA) polytope P is the convex hull of incidence vectors of asymmetric as-
signments, i.e.,

P’= conv {xe { 0, ) IAII X satisfies (2), 5 ).
An arc set S c A that is the node disjoint union of directed cycles and/or paths will

be called an (asymmetric) partial assignment. If (2’) denotes the system of inequalities
obtained from (2) by replacing "=" with "=<", then the incidence vectors of asymmetric
partial assignments (APAs for short) are those 0-1 vectors satisfying (2’), 5 ). The APA
polytope on G is

/6:= conv {x { 0, } IAI[x satisfies (2’), (5) },
also called the monotonization ofP.

The asymmetric traveling salesman (ATS) polytope P* on G is the convex hull of
incidence vectors of tours (directed Hamilton cycles), i.e.,

P*’= conv {x {0, 1} IAI IX satisfies (2),(4)}.
Finally, the monotone asymmetric traveling salesman (MATS) polytope 1* is the

convex hull of incidence vectors ofpartial tours (arc sets that are subsets of a tour), i.e.,

/* conv{x { 0, } IAI IX satisfies (2’), (4) }.
The polytope /3, like /*, is easily seen to be full-dimensional, i.e., dim/

dim fi* n(n ). As to P, since it is contained in the assignment polytope and con-
tains in turn the traveling salesman polytope, and the dimension of these two is known
to be the same (Gr6tschel and Padberg [1985 ]), namely n(n 2n + 1, it follows
that dimP=dimP* =n(n- 1)-2n+ 1.

In this paper we describe some new classes of facet inducing inequalities for the
traveling salesman polytope P* defined on a directed graph G. These inequalities define
facets of the asymmetric assignment polytope P. They are associated with certain
subgraphs of G called closed alternating trails that correspond to odd holes of the inter-
section graph ofthe coefficient matrix ofthe AAP. Section 2 introduces closed alternating
trails and establishes their structural properties. Section 3 uses these properties to identify
some classes of facet inducing inequalities for/6 and/*. In 4 we prove that almost all
ofthese inequalities are also facet inducing for P and P*. Finally, 5 discusses connections
with earlier work.

2. Closed alternating trails and their chords. Let G* (V, E) be the intersection
graph ofthe coefficient matrix of the system 2 ), 5 or the system (2’), 5 ). Then G *

has a vertex for every arc of G; and two vertices of G* corresponding, say, to arcs (p, q)
and (r, s) of G, are joined by an edge of G* if and only if either p r, or q s, or
p s and q r. Two arcs of G will be called G*-adjacent if the corresponding vertices
ofG * are adjacent. Clearly, there is a 1-1 correspondence between APA’s in G and vertex
packings (independent vertex sets) in G*; and therefore the APA polytope/5 defined on
G is identical to the vertex packing polytope defined on G*.

We define an alternating trail in G as a sequence of distinct arcs

T=(a, ,at)

such that for k 1, 1, ak and ak + are G*-adjacent, but ak, at, > k + 1, are
not; with the possible exception of al and at. If al and at are G*-adjacent, then the
alternating trail T is closed. An arc ak (P, q) of T is called forward if p is the tail of
ak- l, or q is the head of ak + l, or both; it is called backward if q is the head of ak- 1, or
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p is the tail of ak +1, or both. The definition of an alternating trail T implies that the
direction of the arcs of T alternates between forward and backward, except for pairs
ak, ak / that form a directed 2-cycle entered and exited by T through the same node, in
which case ak and a+1 are both forward or both backward arcs. It also implies that all
the 2-cycles of T are node-disjoint (since two 2-cycles of G that share a node define a 4-
cycle in G*). Notice that T traverses a node at most twice, and the number of arcs of T
incident from (incident to) any node is at most 2. Two alternating trails,

T1 =((1,2), (3, 2), (3, 4), (4, 3), (5, 3), (5, 6), (6, 5), (6, 7))

and

T2 ((2, ), (2, 4), (3, 4), (3, 2), (5, 2)),

are shown in Fig. 1.
Let G T] denote the subdigraph of G generated by T, i.e., G[ T] has T as its arc set

and the endpoints of the arcs of T as its node set. Furthermore, for any v e N, let
degr(V) and deg(v) denote the outdegree and indegree, respectively, in G[ T] of the
node v.

The length of an alternating trail is the number of its arcs. An alternating trail will
be called even if it is of even length, odd if it is of odd length.

We will be interested in closed alternating trails (CATs for short) of odd length.
The reason for this is the following proposition.

PROPOSITION 2.1. There is a 1-1 correspondence between odd CATs in G and odd
holes chordless cycles) in G *.

Proof. The proof follows from the definitions.
It is well known (see Padberg [1973]) that the odd holes of an undirected graph

give rise to facets of the vertex packing polytope defined on the subgraph generated by
the odd hole, and that these facets in turn can be lifted into facets ofthe polytope defined
on the entire graph (see 3 for details). In order to make the lifting procedure conveniently
applicable to the particular vertex packing polytope associated with G*, we need the
structural information concerning adjacency relations on G* that will be developed in
this section.

Let T be a CAT in G. A node of G[ T] will be called a source if it is the common
tail of two arcs of T and a sink if it is the common head of two arcs of T. A node of
G[ T] can thus be a source, or a sink, or both, or none. A node of G[ T] that is neither
a source nor a sink will be called neutral. A neutral node is incident only with the two

a6

a a7

FIG.
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arcs of a 2-cycle. A 2-cycle will be called neutral if it contains a neutral node. Several
odd CATs are illustrated in Fig. 2. The sources and sinks of G[ T1] are nodes 1, 2 and
2, 4, respectively, while 3 is neutral. G[ T2] has three neutral nodes, 1, 4, and 6, while
nodes 2, 3, and 5 are both sources and sinks. G[ T3] has sources and 4, sinks 2, 3, and
4, while 5 is a neutral node. Further, G[ TI], G[ T2], and G[ T3] have one, three, and
one neutral 2-cycles, respectively, and G T3] also has a nonneutral 2-cycle.

PROPOSITION 2.2. Let T be an odd CAT oflength t, with q neutral nodes. Then

(6) <=q<-t/3 and qisodd.

Proof. Let T (al, at). The alternating sequence of forward and backward
arcs is interrupted q times by a repetition of type (forward or backward). Thus for q
even, the number of repetitions cancel out, and the fact that al and at are of opposite
directions makes for an even T. Since T is odd, q must be odd.

Now suppose q > t! 3. Then T has more than 2t/3 arcs incident with neutral nodes,
i.e., belonging to 2-cycles entered and exited through the same node, and less than t 3
arcs not incident with such nodes. Since T has more than t/3 2-cycles and less than t 3
arcs left to separate them, there exists a pair of 2-cycles with a common node. But such
a node has indegree and outdegree greater than 2 in T, contrary to the definition of an
alternating trail. Thus q <= t 3. U]

PROPOSITION 2.3. Let T be an odd CAT oflength t, with s sources, u sinks, and w
2-cycles. Then

(7) s+u+w=t.

Proof. T has 2w arcs belonging to 2-cycles and 2w arcs not belonging to 2-
cycles. Every arc of a 2-cycle has either a source for its tail or a sink for its head, but not
both. Every arc not belonging to a 2-cycle has both a source for its tail and a sink for its
head. Hence

s+u= lw+2(t-2w)/2

In the following we will denote by ," the family of APAs in G.
PROPOSITION 2.4. Let T be an odd CAT oflength t. Then

(8) max [SR T[ =(t- 1)/2.
Se

.//_ G[T1] G[T2]

(a)

b

(c)

FIG, 2
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FIG. 3

Furthermore, for any pair ofG*-adjacent arcs ak, ak + ofT (with + ), there
exists S , with a S, a+ S, and IS f’l T[ )/2.

Proof. For any S o, S 71 T contains no pair of G*-adjacent arcs. The largest
such set clearly has cardinality [t 2 J (t )/2. Furthermore, for any such S ’,
IT\S[ (t + 1)/2; hence T\S contains a pair of G*-adjacent arcs of T; and for any
pair a, a+ of G*-adjacent arcs of T, there exists S containing (t )/2 arcs of
T\ ak, a+ }. F-1

A chord of a CAT T is an arc a A \ Tjoining two nodes of G T]. If T is odd and
a (u, v), a divides T (not always uniquely) into two disjoint subtrails, one odd (T)
and one even (T2), each of which connects u to v. We distinguish between three types
of chords. A chord (u, v) is of

o type 1 if it joins a source to a sink (i.e., degr(u) deg(v) 2);
type 2 if it joins a source to a neutral node, or a neutral node to a sink (i.e.,
degr(U) + deg(v) 3), and there exists an even subtrail T2 connecting u
to v whose first arc and last arc are forward arcs;
type 3 in all other cases.

Figure 3 shows the odd CAT

T =((1,2), (3, 2), (3, 4), (4, 3), (5, 3), (5, 6), (1,6))

with its chords of type 1, 3), (3, 6), (5, 2) in shaded lines.
As T has no chords of type 2, all other chords (not shown) are of type 3.
Figure 4 shows the odd CAT

T2=((1,2), (3, 2), (2, 3), (2, 4), (5, 4), (4, 5), (4, 6), (7, 6), (6, 7), (6, 8), (1,8))

FIG. 4
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with its chords of type in shaded lines, (( 1, 4), 1, 6), (2, 6), (2, 8), (4, 2), (4, 8 ),
(6, 2 ), 6, 4)), and its chords of type 2 in checkered lines, (( 1, 5 ), (2, 7 ), 3, 6 ), (4, 3 ),
(5, 2), 5, 8 ), (6, 5 and (7, 4)). All other chords (not shown) are of type 3.

Finally, of the three odd CATs of Fig. 2, T has only chords of type 3; T2 has three
chords of type 1, (2, 5), (3, 2), and (5, 3), and three of type 2, (1, 5), (4, 2), and
(6, 3); and T3 has two chords of type 1, 1, 3) and (4, 2); all remaining chords are of
type 3.

The chords of type are easily identified. To illustrate the identification of chords
of type 2, the chord (7, 4) of the odd CAT of Fig. 4 is of type 2 since the subtrail
{ (7, 6 ), (4, 6 ), (4, 5 ), (5, 4) } connecting 7 to 4 is even, and both (7, 6) and (5, 4) are
forward arcs. Similarly, the subtrails whose presence makes (6, 5 and (4, 3) chords of
type 2, namely ((6, 7), (7, 6), (4, 6), (4, 5)} and ((4, 5), (5, 4), (2, 4), (2, 3)},
have the required properties. On the other hand, in the odd CAT of Fig. 2 (c), the chord
(5, 2) is not of type 2, although it joins the neutral node 5 to the sink 2, and although
there exists an even subtrail { (5, 4), 1, 4), 1, 2), (3, 2) } that connects 5 to 2. This is
because the last arc of this even subtrail, (3, 2), is reverse, and there exists no subtrail
with the required properties.

As before, denotes the family of APAs in G.
PROPOSITION 2.5. Let T be an odd CAT oflength t, let C be the set ofchords ofT,

andfor k 1, 2, 3, let Ck be the set ofchords ofT oftype k. Then

(9) max Sfq(T {a})l :l(t-f 1)/2 aECl to C2
s t(t+ 1)/2 aEC3to(A\(TtoC)).

Proof. Let a (u, v), and let T T tO T2, where T and T2 are two disjoint sub-
trails of T connecting u to v, with T odd and T2 even. If a S, then S r T tO { a }
S f) T and from Proposition 2.4 the left-hand side of (9) is equal to (t )/2. So
assume a S. If a 6 C, this implies that S cannot contain the first and last arcs of T
and T2. Hence the maximum number of arcs of T and T2 contained by any such S is
(ITI 1)/2 and (IT2I 2)/2 IT2I/2 1, respectively, and the maximum of
the expression on the left-hand side of (9) is ([ T[ / 2 (arcs of T + T2I/2
(arcs of T2) + (the arc a) (I TI / T2I 1)/2 (t 1)/2.

If a C2, then a S implies that S cannot contain the first and the last arc of T2
(by definition of C2, the last arc of T2 is incident to v) and S cannot contain both the
first and last arcs of T. Then the maximum number of arcs of T contained by any
S E that contains a is, as in the earlier case, TI/2 1, and the maximum number
of arcs of T is T / 2, also like in the earlier case. Thus the left-hand side of (9)
is again equal to (t )/2.

If a C3, S can contain, besides a, (ITI 1)/2 arcs of T and 1T21/2 arcs
of T2, and the maximum of the left-hand side of (9) is (I T )/2 + T21/2 +
(t + 1)/2.

Finally, if a 6 A \ T tO C), then S can contain, besides a, (I TI / 2 arcs of T,
hence (I TI 1)/2 + (t + 1)/2 arcs. rq

PROPOSITION 2.6. Let T be an odd CAT oflength and let C be the set ofchords
ofT oftype 1. Then

(10) max SN( TU C)I :(t- )/2.

Proof. Let S* be an APA that maximizes S n (T U C)l. Without loss of
generality, we may assume that for every neutral node v of G[ T], S* N T contains an
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arc incident with v. Indeed, should this not be the case for some v, one can always replace
the arc of S* fq T incident with the (unique) node adjacent in T to v, with one of the
two arcs incident with v in order to obtain an APA SO such that IS f) (T tO C)[
IS* n(Tn

Let s, u, and q denote the number ofsources, sinks, and neutral nodes, respectively,
of G[ T], and let w stand for the number of 2-cycles of T. Let S* f3 (T tO C1)
$1 to $2, where $1 is the set of arcs in S* fq T incident with a neutral node, and $2
S* f’) (T U C1)\$1. By assumption, Sll q. From Proposition 2.3 and the fact that
q<=w,

s+u<t-q.

Every arc in S_ has either a source for its tail, or a sink for its head, or both; every
arc in Sl has either a source for its tail or a sink for its head, but not both; and no two
arcs in Sl tO $2 have a common tail or a common head. Hence

Sl us21 <q+ 1/2(s+ u-q)

<q+1/2(t-2q)

=1/2t
or, since is odd, S* rq T tO C )l <- (t )/2. rq

PROPOSITION 2.7. Let T be an odd CAT oflength t, and let C1 be the set ofchords
ofT oftype 1. Then

(11) maxlSfq(TtoCiU{a})l=(t+l)/2, VaA\(TtOC,).
S

Proof. From Proposition 2.5, for a A\(Tto C1 U C2) the left-hand side of
(11 is >_-(t + )/2. If the inequality is strict for some S, that implies that S con-
tains (t + )/2 arcs of T to C1, contrary to Proposition 2.6. Thus (11 holds for a 6

A\(Tto C, U C2).
Now let a C2. Without loss of generality, assume that v is neutral (an analogous

reasoning holds if u is neutral). Then the last arc of T, say ap, is incident from v. We
put ap into S and consider two cases.

Case 1. The first two arcs of T2 do not form a 2-cycle. Then they have a common
head w. We put into S all arcs of T2 whose position in the sequence T2 is odd and >= 3.
Then deg(w) 0 and IS fq T2I Tzl/2 1. Since no pair of the last three arcs
ap_ 2, ap_ , ap of T form a 2-cycle, and since ap is a reverse arc, ap_ 2 and ap_ have
a common tail z. We put in S all arcs of T1 whose rank in T1 is even and -< p 3.
Then deg(z) 0 and IS rq TI (I TI 1)/2. Now (z, w) joins a source to a sink;
hence it is a chord of type 1. Putting (z, w) in S raises the cardinality of S to
(I TI 1)/2 (arcs of T) + (I T21/2) (arcs of T2) + (the chord (z, w) C) +
(the chord a C2) (t + 1)/2.

Case 2. The first two arcs of T1 do not form a 2-cycle. Then they have a common
head w. We put into S all arcs of T1 whose rank in T1 is odd and >3. Since the last two
arcs of T2 do not form a 2-cycle, they have a common tail z. We put into S all arcs of
T2 whose rank in T2 is even and =<IT21 2. Putting into S the chord (z, w) C1 again
yields a set of cardinality (t + )/2. E]

So far we have assumed that G is complete. The following result, which relaxes this
assumption, will be needed in the next section. For a CAT Tin a directed (not necessarily
complete) digraph G (N, A ), we will say that T is C1-complete if every source of T is
joined to every sink of T by an arc in A.
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COROLLARY 2.8. Proposition 2.7 holds ifG is not complete, but T is Cl-complete.
Proof. Obvious from the proof of Proposition 2.7.

3. Facets of the monotone lolytoleS/i and/i.. We are now ready to characterize
the class of facet inducing inequalities ofthe APA polytope/ associated with odd CATs.
We consider first the subgraph generated by an odd CAT.

As mentioned in 2,/ is the same as the vertex packing polytope defined on G*.
Furthermore, every odd CAT of G corresponds to an odd hole of G*. It is well known
(Padberg [1973 ]) that odd holes of an undirected graph give rise to facet inducing in-
equalities for the vertex packing polyhedron defined on the subgraph generated by the
odd hole. Nevertheless, because of its simplicity and its usefulness in subsequent devel-
opments, we give a direct proof of this result for our case.

For any S A, we denote x(S) Z (xij" (i, j) S).
PROr’OSITION 3.1. Let T be an odd CAT oflength t, and let P(G T] be the APA

polytope defined on G[ T]. Then the inequality

(12) x(T)<=(t-1)/2

defines a facet of(G[ T]).
Proof. From Proposition 2.4, (12) is satisfied by all x 6/(G[ T]). Let T’=

0 otherwise,(a at) Definex6(G[T])byx lifiisoddand <i<t, Xaiai

and fork=2,...,t, definexbyxai= Xa_,- i= 1,"’,t, withi- =tfori= 1.
Then the vectors x, k 1, ..., form the rows of a circulant matrix of order with
(t )/2 ’s in every row (and every column) known to be nonsingular. Hence the
points x, k 1, t, which are clearly contained in

P(G[T])f-){xlx(T)=(t 1)/2),

are afflnely independent. Thus (12) defines a facet of/(G[ T]).
COROLLARY 3.2. The inequality (12) defines a facet of the MATS poly-

tope P* G T]
Proof. Since P*(G[T]) c P(G[T]), the inequality (12) is valid for/6*(G[T]).

Since/*(G[ T]) is full-dimensional, 12 does not define an improper face. Finally, each
of the affinely independent points xk /(G T] used in the proof of Proposition 3.1
is a point ofP*(G[ T]), i.e., an incidence vector of a partial tour. Thus (12) defines a
facet of P* G T] ).

Next we will "lift" the inequality (12) to identify inequalities of the form

(13) x(T)+ (coxo’(i,j)rA\T)<=(t-1)/2

that define facets of/. It is a well-known result in combinatorial optimization (see
Padberg [1973 ], Nemhauser and Trotter [1974], Balas and Zemel [1984]) that if (12)
defines a facet of/(G[T]), then there exist integers ci;, (i, j) A\T, such that (13)
defines a facet of/6. Furthermore, for any ordering (i( ), j( )), (i(p), j(p)) of the
arc set A \ T, there exists such a facet defining inequality, whose coefficients ai can be
obtained by solving a sequence of integer programs. To be more specific, if for k
1, p, Gk (N, A) is the graph consisting of the arcs in

TU { ((i(1),j(1)), ,(i(k),j(k))

and their endpoints, the coefficients of (13) are obtained by setting, for k 1, ..-, p,

(14)
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where

Zi(k)j(k)-" max (xij’(i,j)eAk\ {(i(k),j(k) })

,(xo:jeI’k(i)<= iN\ { i(k)}

(15) ,(xij’iI’-l(j))<=l jeN\{j(k)}

xi()j=0, j4:j(k);xij()=O, i4:i(k)

xij { O, }, i,j) eAk,

and where I(i) and rl(i) are the sets of successors and predecessors, respectively, of
node in G.

It follows from the above definition of the lifting coefficients that in comparing two
inequalities of the form 13 ), say 13)1 with coefficients c }, and 13)2 with coefficients

> 2 if the rank of (i., j.) in the sequencec,., for any given arc (i., j. we have c i,j, Ol i,j,

associated with 13)1 is lower than in the sequence associated with 13)2. Therefore, a
given coefficient has the highest value if the corresponding variable is lifted first and the
lowest value if it is lifted last.

THEOREM 3.3. Let G N, A) be a complete digraph. Let T be an odd CAT of
length t, and let C1 be the set ofchords ofT oftype 1. Then the inequality

(16) x( TUC,) <=(t )/2

defines a facet ofthe APA polytope and the MATS polytope *.
Proof. We lift the inequality (12) by taking the arcs ofA \ T in any order such that

all arcs in C1 precede all arcs inA\( TU C1). Let Cl (i( ),j( )) be the arc in C whose
variable is lifted first. Then the maximum of the integer program (15) is zi()j(l)
(t- 3 )/2, since from Proposition 2.5

max ISOTI max ISO(TU{cl})I I=(t-3)/2.
Se’. cl S Sr’el S

Thus oli(l)j(1) (t 1)/2 zi(1),i(1) 1.
We claim that Oli(k)j(k) 1, k 1, ..., m, where

{(i(1),j(1)), ,(i(m),j(m)) C1.

Suppose the claim is true for k 1, 1, and let k >- 2. From Propositions 2.5
and 2.6,

max { Sfq( TLJ { (i(1),j(1)), ,(i(l),j(l))[

max {ISfq(Tt.J{(i(1),j(1)), ,(i(l),j(l))l "(i(l),j(l))sS}=(t 1)/2,

hence

Zi(l)(l) max { SN(TL.J { i( 1),j(1), ,(i(l- 1),j(l- 1))l "(i(l),j(l))S}

=(t-3)/2,

and thus oi(l)j(l) (t )/2 Zi(l)j(l) 1, which proves the claim. Thus the lifting
coefficients of all variables corresponding to arcs of C are equal to 1.

Consider now the coefficient of the variable associated with some arc a
A \( T t.J C1 that is lifted first after the variables corresponding to arcs in C1. Let a
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(i(m + 1), j(m + 1)). Since T is C-complete in the graph Gm+ , from Corollary 2.8
we have

max {]SN(TU{(i(1),j(1)), ,(i(m+ 1),j(m+ 1))1)

=max {[Sf3(TU{(i(1),j(1)), ,(i(m+ 1),j(m+ 1))1 "(i(m+ 1),j(m+ 1))eS}

(t+ 1)/2,

and thus

Zi(m+l)j(m+l) max {ISO(TU{(i(1),j(1)), ,(i(m),j(m))l

(i(m/ 1),j(m+ 1))eS}

=(t+l)/2-1=(t-1)/2.

Therefore, oli(m+ 1)j(m+ 1) (t )/2 Zi(m+ 1)j(m+ 1) 0. Since the variable asso-
ciated with the arc a has a coefficient of 0 when it is first in the lifting sequence (among
the arcs in A \ T t2 C )), it has a coefficient of0 also when it is in any subsequent position
in the sequence.

This proves that the lifting coefficients of the arcs a A \ T are, for any lifting
sequence that puts all arcs in C before all arcs in A \(T U C ),

O/a___ { 10 aC
aA\( TI,3C)

which proves that (16) defines a facet of P and of P*.
The arc sets corresponding to the support (i.e., the set of positive coefficients) of

each inequality (16) in the digraphs with four, five, and six vertices are shown (up to
isomorphism) in Figs. 5, 6, and 7, with the arcs of T and C shown in solid and shaded
lines, respectively. The number of such inequalities is growing faster than exponentially
with n.

It is easy to establish the Chvatal rank of the inequalities (16). Chvatal’s [1973a]
procedure for generating all the inequalities valid for a polyhedron defined as the convex
hull of integer points satisfying a given set of linear inequalities Ax <= b consists of re-
cursively applying the following step: take all undominated positive linear combinations
of the inequalities of the current system and add the resulting inequalities to the system
after rounding down all coefficients to the nearest integer. The initial system Ax <= b is
said to have rank 0, while the inequalities obtained in the first step of the recursion have
rank 1.

Remark 3.4. The inequalities (16) have Chvatal rank 1.

Proof. Each inequality (16) associated with an odd CAT T can be obtained by
adding the equations (2) associated with each source and each sink of G[ T] and the

rl--4 Ir l-r/l=4 I ,1 =o

FIG. 5
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(a)

(b) (c)

FIG. 6

(a)

(b) (c)

6

(d) (e)

FIG. 7
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inequalities associated with each two-cycle of G T]; then dividing the resulting inequality
by two and rounding down all coefficients to the nearest integer.

There are some inequalities other than the family (16) that can be obtained by
lifting the inequality (12), but their description is more cumbersome. The following rules
apply to all facet-defining inequalities (for P and/3. obtained by sequential lifting from
(12). As before, for k 1, 2, 3, let Ck be the set of chords of type k.

o All variables corresponding to chords in C1 t_J C2 get a coefficient of 0 or 1,
and all remaining variables get a coefficient of 0, irrespective of the lifting
sequence.

o If all variables corresponding to chords in C1 are lifted before all others, then
all variables corresponding to chords in C get a coefficient of and all re-
maining variables get a coefficient of 0 (this is the family 16 )).
Ifa variable corresponding to a chord (i, j) C2 is lifted first, it gets a coefficient
of 1; but then the variables corresponding to certain chords in C, whose
identity depends on (i, j), get a coefficient of 0, as do all the variables corre-
sponding to arcs in A \ T LI C t.J { i, j) } ).

4. Facets of the polytopes P and P*. In this section we will prove that, with
the exception of one special case for n 5 and one for n 6, the inequality (16) de-
fines a facet of the ATS polytope P*. It then follows that it also defines a facet ofthe AA
polytope P.

For the sake of brevity, the incidence vector of a tour will sometimes be called a
tour. A tour (or its incidence vector) will be called extreme with respect to some valid
inequality if it satisfies with equality the inequality in question.

First we establish a useful property of all nontrivial facet-defining inequalities for
P* (i.e., inequalities different from xg >= 0 and xij ). Let cx _-< a0 be a nontrivial
valid inequality for P*, and let X be the matrix whose rows are the incidence vectors x
of tours in G satisfying ax ao. If cx =< a0 defines a facet of P*, then for every arc
(i, j) of G there exists some extreme tour x such that xi l, and some extreme tour x’
such that x 0. Therefore the matrix X has the following two obvious properties:

(i) every column ofX contains at least one 0 and at least one l;
(ii) for every p N, the set of n columns (i, p), N\ {p }, and the set of

n columns (p, j), j e N\ {p }, form two submatrices each of which has rank n 1.
A less obvious but more useful property ofX is the following.

THEOREM 4.1. Suppose ax <- ao defines a facet of P*. For any p, q N, let
A(p, q) be the set of columns (i, p), N\ {p, q }, and (q, j), j N\ {p, q }, ofX.
Then the submatrix ofX consisting ofthe columns in A(p, q) has rank ]A(p, q)] 1;
i.e., 2n- 3 ifp q and 2n 5 ifp 4 q.

Proof. Let X(p, q) be the submatrix of X consisting of the columns in A (p, q).
Clearly, X(p, q) has 2n 2 columns ifp q, 2n 4 columns if p 4 q. Furthermore,
every row ofX(p, q) is either a zero row--if it corresponds to a tour containing the arc
(q, p)mor else has exactly two ’s, one in a column of the form (i, p) for some

N\ {p, q }, the other in a column of the form (q, j) for some j N\ {p, q }. Let
2(p, q) be the submatrix ofX(p, q)consisting ofthose rows with exactly two ’s. Further-
more, let H(p, q) (Vl U V2, E) be the bipartite multigraph whose edge-vertex inci-
dence matrix is (p, q); i.e., let V1 contain a vertex for every column (i, p), e
N\ {p, q }, let V2 contain a vertex for every column (q, j), j e N\ {p, q }, and let E con-
tain an edge for every row of (p, q). We claim that H(p, q) is connected. It then fol-
lows that H(p, q) contains a spanning tree as a subgraph and hence the rank of its edge-
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vertex incidence matrix (p, q), and therefore the rank of X(p, q), is A (p, q) 1,
i.e., 2n 3 ifp q and 2n 5 ifp 4: q.

To prove this claim, suppose H(p, q) is disconnected, and let S be the vertex set of
one of its components. Then any edge of H(p, q) that has one of its ends in S fq V1 has
the other end in S A V2; i.e., a tour x in G satisfying ax ao contains some arc of the
form (i, p) e S if and only if it also contains some arc of the form (q, j) 6 S. In other
words, every tour x satisfying ax a0 also satisfies

(17) x(S V)=x(S V2).

Equation (17) is linearly independent of the equality set of P*, and is also not a
linear combination of the latter with ax ao. To see this it suffices to notice that every
equation of (2), as well as ax c0, can be weakened to an inequality satisfied by
all x P*, whereas (17) cannot be so weakened: replacing "=" by either "=<" or ">="
in (17) yields inequalities invalid for P*. But then it follows that the face defined by
ax ao has dimension of at most dim P* 2, i.e., ax ao does not define a facet
of P*. []

Before stating our main result, we will consider separately three cases with small n
and TI. This will take care ofthe two exceptions from the main theorem and also create
the basis for the induction used in proving that theorem.

The shortest odd CAT has length 5 and it uses four nodes; i.e., (16) is defined
only for TI >= 5 and n >= N[T]I >= 4. The first exception occurs for n 5 and
IN[ T]I 4.

PROPOSITION 4.2. Let Zl 5; i.e., IN[ T]I 4. Then the inequality (16) defines
afacet ofP and P* ifn 4 and ifn 6, but not ifn 5.

Proof. For n =< 5, any asymmetric assignment is a tour; hence P P*. If Zl 5,
then T is the odd CAT shown in Fig. 5; i.e., numbering the nodes of N[ T] clockwise
starting with the neutral node, T 1, 2), (2, ), (2, 4), (3, 2), 3, 4) }, and C1 4.

First let n 4. Table exhibits five affinely independent extreme tours of G. But
5 n 2 3n + 1, hence (16) defines a facet ofP and P*.

Now let n 5; then we are in the situation shown in Fig. 6(a). Let the four nodes
ofN[ T] be numbered as before, and let N\N[ T] { 5 }. Then there are only ten distinct
extreme tours in G, i.e., tours containing exactly two arcs of T tO C1 T, namely
(1, 2, 3, 4, 5), (1, 2, 4, 3, 5), (1, 2, 4, 5, 3), (1, 2, 5, 3, 4), (1, 3, 2, 4, 5), (1, 3, 4, 5, 2),
(1, 4, 5, 3, 2), (1, 5, 3, 2,4), (1, 5, 3, 4,2), (1, 5,4, 3, 2). Butn2- 3n + 11 > 10,
and so in this case (16) does not define a facet of either P or P*. In fact, every extreme
tour with respect to (16) satisfies the equation x14 + x31 + x34 + x43 x2 + x2, which
is independent of x( T tO C (t / 2 and the degree constraints (2).

Finally, let n 6, with N[ T] the same as before, and N\N{ } { 5, 6 } (see Fig.

TABLE
Extreme toursJbr n N[T]I 4.

12 24 42 32 14 13 21 23 31 34 41 43
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TABLE 2
Extreme tours for n 6, N[T]I 4.

23 31 13 21 14 25 35 15 42 64 51 53 52 26 36 16 54 65 41 12 24 34 46 32 43 45 56 61 62 63

7 (a)). Table 2 exhibits 19 extreme tours of G arranged in a sequence that makes it easy
to check that the first 19 columns of the table form a nonsingular matrix.

Thus the tours are affinely independent and since 19 r/2 3n + 1, (16) defines
a facet ofP and P*. E3

The next proposition deals with the case [N[ T][ 5.
PROPOSITION 4.3. Let TI 7 and IN[ T] 5. Then the inequality (16) defines

afacet ofP and P* for n 5 and n 6.
Proof. If TI 7 and IN[ T]] 5, T is of the form shown in Fig. 6 (b) or 6(c).

Since these are analogous, suppose we are in case 6(b), and the nodes are numbered
counterclockwise, starting with the neutral node. Then T { (1, 2), (2, ), (2, 3),
(3, 4), (4, 3), (5, 4), (5, 2)} and C1 ((2, 4), (5, 3)}.

First let n 5 N[ T]]). Table 3 exhibits for this case 11 n 2 3n + affinely
independent extreme tours, hence (16) is facet defining for both P and P*.

Now let Tbe as above, but n 6. This is the situation shown in Fig. 7 (b) and 7 (c).
Assume, without loss ofgenerality, that we are in situation 7 (b), with the first five nodes

TABLE 3
Extreme tours for n N[T][ 5.

12 15 25 43 24 45 32 51 13 14 42 23 31 34 35 41 21 52 53 54
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belonging to N[ T], numbered as before and with N\N[ T] 6 }. Table 4 displays
19 n 2 3n + affinely independent extreme tours of G. Thus (16) defines a facet of
P and P* in this case also.

Finally, for IN[ T]I 6 there is also an exception from our main theorem, namely
for the CAT of Fig. 7(f) and n 6. We will denote by T* the odd CAT of Figure 7(f);
i.e., T* consists ofthree neutral 2-cycles whose non-neutral nodes are joined in a 3-cycle.

PROPOSITION 4.4. If n 6 and T= T*, then (16) does not define a facet of
PorP*.

Proof. Note first that an asymmetric assignment in G is either a tour or the union
of two disjoint 3-cycles. Since any pair of disjoint 3-cycles contains at most three arcs of
T*, and since ([T*I )/2 4, every asymmetric assignment that satisfies (16) with
equality is a tour. So (in this case) 16 is facet-defining either for both ofP and P*, or
for none of them.

Since a tour has six arcs, in order to contain four arcs of T* it must contain either
a 4-path in T*, or else a 3-path and a (node-)disjoint arc. Altogether there are six distinct
4-paths and six distinct 3-paths in T*, and each of the 3-paths can be combined
with two distinct arcs (node-)disjoint from the given 3-path. This gives a total of 6 +
2 6 18 distinct extreme tours. But for (16) to be facet-defining, G would have to
contain n 2 3n + 19 affinely independent tours.

We are now ready to state our main result.
THEOREM 4.5. Let G N, A) be the complete directed graph on n nodes. Let T

be an odd CAT, T 4: T*, and let C be the set ofits chords oftype 1. Then for all n >= 6
the inequality

(16) x(TUC)<-_(t 1)/2

defines afacet ofP and P*.
Proof. We will exhibit dim P* n2 3n + affinely independent tours, extreme

with respect to (16). We will do this by using induction on n in a vein similar to that of
a recent proofofFischetti 1988 for another class ofinequalities, but we will rely heavily
on Theorem 4.1 above.

TABLE 4
Extreme tours for n 6, N[T]I 5.

12 52 26 43 24 46 32 51 13 14 42 62 61 25 45 35 56 63 64 23 31 34 41 21 53 54 16 36 65 15
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For the purposes of induction, we will have to work with, besides G, the complete
digraphs G’ and G" obtained from G by deleting one and two nodes, respectively. We
will denote by P*(G), P*(G’) and P*(G") the corresponding ATS polytopes. Also, for
any k N, S

_
N {k}, we will denote (k, S) := {(k, j) :j S}, and (S, k) :=

{(i,k):ieS}.
There are five cases to be considered. In each of these cases we assume (based on

Propositions 4.2 and 4.3) that the statement in the theorem holds for n IN[ T]I 5
(for n 6 if IN[ T]I 4), and we let n >- max 6, no } where no is the smallest value
of n for which the case in question can arise. In the first four cases we do not assume
anything about N\N[ T], which may or may not be empty: our induction arguments
affect only the nodes ofN[ T]. In the last case, the induction involves a node in N\N[ T],
which is assumed to be nonempty.

Case 1. T has a 2-cycle whose two nodes are both sources or both sinks. Since these
two situations are analogous, we deal explicitly only with the first one. Without loss of
generality, let n NI and p n 1, let n and p be the nodes of the 2-cycle, and let
(n, r) be the arc of T (other than n, p)) incident from n (see Fig. 8 (a)).

Define G’ := G { n } (N’, A’) and

is

T’:= (T\ {(p,n),(n,p),(n,r)})to{(p,r)}.

Then T’ is an odd CAT in G’ with t’ IT’[ 2, and its set of chords of type

C’I C \ (n, U), (p, r) },
where U is the set of sinks of T. By the induction hypothesis, the inequality

(6’) x( r’UC’) <=(t 3)/2

defines a facet ofP* (G’). Hence there exists a set ofq := p2 3/9 + affinely independent
extreme tours in G’. Let yi, 1, q, be these tours. From each yi we construct a
tour x in G by inserting n after p; i.e., ifji is the successor ofp in tour y;, we replace arc
(P, ji) with the pair of arcs (p, n), (n, ji). Since (p, n) e T, and since (n, ji) e T U C1 if
and only if (p, ji) T’ tO C’, it follows that x always contains one more arc of T tO C
than yi contains arcs of T’ to C’; therefore, as t’ + 1, x; is extreme for each i.

Also, the x i, 1, q, are affinely independent. To see this it suffices to notice
that for 1, q,

(18) x}t

Yt
0

k=l, ,p-1,l= 1, ,p, lg=k

k=p,l 1, ,p- 1;

k 1, ,p- 1,l= n; and k n,l=p

k=n,l=l, ,p-1

k=p,l=n

and so the affine dependence of the x would imply that of the yi, a contradiction.
We need n 2 3n + q 2p 2 additional extreme tours. Let Y and X1 be the

matrices whose rows are the q vectors yi and x;, 1, ..., q, respectively. Notice that
there are 2p "free" arcs, i.e., arcs not contained in any of the q tours x constructed
so far. In other words, the matrix X1 has 2p zero columns, specified in (18).

Consider now another q extreme tours in G constructed from the same extreme
tours yi in G’ by inserting n before rather than after p. The construction is perfectly
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(b)

FIG. 8

analogous to the above one, and results in q tours xi, q + 1, , 2q, such that

(19) x,t

Yd
0

k= 1, ,p,l= 1, ,p- 1,l#k

k= 1, ,p- 1,l=p;

k-- n,l 1, ,p- 1; and k=p,l= n

k- 1, ,p- 1,1--n

k=n,l=p.

Let the matrix whose rows are these tours xi, q + 1, 2q, be X2, and let X
be the matrix whose rows are the 2q rows ofX and X2. By permuting the columns ofX
appropriately, it can be brought to the form

221 222

where 0 is the q (2p matrix containing the zero columns ofX, Xll is the rest of
XI, and XI, X form the corresponding partition ofX.

Consider the submatrix X ofX obtained by removing column (n, p). It consists
of the 2p 2 columns ofX of the form (k, n), k e N’\ {p}, and (p, l), e N’\ {p}.
From (19), the columns ofX corresponding to arcs (p, l), e N’\ {p}, are the same
as the corresponding columns of Y; and the columns corresponding to arcs (k, n),
k e N’\ {p}, are copies of the columns of Y corresponding to arcs (k, p), k e N’\ {p}.
Let Y0 be the submatrix of Y made up of these 2p 2 columns. From Theorem 4.1,
the rank of Y0 is 2p 3, since by the induction hypothesis (16’) defines a facet of
P*(G’). Hence X, which is a copy of Y0, also has rank 2p 3. Since X has rank
q p 3p + 1, this implies that the rank ofX is q + (2p 3).

Now consider any extreme tour x* in G, which contains neither of the two arcs
(p, n), (n, p). Such x* can be obtained from any extreme tour y* containing an arc
v, w) with deg?,(w) 2 and deg,(v) < 2, by inserting n into v, w). Since by hypothesis
every arc of G’ is contained in at least one extreme tour, such y* obviously exists. Then
(v, w) T’ U C’ and (v, n) T U C, but (n, w) T tO C (since n is a source and w is
a sink); and thus x* T U C y* T’ U C’ + 1, i.e., x* is extreme. We claim that x*
is affinely independent ofthe 2q extreme tours that form the rows ofX. For suppose not;
then there exist scalars Xi, 1, 2q, such that ()i 1, 2q) and

((Xipn + Xnp) hi 1, 2q) X,, + X*np

or, as Xpn + Xinp 1, i= 1, "", 2q and X,n + X,p O,

()ki:i 1,’’’ ,2q)=O,
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a contradiction. Thus the matrix obtained from X by adding x* as a row, has rank q +
(2p 3) + r/2 3n + 1. This completes the proof of Case 1.

Case 2. T has a sequence of the form {(r, n), (p, n), (p, q), (n, q), (n, s)},
where degr(p) degr(n) deg(n) deg(q) 2 and degr(q) deg(p) 0 (see
Fig. 9). Let n IN[, p n 1, and define G’ G {n} (N’, A’), with T’ :=
(T\ {(r, n), (p, n), (n, q), (n, s)}) U {(r, q), (p, s)}. Then T’ is an odd CAT with
t’ ]T’] 2, and its set of chords of type is

C’l =Cl\ {(S,n),(n, U),(r,q),(p,s)}

where S and U are the sources and sinks of T. Again by the induction hypothesis, the
inequality (16’) defines a facet ofP*(G’). Let yi, 1, q p2 3p + 1, be affinely
independent extreme tours in G’, whose existence follows from the induction hypothesis.
For 1, ..., q, let x; be the tour in G obtained from yi by inserting n after p. By the
same argument as in Case 1, the q tours x are afflnely independent. Furthermore, they
are extreme since T’ U C’ c T U C and the insertion of n replaces an arc of y; in
T’ LJ C’ with two arcs of X in T U C1, or an arc of yi not in T’ U C’ by two arcs of Xi,
one in T U C and one not in T tO CI.

Another set of q affinely independent extreme tours x, q + 1, , 2q, can be
obtained by inserting n before q. Their mutual independence and extremality follows by
the same argument as for the first set of q tours. Among the tours of this second set, we
will identify 2p 5 that, together with the first q tours, form an affinely independent set.
For this purpose, we first remove from the second set all those tours identical to tours
of the first set. These are precisely the tours x obtained from tours y of G’ containing
the arc (p, q). Next, we denote again by X1 and X the matrices whose rows are the two
sets of tours of G generated by inserting n after p and before q, respectively (with X2
containing only rows distinct from those ofX1 ). After appropriate column permutations
we then have

X
X_

where (Xll, 0) and (Xzl, X2_) are obtained by the same column permutations from X1
and X2, respectively, and where the 2p 3 columns of 0 and X22 are of the form
(p, j), j e N’\ {p }, (i, n), e N’\ {p }, and (n, p). We note that no tour of the second
set contains either of the three arcs (p, q), (q, n), or (n, p), so these three columns are
0 also in X22. Then by arguments analogous to those of Case 1, X22 can be shown to
have rank >= 2p 5.

We need three more tours. For the first one we choose any extreme tour y of G’
that contains the arc (p, q) but not the arc (r, p), and extend it to an extreme tour x of

(a) (b)

FIG. 9
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G by inserting n after r. Such yi exists. For let 33 be an extreme tour of G’ that contains
(p, q). If does not contain (r, p), let yi 93; otherwise let yi be the tour of G’ obtained
from fi by deleting the arcs (r, p), (q, t) and u, v), where is the successor of q in and
u, v) T’ tO C’ is any arc contained in the segment ofthe tour between and r. Then

yi( T’ t_J C’ fi( T’ tO C’ ), i.e., yi is extreme. To obtain the second and third tours we
choose extreme tours of G’ that do not contain (p, q), but contain an arc (q, j), j
U\ { q, n ) (the second tour), or an arc (h, p), h e S\ { p, n (the third tour). Such tours
exist for the same reasons that y; exists. We then extend these tours of G’ to extreme
tours of G by inserting n after q, i.e., into the arc (q, j) (for the second tour), or before
p, i.e., into the arc (h, p) (for the third tour). The three extreme tours obtained this way
are affinely independent of each other and of all the remaining tours, because each one
has an arc not contained in any other tour. This raises the number of tours constructed
to n 2 3n + and completes the proof of Case 2.

Case 3. T has two neutral 2-cycles joined by an arc, and T 4: T*. Let k, and p, n
be the two pairs of nodes of the 2-cycles, with (k, p) the arc joining them (see Fig. 10).

Since T :/: T*, the smallest odd CAT containing this configuration has 8 nodes;
thus we assume for this case that n >= IN[ T][ >- 8. Again, without loss of generality, let
n NI and p n 1, and define G’ := G { n ) (N’, A’) and

T’:= (T\ {(p,n),(n,p),(k,p))){(p,l)}.

Then T’ is an odd CAT in G’ with t’ T’I 2, and its set of chords of type is

c;=(c,\ {(, u),(S,p)})w{(s\ {p),l)}

where S and U are the sets of sources and sinks, respectively, of T. As in Case 1, by the
induction hypothesis the inequality (16’) defines a facet of P*(G’). Hence there exists a
set of q := p2 3p + affinely independent extreme tours yi in G’. We will require in
addition each of these tours to satisfy the inequality

(20) yi(s\ { k },l) <= yi(S\ {p },p) + yi( k, U\ {k,p}).

We will show that there always exists a set of q such tours, with the additional
property that 2p 2 among these tours also satisfy the inequality

(21) yi S\ { k } l) q- yi(p, U\ {p})yi(S\ {p } p -Jr- yi k, U\ { k,p }
We claim that
(i) any extreme tour yi in G’ that satisfies (20) can be extended to an extreme tour

in G by inserting n before p; and
(ii) any extreme tour yi in G’ that satisfies (21 can be extended to an extreme tour

in G by inserting n after p.
Now let yi be any extreme tour in G’, and let jl, j2, J3 and j4 be the predecessor

of l, the successor of k, the predecessor p and the successor of p, respectively, in
the tour yi.

To prove claim (i), let X be the tour in G obtained from yi by inserting n before
p, and suppose X is not extreme. Then X contains no more arcs of T to C than yi
contains arcs of T’ tO C’, in spite of the fact that (n, p) T tO CI\(T’tO C’I). This
implies that yi contains more arcs of T’ tO C’ than of T tO C1, i.e., j e S\ { k }, j2
U\ { k, p }, and j3 S\ {p }. Thus the fight-hand side of (20) is 0 while its left-hand side
is 1, i.e., y; violates (20).

To prove claim (ii), if X is obtained from yi by inserting n after p and X is not
extreme, then either yi contains more arcs of T’ tO C’ than of T tO C, i.e., jl e S\ { k }
and j2 t U\ {k, P},j3 q S\ {p}, or else the arc (P, j4) ofy (which is not an arc ofx/)
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FIG. 10

is contained in T U CI, i.e., j4 6 U\ {p }, but j2 U\ { k, p and j3 S\ {p }. In either
case the fight-hand side of (21 is 0, while the left-hand side is >_-1, i.e., yi violates (21 ).

We claim that there always exist q p2 3p + afflnely independent extreme
tours in G’ that satisfy condition (29). To prove the claim, we note that nodes k, and
p of G’ induce in T’ the configuration treated under Case 1. We can then obtain
the p2 3/) + affinely independent extreme tours yi of G’ by the technique used in
the proof of Case 1, slightly amended to result in tours that satisfy (20). Let G"
G’ { }, and let nodes k and of G’ play the role of nodes p and n of G in the proof
of Case 1. Then of the p2_ 3p + extreme tours yi of G’, those (p-1)2-
3(p + obtained by inserting node after k into the corresponding extreme tours
of G" cannot contain any arc of the set (S\ { k }, l), since they contain (k,/); and so
these tours satisfy (20). Of the (p )2 3(/) + tours (constructed by the
procedure of Case that contain (l, k), we choose only those that satisfy (20); there
are among the latter 2/) 5 that are affinely independent of each other and of all the
tours containing (k, l), as we will presently show. This provides a total of (p- )2_
3(/) + + (2/) 5) =/)2 3p afflnely independent extreme tours. Finally, for
a last extreme tour we choose any one that satisfies (20) and contains neither (k, l),
nor (l, k).

Now to prove that the tours containing arc (l, k) add 2/) 5 to the rank of the
incidence matrix of tours versus arcs, let Y and Y2 be the matrices whose rows are all
the tours ofG’ constructed from tours in G" by inserting after k and before k, respectively,
and let Y(l, k) be the submatrix of Y2 consisting of all columns of the form (i, l), e
N’\ {l, k} and (k,j),j e N’\ {l, k}. From Theorem 4.1, the rank of Y(l, k) is 2p 5.
Also, the submatrix of Y1 corresponding to Y(l, k) is a zero matrix. So all we need to
show is that removing those rows of Y(l, k) corresponding to tours that violate (20)
does not reduce the rank of Y(l, k).

We prove this by showing that the bipartite multigraph H(l, k) whose edge-vertex
incidence matrix is Y(l, k) (see the proof of Theorem 4.1 remains connected after the
removal of all edges corresponding to tours that violate (20). Let H* (l, k) be the subgraph
of H(l, k) obtained by the removal of these edges, and let (i, l), (k, j) be any pair of
arcs of G’ corresponding to an edge ofH(l, k) that has been removed. We will show that
(i, l) is connected to (k,j) in H*(l, k).

Since the tour containing the sequence D { i, l), (l, k), (k, j) } violates (20), it
follows that e S\ { k } and j U\ { k, p }. We exhibit three sequences of arcs, D, D2,
D3, each of which can be completed to an extreme tour in G’ that satisfies (20) and
hence corresponds to an edge of H*(1, k). These three edges then form a path in
H*(l, k) that connects (i, l) to (k, j). The three sequences are:

D1 {(i,l),(l,k),(k,h)} for some heU\ {k,p,i};

D2: {(p,l),(l,k),(k,h)}

D3 := {(i,p),(p,l),(l,k),(k,j)}.
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The existence of h follows from IN[ T]I > 8. Since D1 and D2 contain (k, h)
(k, U\ { k, p } ), while 03 contains i, p) e (S\ {p }, p), any tour in G’ that contains D1,
D2 or D3 satisfies (20). Furthermore, since each Oi, 1, 2, 3, has at least half of its
arcs in T’U C’, it can obviously be completed to an extreme tour in G’, i.e., one with
(IT’I 1)/2 arcs in T’t_J C’. Finally, the path in H*(I, k) that connects (i, l) to
(k, j) consists ofthe three edges (( i, l), (k, h)), ((k, h), (p, l)), ((p, l), (k, j)) corresponding
to the three extreme tours containing D, D2 and D3, respectively. This completes the
proof of our claim that G’ has p2 3p + affinely independent extreme tours that
satisfy (20).

Next we claim that among the q p2 3p + affinely independent extreme tours
in G’ that satisfy (20), there are 2p 2 that also satisfy (21 ). Clearly, if a tour yi satisfies
(20) but violates (21 ), and if h and j are the predecessor and successor, respectively, of
p in yi, then h S\ {p andj U\ {p }. Let y be the matrix whose rows are the q affinely
independent extreme tours yi, and let Y(p) be the submatrix of Y consisting of the
2p-2 columns of the form (h,p), h eN\{p}, and (p,j), j eN\{p}. From
Theorem 4.1, the rank of Y(p) is 2p 3. We will show that removing all the rows of
Y(p) corresponding to tours such that h S\ {p } and j e U\ {p }, where h and j
are the predecessor and successor of p in the given tour, results in a matrix Y* (p) of
the same rank 2p 3. But then Y*(p) has at least 2p 2 rows, which proves that
2/9 2 of the tours yi that satisfy (20) also satisfy (21 ).

To prove that Y* (p) has rank 2p 3, we will show that it is the incidence matrix
of a connected bipartite graph on 2p 2 vertices. Let H(p) (V1 t.J V2, E) be the
bipartite multigraph whose edge-vertex incidence matrix is Y(p), and let H*(p)
(V1 U V2, E*) be the subgraph of H(p) that is the incidence matrix of Y* (p). H(p)
is connected (see the proof of Theorem 4.1 ). H*(p), like H(p) has 2p 2 vertices.
To show that H* (p) is connected, let (h, p), (p, j) be any pair of arcs of G’ (vertices of
H* (p)) corresponding to an edge in E\E*. Then h S\ {p }, j U\ {p }. We will show
that (h, p) is connected to (p, j) in H* (p). For this purpose we exhibit three sequences
ofarcs, FI, f2, and F3, each ofwhich can be completed to an extreme tour in G’ satisfying
(21 and hence corresponding to an edge of H* (p), such that the three edges form a
path in H* (p) connecting (h, p) to (p, j). Consider the sequences

F1 {(h,p),(p,l),(l,k),(k,r)} forsome reU\ {k,p,h}

F2 {(m,p),(p,l),(l,k)} forsome meS\ {p},

F3 m,p), (p,j), (j, l) }.

Again, the existence of r follows from IN[ T]I >- 8. Each of F1, F2, and F3 has at
least half of its elements in T’ U C’ and therefore can be completed to an extreme tour
in G’. Furthermore, any such extreme tour satisfies (21 since for any tour containing
Fl, F2 or F3, the left-hand side of (21) is equal to while the fight-hand side is
greater than or equal to (equal to in the case of F1 ). Finally, the path in H* (p) that
connects (h, p) to (p, j) consists of the three edges ((h, p), (p, l)), ((p, 1), (m, p)),
((m, p), (p,j)).

This proves the claim that 2p 2 ofthe q affinely independent tours of G’ satisfying
(20) also satisfy 21 ).

We now return to the construction of n 3n + affinely independent extreme
tours in G. A first set of q p 3p + tours is obtained by inserting n before p into
each of the q tours yi of G’ postulated above. These tours, xi, 1, ..., q, are affinely
independent by the same argument as in Case 1, and they are extreme because every
tour yi satisfies (20).
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The next set of tours x; is obtained by inserting n after p into each of the 2p 3
affinely independent extreme tours yi of G’ that satisfy (2 ). The resulting tours are then
affinely independent and extreme. To show that they are also affinely independent ofthe
q tours x obtained by inserting n before p, let X and X2 be the matrices whose rows are
the tours x obtained by inserting n before p and after p, respectively, and let Y, Y2 be
the corresponding matrices whose rows are the tours yi in G’ from which the x were
obtained. Then the matrix whose rows are the tours x in G can be brought by appropriate
column permutations to the form

X
X_ X

where (X, 0) and (Xzl, X22) are obtained by applying the column permutations to X
and X2, respectively, and where the submatrices 0 and X22 have 2p columns, namely,
(p,j),j N\ {p, n}, (i, n), N\ {p, n}, and (p, n). Let Y2 be obtained from X22
by removing column (p, n); then X2 is a copy of the submatrix Yz(P) of Y2, whose
2p 2 columns are (p,j),j N’\ {p}, and (i, p), e N’\ {p}. Since Yz(p) was shown
to have rank 2p 3, X2 has the same rank.

Finally, a last tour x*, not containing either of the arcs (n, p), (p, n), is added to
the above q + 2n 3 tours to form a set of n 2 3n + 2 afflnely independent extreme
tours in G. Such a tour can be constructed by inserting n into any arc (u, v) q
T’U C’ U {(k, p)} of an extreme tour y* of G’ that contains (k, p) but not (p, l).
Such y* exists. For let )) be an extreme tour of G’ that contains (k, p). If )) does not
contain (p, l), let y* j); otherwise let y* be the tour of G’ obtained from ))by delet-
ing the arcs (p, l), (l, m) and (h, k), where rn is the successor of I and h is the pre-
decessor of k in 29, and inserting arcs (h, l), (l, k) and (p, rn). Then (p, l) T’ U C’,
(l, rn) T’ U C’l (since is a sink) and (h, k) may or may not belong to T’U C’. On
the other hand, (l, k) T’LJ C’; and (h, l) e T’ U C’ if and only if (h, k) e T’ U C’;
thus y*( T’ U C’) >= )3( T’ U C’), i.e., y* is extreme.

This completes the proof for Case 3.
Case 4. T does not contain either of the configurations treated under Cases 1, 2,

and 3, but it has two adjacent nodes, say p and n, such that degr(p) deg(n) 0 and
degr(n) deg(p) 2 (see Fig. ). Let r and s be the two nodes adjacent to p and n,
respectively, (other than p and n).

Let G" (N", A") be the graph obtained from G by deleting nodes p and n, i.e.,
G" := G {p, n }. Define

T":=(T\ {(r,p),(n,p),(n,s)})U{(r,s)}.

Then the set of chords of type of T" is

C=Cl\ {(S,p),(n, U),(r,s)},

(a)

FG. 11

(b)
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where again S and U are the source and sink sets, respectively, of T. We have T"I
TI 2 and by the induction hypothesis the inequality

(16") x( T"toC’) <=(t- 3)/2

defines a facet of P* (G").
Since (16") defines a facet of P*(G"), there exists a set of q (n 2) 2

3(n 2) + n 2 7n + 11 afflnely independent extreme tours (with respect to (16"))
in G". Let yi, 1, ..., q be the tours of such a set. We extend each of these to a
tour x in G by inserting the sequence p, (p, n), n } after some fixed node k such that
degr-(k) 2 and deg,(k) 0. Such a node exists by the assumption that none of the
Cases 1, 2, or 3 holds. It is easy to check, along the lines discussed in Case 1, that the
resulting tours x’, 1, ..., q, are affinely independent. Furthermore, since we always
have (k, p) 6 T to C, and since (n, l) 6 T to C if and only if (k, l) T" to C’ (where
is the successor ofk in yi), each tour x has one more arc in T tO C than the corresponding
tour y; has in T" tO C’, i.e., the tours x are extreme.

Next we generate a second set of q tours xt, q + 1, ..., 2q, by inserting the
sequence { n, (n, p), p } before the same node k used above. Since (n, p) T to C, again
each tour x in this set has one more arc in T tO C than the corresponding tour yi has
in T" tO C’ and is therefore extreme. Furthermore, the tours x are easily seen to be
affinely independent of each other, and we can use Theorem 4.1 to show that they add
2n 7 to the rank of the matrix X whose rows are the vectors x i. Indeed, ifX and X2
are the matrices whose rows are the first q and the second q vectors x’, the n 3 columns
ofX of the form (k, j), j N\ { k, p, n } and the n 3 columns (ofX of the form
i, n), N\ { k, p, n }, form a zero matrix, and if X22 is the submatrix ofX2 whose col-
umns correspond to those of this zero matrix, from Theorem 4.1 the rank of X22 is
one less than the number of its columns, i.e., 2n 7. Thus the second set of q vectors x
adds 2n 7 to the rank of the system.

We now generate from the same set of tours yi in G" q more tours x by insert-
ing the sequence { n, (n, p), p after some fixed node such that deg,(l) 2 and
degr-(l) 0, and still q more tours x by inserting the sequence { p, (p, n), n before l.
Again the existence of such l is guaranteed by the fact that G" does not contain either of
the configurations defining Cases and 2. These third and fourth sets of tours x’,
2q + 1, ..-, 3q and 3q + 1, ..., 4q are easily seen to be extreme on the same
grounds as in the case of the first two sets. As to their contribution to the rank of the
system, let X3 and X4 be the matrices whose rows are the tours in the third and fourth sets,
respectively. The n 4 columns of the form (p, j), j N\ { k, l, p, n ), have only 0 en-
tries in both X and X2; the corresponding submatrix of X3 has exactly one in every
row, and its rank is n- 4. Furthermore, the n- 4 columns of the form (i, p),
6 N\ { k, l, p, n }, have only 0 entries in each of X, X2, X3, and the submatrix

of X4 corresponding to these columns has rank n 4. Thus the third and fourth set of
tours x contribute 2n 8 to the rank of the system which becomes (n 2 7n + 11 +
(2n 7) + (2n 8) n 2 3n 4.

We need five more tours. As our first tour, say x*, we choose an extreme tour
containing (k, n) and (n, p), but not (p, l). (The presence of (k, n) and (n, p) excludes
(n, k) and (l, p)). Such a tour can be constructed as follows. Let y* be any extreme tour
of G" in which k is followed by a node, say m, such that deg,(rn) 0, and let x* be
the extreme tour of G obtained from y* by inserting the sequence (n, (n, p), p) after
the node l as explained earlier in this proof. Then x* contains (n, p) and (k, rn) but not
(p, l). We can then replace (k, rn) by (k, n) as follows. Notice that (k, rn) T tO C and
(l, n) T tO C. Let (u, v) T tO C be any arc of x* distinct from (k, m) and (l, n).
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(Since TI >= 7, x* has more than 3 arcs not contained in T U C .) Without loss of
generality, suppose x* traverses the arcs (k, m), (l, n) and (u, v) in that order (an
analogous argument holds for a different order). Then deleting (k, m), (l, n) and (u, v)
and inserting (k, n), (l, v) and (u, m) produces a tour x* of G containing (k, n) and
(n, p) but not (p, l), such that x* I(TU C) x*(TU C1), i.e., extreme.

As our second extreme tour we choose x* 2 containing (n, k) and (p, n) but not
(l, p). The construction ofx* 2 is analogous to that ofx* 1. As our third and fourth tours
we choose x .3 containing (l, p) and (p, n) and x.4 containing (p, l) and (n, p). Clearly,
the four tours x* i, 1, 4 are independent from each other and from the tours
constructed earlier.

Finally, our last tour x* can be any extreme tour of G containing neither (n, p)
nor (p, n). The existence of such a tour is easily seen. Since every one of the tours
constructed earlier contains either (n, p) or (p, n) while x .5 contains neither of these
arcs, x* can be shown to be affinely independent of the other extreme tours by the
argument used at the end of Case 1.

This completes the proof of Case 4.
Case 5. n >- 7 and TI --< n. Then N(T)I --< n 1. Without loss of generality, let

n e N\N[ T] and G’ := G n } (N’, A’). Then G’ contains as a subgraph one of the
graphs shown in Figs. 7 (b), (c), or (d). In particular, G’ has two nodes, k, l, such that
degr(k) deg(/) 0. We have T’= T, C’ C1, and by the induction hypothesis
(16) defines a facet ofP*(G’). So there exists a set ofq :=/)2 3/) + affinely independent
extreme tours in G’ (where p n ), say yi, 1, q. We construct two sets of
affinely independent extreme tours x in G, each of size q, by inserting n after k (for the
first set), and before (for the second set), respectively, into each tour yi. Let XI and X2
denote the matrices whose rows are the two sets of tours xi. We notice that 2p arcs,
namely (k,j),j 6 N’\ {k}, (h, n), h e N’\ {k}, and (n, k), have not been used by any
of the first q tours. Let X22 be the submatrix consisting of the corresponding columns of
X2. We notice that the columns (h, n), h e N’\ { k }, of X22 are copies of the columns
(h, l), h e N’\ { l }, ofX2 and hence, by Theorem 4.1, the rank ofX22 is >_-2/) 5; so we
need three additional tours.

We notice that none of the first 2q tours has used either of the three arcs (n, k),
(l, n), (k, l). A first extreme tour in G, containing (k, l) but none of the other two arcs,
can be obtained by inserting n into any arc (i, j) T U C, 4: l, j 4 k, of any tour
e { 1, q), that contains (k, l). Such a tour is guaranteed to exist by the fact that
]N’] >_- 6. A second extreme tour in G, containing (l, n) but not (n, k), can be obtained
by inserting n into any arc (l, j) T U C, j 4: k, of some extreme tour yi. Finally, a
third extreme tour in G, containing (n, k), can be obtained by inserting n into some arc
(i, k) T t_) C, 4: l, of any extreme tour y;. Again, the existence of tours yi with the
postulated properties follows from the fact that ]N’] >_- 6. This completes the proof of
Case 5.

The five cases considered are exhaustive. Indeed, the complete digraph G on n nodes
for any n >= 6, with any odd CAT T, can be obtained from the digraphs whose node set
and odd CATs are shown in Figs. 5, 6 (b), 6 (c), or 7 (a), 7 (b), 7 (c), by recursive ap-
plication (in the reverse direction) of the operations used in Cases 1-5 of the induction.
For n 6 and IT] 7, we are either in the case shown in Fig. 6 (b) or 6 (c) (dealt with
in Proposition 4.3), or else in the situation shown in Fig. 7 (d), which can be reduced
by one application of Case 4 of the induction step to the situation in Fig. 7 (a) (settled
in Proposition 4.2). For n 6 and IT] 9, the situation shown in Fig. 7 (e) can be
reduced to that of Fig. 6(b) or (c) by one application of Case 1, and so on. To see that
the cases considered are exhaustive, note the following.
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If IN[ T]I n 6 and we are not in Case 1, 2, or 3, then T either has a single
neutral 2-cycle, or else has two that are connected (in T) by a path of length at least 3
(this is so because the number of neutral 2-cycles is always odd). In either case, Tcontains
the configuration of Fig. 11, i.e., we are in Case 4. On the other hand, if IN[ T]I -<
n- and n >= 7 we are in Case 5.

This completes the proof of the fact that the inequality (16) defines a facet of P*.
Since every tour used in the proofis also a point in P, (16) also defines a facet ofP.

5. Relation to earlier work. Several classes of valid, and sometimes facet-defining,
inequalities for the traveling salesman polytope on a directed graph are known. For a
thorough survey of the relevant literature see Gr6tschel and Padberg [1985 ].

First, if

E OlijYij’(i,j) e E) <= ao
is a valid inequality for the TS polytope on an undirected graph, then, aij( xij + xji) i,j)A, <j) =< a0
is a valid inequality for the ATS polytope on the corresponding directed graph. Thus the
various classes of facet-defining inequalities for the TS polytope on an undirected graph,
like the subtour elimination inequalities (Dantzig, Fulkerson and Johnson 1954 ]), the
comb inequalities (Chvatal [1973b], Gr6tschel and Padberg [1979]), the clique tree
inequalities (Gr6tschel and Pulleyblank 1985 ]) have their correspondents as valid in-
equalities for the ATS polytope on a directed graph. The subtour elimination inequalities
are facet defining for P* for n >= 5 and all subtours of length l, 2 =< _-< n 2; comb
inequalities with exactly three teeth, each containing a single node of the handle, are
known to be facet-defining for P* for n >_- 6, but whether the more general comb in-
equalities are facet-defining for P*, and whether any comb inequalities are facet-defining
for P*, was until recently an open question (except for n 6, in which case they are
not). Very recently Fischetti [1988] showed that all comb inequalities are facet-defining
for P* for n >= 6 and for P* for n > 7. As to the more general clique tree inequalities, it
is not known at this point whether they are facet-defining for either/3, or P*.

All the above classes share the feature that the inequalities belonging to them are
symmetric in the sense that an arc (i, j) belongs to the support of such an inequality if
and only if (j, i) does. The inequalities associated with odd CATs do not have this
property except for some special cases, so they are distinct from each ofthe above classes.
As to those special cases, they arise when a subset of T together with the chords of type
form a complete digraph, in which case this complete digraph becomes the handle of

a comb whose teeth are the directed 2-cycles of T. Such is the case, for instance, with
the odd CAT of length 9 shown in Fig. 7(f). More generally, all comb inequalities
corresponding to combs whose handle H and teeth Ti, 1, k, satisfy Til 2
for all and H T U U Tk), are special cases of odd CAT inequalities and thus,
from Theorem 4.5, for HI >= 5 define facets of P*.

Several classes of asymmetric valid inequalities for the TS polytope on a digraph
have been identified by Gr6tschel [1977] and Gr6tschel and Wakabayashi [1981a],
198 lb ]. Some ofthese are derived by lifting the (weak) subtour elimination inequalities.
As the support of each such inequality contains a subtour, the odd CAT inequalities,
whose support contains no subtour except for some special cases, are obviously distinct
from this class. Other classes are associated with hypohamiltonian and hyposemiham-
iltonian graphs; again, these do not subsume the odd CAT inequalities. Finally, the
classes known as Tk-inequalities and C2-inequalities (Gr6tschel 1977 overlap with the
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FIG. 12

odd CAT inequalities in that the Tk-inequality for k 2 is precisely the odd CAT inequality
on four nodes depicted in Fig. 5, and the C2-inequalities with handle H and teeth
Ti, 1, k, such that Tel 2 for all and H c (T1 U t3 Tk), are precisely
the odd CAT’s with 2k + 2 nodes and k neutral 2-cycles, together with their chords of
type (see Fig. 12 for the case k 3). For this latter class, the question of whether they
are facet-defining for P or P* (settled in the affirmative in this paper) was still open at
the time of writing of Grrtschel and Padberg [1985 ].

6. Conclusion. We have given a partial linear description of the asymmetric as-
signment polytope P defined on a digraph G by identifying a family of valid inequalities
associated with odd closed alternating trails of G. These inequalities are facet-defining
for P and also for the traveling salesman polytope P* on G.

It is to be expected that these inequalities will provide improved bounds and enhanced
solution procedures for the ATSP when used as cutting planes either in the context of a
pivoting algorithm like that ofPadberg and Hong 1980 ], or in the context ofa Lagrangian-
based algorithm that takes the cuts in the objective function with appropriate multipliers,
as that of Balas and Christofides [1981 ].

Acknowledgments. Thanks are due to Matteo Fischetti and Giovanni Rinaldi for
helpful comments on earlier versions of this paper.
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Abstract. In this article, it is shown that if G is an induced subgraph of the dth power of a cycle of length
n, and G has minimum degree d + k, then G has at least [(d + k)/2d]n vertices. This answers a problem
of Krzdy.
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Let Ca be the dth power of a cycle on n vertices, that is, the graph whose vertices
are the integers modulo n, two vertices being joined if and only if their difference is less
than or equal to d.

During the problem session at the SIAM Conference in San Francisco in June 1988,
Krzdy [5] proposed the following problem" Find the minimum number of vertices of
any induced subgraph G of Ca, of minimum degree d + 1. In particular, he asked to
prove that such a graph must have at least n/2 vertices.

This question is motivated by the study of the d-girth of a graph. The d-girth of a
graph G is defined, according to [6], as the minimum number of vertices of an induced
subgraph of G with minimum degree d (note that the 2-girth is nothing but the girth).
Erdrs originally proposed the problem of determining the largest d-girth of a graph on
n vertices and rn edges. Krzdy and Markert [6] considered this problem, and in
order to find graphs with a large (d + )-girth, asked to determine the (d + )-girth of
Ca. In [6 ], they gave constructions that show that the (d + )-girth of Ca is at most
(n/2)[1 + (d + )/(d2 + d- e)], where e 0 or whenever d + 0 or (mod 2),
respectively. They conjectured that this value is exactly the (d + )-girth of Ca and
furthermore showed that the (d + )-girth ofCa is at least n V ).

In this article we show that the (d + )-girth of Ca is at least [(d + )/(2d)]n,
solving the problem proposed in [5] and proving the above conjecture when d + is
even. In fact, we solve a slightly more general problem by determining the minimum
order of an induced subgraph ofCa of degree d + k (with k >= ).

Note that a minimum induced subgraph of minimum degree d- k (with k >= 0)
of Cna is a complete graph on d k + vertices.

Note also that these graphs Ca, which are particular circulant graphs, have nice
properties. For example, they are the graphs with n vertices and connectivity 2d with
the smallest possible number of edges (see Berge [1 ]). They also have "super line-con-
nectivity properties" (see Boesch and Wang [2]). They are also important in the design
offault-tolerant networks. For example Chartrand and Kapoor 3 ], Hayes 4 and Wong
and Wong [7] proved that they are minimum 2 d 2 Hamiltonian graphs (respectively,
2d- 2 edge-Hamiltonian). That is, they are the graphs with the minimum number of
edges among the graphs on n vertices that remain Hamiltonian after the deletion of up
to 2d- 2 vertices (respectively, up to 2d- 2 edges).
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THEOREM. Let G be an induced subgraph of Cd of minimum degree d + k,
<= k <= d, then

IV(G)[ d+k
n 2d"

Proof. Denote by V the set of the vertices of G and by V the complement of this
set in the interval [0, n ].

Let I [u, v] be an interval of cardinality less than or equal to d, with v in V. First
observe that if I contains ff elements of V, then the interval [v + 1, v + d + must
contain at least t7 + k elements of V to insure that the degree of v in G is at least d + k.

Now we can construct an infinite sequence of consecutive intervals of integers
modulo n" J1 [al + 1, a2], J2 [a2 + 1, a3], Jj [aj + 1, a.+ 1], satisfying
the following properties:

a belongs to V, for all j, j >_- 2;
IJl <=d, forallj, j > 1;
nj+ ] + k, for all j, j -> 1, where n [J f) V[ and ffj. [J f-I V[.

Indeed, we can define these intervals recursively as follows:
J [al / 1, a] is any interval of length at most d such that a2 is in V.
Suppose we have constructed the sequence up to J [a + 1, a+ 1], with aj+l in

V. Then, Jj.+ [ag+ + 1, aJ+ 2], where a.+ 2 is the . + kth clockwise neighbor of ag+ 1.

Note that, by the above observation, a+ 2 is well defined as aj+ has at least counter-
clockwise neighbors in N. Note also that J+l has length at most d.

As there exist only a finite number of intervals of length at most d, there exist two
positive integers m and p such that Jm Jm + p.

Now, let 11 Jm, I2 Jm +1, Ip Jm + p-1. This sequence of intervals clearly
satisfies the following properties:

(a) for all i, =< =< p, Jig[ =< d.
(b) if ni= [IiAV[ and Hi= [Iif’IV I, then for all such that 2=<i-<p,

ni i-1 + kand nl n-p + k.
(c) all the integers modulo n appear in the same number of intervals.
From (b) and (c), we deduce that

Ivl E i=lni

n E p
i= (ni4- i)

Let

Therefore

p p

N _, ni, then , i N- kp.
i=1 i=1

Igl N
n 2N-kp kp

2-
N

However, for all i, =< =< p 1, ni + ng +1 ni + ffi 4- k <= d + k by (a), and similarly
np + n <= d + k. Therefore

N=<
p(d+k) IVI d+k

and >-
2 n

2 -kp 2- 2___k 2d
N d+k
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Remark 1. If d + k is even, then the bound is sharp. Indeed the subgraph obtained
by alternatively taking d + k) / 2 vertices in Vand d k) / 2 vertices in Vhas minimum
degree d + k. In fact this subgraph is regular of degree d + k, and is isomorphic to a
power of a cycle.

Remark 2. If d + k is odd, then the bound is not sharp.
For instance, if d 2 and k 1, then the smallest subgraph of minimum degree 3

of C] has n vertices. The extremal graph (already given in [6 ]) is obtained, when 5
divides n, by alternatively taking four vertices in V and one in V. To prove that this
subgraph is the smallest, let us show that any vertex in V is followed by at least four
vertices in V. First recall that if a vertex is in V, then at least three of its four neighbors
are also in V. Then note that there cannot be two or more consecutive vertices in V, as
the first vertex in V after the sequence of vertices in Vwould have at most two neighbors
in V. Let be a vertex in V. By the preceding remark, v + is in Vand its two neighbors
v + 2 and v + 3 are also in V. Now, as v + 2 has already as neighbor in V, v + 4 is
also in V.

More generally, one can prove that if k d- 1, then

(I V(G)l)/n>=2d/(2d+ 1).

An extremal example is obtained by alternatively taking 2 d vertices in V and one in V.
If d 4 and k 1, w6 can prove that the smallest subgraph of Can of minimum

degree 5 has 12
Tn vertices. The extremal example, when 19 divides n, corresponds to

repetitions of the sequence

where v denotes a vertex in V and a vertex in V. This example is already given in [6],
where it is proved to be unique.

If d 5 and k 2, we can prove that the smallest subgraph of C, with minimum
degree 7, has n vertices. An extremal graph corresponds to repetitions of the sequence

If d 6 and k 1, Krzdy and Markert proved that the smallest subgraph of C6,
with minimum degree 7, has 24

T vertices. They also showed that there are two extremal
sequences:

and

vvvgvvgvvvvvvvvvvgvvvgvgvgvvgvvvgvgvv.

In view of these results, we offer the following conjecture which contains the conjec-
ture of Krzdy and Markert [6 ], when k 1. They verified it for d 2, 4, 6, and 8
and k 1.

Conjecture. The minimum number of vertices of an induced subgraph ofCa, with
odd minimum degree d + k, is

nd(d+3-k)
2(d--(k-2)d-k)
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Abstract. The concepts ofnth degrees and nth-order odd vertices in graphs are introduced. The first degree
ofa vertex v in a graph G is the degree of v, while the nth degree (n >_- 2) of v is the sum ofthe (n )st degrees
of the vertices adjacent to v in G. By a first-order odd vertex in a graph G is meant an (ordinary) odd vertex
in G, while for n > 2, an nth-order odd vertex of G is a vertex adjacent to an odd number of (n )st-order
odd vertices. The number of nth-order odd vertices, n l, 2, is investigated. A sequence s, s2,

sn, of integers is defined to be a generalized odd vertex sequence if there exists a graph G containing exactly
sn nth-order odd vertices for every positive integer n. Generalized odd vertex sequences are characterized.
Relationships between the nth degrees of the vertices of a graph G and the walks of length n in G are described.
The analogous problem for digraphs is also discussed.

Key words, nth-order odd vertex, nth degree, generalized odd vertex sequence
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1. Nth-order odd vertices. Probably the most basic result in all of graph theory is
that the sum of the degrees of the vertices of a graph G is twice the number of edges in
G. An odd vertex ofG is one having odd degree. An immediate consequence ofthe above
result is that there is an even number of odd vertices in every graph. (Terms not defined
here may be found in [2].)

The object of this article is to introduce generalizations of the degree of a vertex
and of an odd vertex and to establish some results concerning these concepts.

By the first degree deglv of a vertex v of a graph G is meant simply the degree of v,
while for n >= 2, the nth degree degnV of v is the sum of the (n )st degrees of the
vertices of G adjacent to v. A graph G together with the nth degrees, n 1, 2, 3, of its
vertices are shown in Fig. 1.

A vertex v of a graph G is called an nth-order odd vertex of G if degnv is odd.
Equivalently, for n >_- 2, a vertex v is an nth-order odd vertex if it is adjacent to an odd
number of (n )st-order odd vertices.

The graph G of Fig. has two first-order odd vertices, two second-order odd vertices
and no third-order odd vertices. Consequently, this graph has no nth order odd vertices
for n >_- 3.

We denote the neighborhood of a vertex v in a graph G by N(v). Then, for n >-_ 2,

(1) degnV= degn-lU.
uN(v)

Thus, in computing Zv vG) degnv, we note that degn_ lU occurs deg u (= deglu) times
for each u V(G), so that for n >_- 2,

(2) deg,v= deglvdeg_lV.
V(G) V(G)
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V

U W

FIG. 1. The nth degrees ofvertices.

For the purpose ofpresenting a result involving the number ofnth-order odd vertices,
we consider a generalization of (2).

LEMMA 1. Let G be a graph and n >= 2 an integer. Then for every integer k with
-< k =< [n/2J,

(3) degnv= degvdeg,_v.
ve V(G) ve V(G)

Proof. First, we note that (2) shows that the desired result follows for n 2 and
n 3. Thus, let n >_- 4. We now proceed by induction on k. Again by (2), the lemma
holds for k 1.

Let k be an integer with =< k < n/2 J and assume that

degnv degkv deg_ kl).
v V(G) v V(G)

NOW,

Therefore,

v V(G) v V(G) u-N(v)

u V(G) vN(u)

Z
u V(G)

degn- k- U degk + 1U.

deg,v degk + 1) deg,_ k- iV.
v V(G) ve V(G)

We now present an extension ofthe well-known result on the number ofodd vertices
in a graph, which we mentioned earlier.

THEOREM 1. For each positive integer n, every graph contains an even number of
nth-order odd vertices.

Proof. The proof is by induction on n, noting again that the result is true for n
1. Let n > be an integer and assume for every integer k with <- k < n, that G contains
an even number of kth-order odd vertices. We consider two cases.
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Case 1. Suppose that n is even, say n 2m. By Lemma 1,

(4) degnv= (degmV) 2.
v V(G) v V(G)

By the inductive hypothesis, the fight-hand expression in (4) contains an even number
of odd terms and so is even. Consequently, the left-hand expression in (4) contains an
even number of odd terms, so that G contains an even number of nth-order odd vertices.

Case 2. Suppose that n is odd, say n 2m + 1. Applying Lemma again, we have

(5) degnv= degmv’degm+lV.
v V(G) v V(G)

Note that a term degmv" degm +iv in the right-hand sum in (5) is odd if and only if both
degmv and degm/ iv are odd. Further, degm / iv is odd if and only if v is adjacent to an
odd number of mth-order odd vertices.

If G contains no mth-order odd vertices, then G contains no rth-order odd vertices
for r > m so, in particular, G contains no nth-order odd vertices and the desired result
follows. Suppose then that G contains (an even number of) mth-order odd vertices. Let
Hbe the subgraph induced by the mth-order odd vertices. Then both degmv and degm / iv
are odd ifand only if v has odd degree in H. Since Hhas an even number ofodd vertices,
G contains an even number of vertices v for which degmV" degm / iv is odd. Hence the
fight-hand sum in 5 contains an even number of odd terms, implying that G contains
an even number of nth-order odd vertices.

2. Generalized odd vertex sequences. By Theorem l, we know that every graph
contains an even number of nth-order odd vertices for every positive integer n. Therefore,
for each graph G, there exists an infinite sequence sl, s2, s,, of nonnegative
even integers where sn is the number of nth-order odd vertices of G. In this section, we
consider the following question: For which sequences sl, s2, sn, of nonnegative
even integers does there exist a graph G such that G contains sn nth-order odd vertices
for each positive integer n? We shall call such a sequence that is realized by a graph a
generalized odd vertex sequence.

We begin by establishing two necessary conditions for a sequence of nonnegative
even integers to be a generalized odd vertex sequence. Suppose that sn } is a generalized
odd vertex sequence for which sk 0 for some positive integer k. Then this sequence is
realized by a graph G that contains no kth-order odd vertices. Certainly, then, every
vertex of G is adjacent to an even number (namely, zero) of kth-order odd vertices, so
that sk + 0. Consequently, if s 0, then si 0 for all > k.

A sequence sn } is called ultimately periodic, or more simply periodic, if there exist
positive integers and N such that s s+t for all k >_- N.

THEOREM 2. Every generalized odd vertex sequence is periodic.
Proof. Let G be a graph with V(G) { v l, v2, vp } and let { sn be the gen-

eralized odd vertex sequence of G. For each positive integer n, let an be the p-vector
(an, l, an,2, an,p), where an, if vi is an nth-order odd vertex and an,i 0 other-
wise. Thus an+ 1,i ( an,j)(mod 2), where the sum is taken over all j such that vj
N(vi). Since an,i 0 or for each positive integer n and each with _-< =< p, the num-
ber of distinct vectors an is at most 2P. Hence there exist positive integers N and such
that I1u flU+l, which implies that SN SN+t. From our observation about an+ 1,i, it fol-
lows that I1u+ flU+ + and that SN+ SN+ + 1. Hence, proceeding inductively, we see
that s sk + for all k >_- N.

Let { Sn } be the generalized odd vertex sequence ofa graph G. Since { Sn } is periodic,
there are integers N and for which s s+ for all k > N. Let rn be the smallest such
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FIG. 2. A graph with generalized odd vertex sequence 2, 4, 6, 8, O, 8, O,

N that satisfies this condition. The (finite) sequence sin, Sm+l, Sin+l-1 is called a
period of G and the length ofa period. If rn > 2, then we refer to sl, s2, Sm-1 as
the pre-period of G. While the pre-period, if it exists, of G is unique, a period of G is
never unique. For example, if s: 2, 4, 6, 8, 10, 8, 10, is the generalized odd vertex
sequence of a graph G, then 2, 4, 6 is the pre-period of G, while 8, 10 is a period of
length 2 ofG. For every positive even integer n, there is a period oflength n. For instance,
8, 10, 8, 10 is a period of length 4, while 8, 10, 8, 10, 8, 10 is a period of length 6. Figure
2 shows a graph G having s as its generalized odd vertex sequence. The vertices ul and
u2 are the only odd vertices, while vl, 1)2, I)3 and 1)4 are the only second-order odd vertices.

The construction given in Fig. 2 illustrates a general construction used to prove the
next result. In order to present a proof, it is convenient to introduce some notation. For
a positive integer n, the graph Sn denotes the star of size n in which each edge has been
subdivided, Dn denotes the complete bipartite graph K2,, and F2 is that graph obtained
by the identification of n vertices, one vertex in each of n pairwise disjoint 4-cycles. The
graphs $4,04, and F8 are shown in Fig. 3.

THEOREM 3. A sequence { s, of nonnegative even integers is the generalized odd
vertex sequence ofa graph ifand only if’.

s, } is periodic, and
(ii) sk 0 implies sk + O.
Proof. If { sn } is a generalized odd vertex sequence of a graph, then { sn } is periodic

by Theorem 2. We have further noted that if s 0 for some positive integer k, then
Sk+ =0.

D4
F

FIG. 3
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Conversely, suppose that { sn } is a periodic sequence of nonnegative even integers
with the property that if sk 0 for some positive integer k, then sk+l 0. We now
consider two cases depending on whether G does or does not have a pre-period.

Case 1. Assume that G has a pre-period, say sl, s2, Sm- 1, where then rn >_- 2.
Choose a period of G so that its length is at least 3. Thus Sm, Sm + 1, Sm + t-1 is a

’= for <i</.period of G Let s Sm-1 +
Suppose first that rn 2. Define G1 Ss,_,. If s2 0, then G - G1 has { Sn } as its

generalized odd vertex sequence. We assume therefore that s2 4:0 so that { sn } consists
only of positive even integers. Let G’ Dsl and G - Fs; for 2 =< _-< l. Further, let vl
be a vertex of degree sl in G1, and let u’ and u’ be the two vertices of degree s’ in
G’. (If s’ 2, choose u’ and u’ to be nonadjacent vertices of degree 2 in G’ .) Let u be
some vertex of G’ different from u’ and u’. For 2 _-< < l, let u be a vertex of degree
s in G and let u7 be a vertex of degree 2 in G (that is adjacent to u). The graph G is
obtained by identifying vl and u’, identifying u and u, and identifying u and u7+1 for

1, 2, l- 1. Then G has Sn } as its generalized odd vertex sequence. (Figure 4
illustrates the construction for the sequence 6, 2, 4, 2, 4, 2, 4, .-..)

Next we assume that rn >_- 3. The graph G then has the pre-period sl, s2, Sm- 1.

Define GI - Ss- and for 2 _-< rn 1, define Gg - Fsi. Moreover, let vl be a vertex
of degree sl in G, and for 2 _-< _-< rn 1, let vi be a vertex of degree si in G; and let
v be a vertex of degree 2 in Gi (that is adjacent to v;). Define the graph H by identifying
vl and v2 and by identifying v and vi + for 2 =< _-< rn 2. If Sm 0, then H has { sn }
as its generalized odd vertex sequence. Hence we assume that sn >= 2. We now define
graphs G’, G, G as before. We identify u’ in G’ with v,_ in H and identify the
vertices of G’, G, ..., G as described before to produce G, which has {Sn } as its
generalized odd vertex sequence. (Figure 5 illustrates this construction for the sequence
4, 8, 6, 4,2, 4, 4,2, 4, ....)

Case 2. Assume that G has no pre-period. If sl 0, then any graph with only even
vertices has the desired generalized odd vertex sequence (namely 0, 0, 0, ...). Hence,
we assume that sl >= 2 and consequently, that si > 2 for all >_- 1. Again assume that G
has period >= 3. Define G1 - Kl,s-1 (a star) and Gi Fsi for 2 _-< _-< l. Let v be a
vertex of degree sl in GI. For 2 _-< =< l, let vi be a vertex of degree si in Gi and let
v be a vertex of degree 2 in G; that is adjacent to v;. The graph G is produced by joining
vl and v, by identifying v and vi + for 2 =< < l- 1, and by identifying v and v. Then
G has { Sn } as its generalized odd vertex sequence. (Figure 6 illustrates this construction
for the sequence 6, 8, 2, 4, 6, 8, 2, 4, ....)

FIG. 4. A graph with generalized odd vertex sequence 6, 2, 4, 2, 4, 2, 4, ..
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FI(. 5. A graph with generalized odd vertex sequence 4, 8, 6, 4, 2, 4, 4, 2, 4, ..
According to Theorem 1, then, if a graph G of order p contains rn nth-order odd

vertices (where, ofcourse, 0 _-< rn _-< p), then rn is even. In connection with this statement,
we determine which such triples m, n, p of integers are realizable.

THEOREM 4. For all triples m, n, p ofintegers with rn even, n and p positive, and
0 -< rn <= p, there exists a connected graph G oforder p that contains exactly rn nth-order
odd vertices unless p rn + 3 and n >= 2 or (2) rn 0 and p 2.

Proof. We consider three cases.
Case 1. Assume p m. Then G - Kp has the desired properties for every positive

integer n.
Case 2. Assume p rn + 1. If rn 0, then G Kl satisfies the conclusion of the

theorem for every integer n >= 1. If rn >= 2 and n 1, then G Kl,m provides the desired
result. Hence, it remains to consider rn >_- 2 and n >_- 2 in this case.

If rn 2, then p 3 and G K3 or G P3. Neither of these graphs contains any
nth-order odd vertices (for n >= 2). For rn >= 4 and n >= 2, the graph G of Fig. 7 has the
desired properties.

Case 3. Assume p >= rn + 2. First we consider rn 0. Ifp 2, then G K2 is the
only connected graph and G has two nth-order odd vertices for all integers n >_- 1, so that
an exception is produced here. Ifp -> 3, then G Cp has the desired properties. Hence

FIG. 6. A graph with generalized odd vertex sequence 6, 8, 2, 4, 6, 8, 2, 4, ....
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FIG. 7

we may assume that rn >_- 2, so that p >_- rn + 2 >_- 4. We consider p odd and p even
separately.

Subcase 3.1. Assume p is odd. If rn 2, the graph G1 ofFig. 8 (a) has the appropriate
properties, while if rn >= 4, the graph G2 of Fig. 8 (b) has the desired properties.

Subcase 3.2. Assume p is even. To obtain a graph G with the desired properties
here, let G G1 uv if rn 2, where G is the graph of Fig. 8 (a), and let G G2 vu
if rn >_- 4, where G2 is the graph of Fig. 8(b).

3. The matrix point of view. For a graph G with vertex set

V(G) { 1)1, I)2, 1)p }
and adjacency matrix A, the (i, j) entry ofA n is known to be the number of 1)i 1)j walks
of length n in G. The (ordinary) degree of v; can be viewed as the number of walks of
length that begin at 1)i. Inductively, the nth degree of 1); is the number ofwalks oflength
n that begin at 1);. Thus, degn1)i is the sum ofthe entries in the ith row ofA’. The product
of A" and the column vector u 1, 1, )T produces a vector whose th entry is
deg,1);. With this perspective, (1) is the entry corresponding to vertex 1) in the vector
identity

(6) A’u=A(A u).

Similarly, multiplying (6) on the left by u T produces (2), so that Lemma becomes
the matrix identity

7 u r(A "u) (A ku) rA" ku.

Theorem implies that the total number of walks of length n must be even. We
now discuss an alternative proof of Theorem 1. We proceed by induction on n. Since
Zvv(a) degv is even, the result follows for n 1. Assume that n >= 2 and that the
result holds for all k (1 _-< k < n). Pair each walk w0, Wl, w with its "reversal"
w,, w,_ , w0. Thus, the number ofwalks, each ofwhich does not equal its reversal,

G: 0G

(a) (b) vertices

FIG. 8
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is even. A walk W: Wo, w, wn equals its reversal if and only if w Wn- for
each (0 =< =< n). When n is odd, say n 2k + 1, the walk W can never equal its re-
versal, for otherwise Vk both equals and is adjacent to Vk +1. On the other hand, if n is
even, say n 2k, the walk W equals its reversal if and only if W is formed by a walk of
length k followed by its reversal. The number of such walks W is given by u TAku.
Since k n/2 < n, we know from the inductive hypothesis that the number of these
walks W is also even.

We now characterize graphs whose nth degrees are all equal, that is, the n th degree
regular graphs. Ofcourse, first-degree regular graphs are regular graphs. A graph is bireg-
ular if it is bipartite with partite sets V and V2 such that all vertices in V have a common
degree d and all vertices in V2 have common degree d2. Thus, a biregular graph is regular
if d d2. For example, the complete bipartite graphs Km,n are biregular. Observe that
biregular graphs are also second degree regular of degree dl d2.

The following statement appears without proof in Plonka [3 ].
THEOREM 5. Let n be a positive integer. Ifa connected graph G is nth degree regular,

then either
G is regular, or

(ii) n is even and G is biregular.
Proof. If G is nth degree regular, say of degree t, then

A nu tu.

Now if G is regular, say of degree r, then Au ru, and so repeated multiplication
shows that must equal rn. But if G is not regular, then u cannot be an eigenvector ofA
(see Schwenk and Wilson [4; p. 313, Cor. 4.4]). Nevertheless, there exists an orthonormal
basis X1, X2, Xp of eigenvectors (with eigenvalues ) >= ),2 >= >- )p and >

IXil for all i). Write u Z ciXi and substitute into (7) to obtain ci)Xi Z tciXi.
For each i, we multiply (dot product) the equation with X to obtain ci)’ lci. In other
words, ci(i t) 0 for every i. The Perron-Frobenius Theorem [1, Thm. 4.1, p. 312]
guarantees that in a connected graph, each entry ofthe first eigenvector is strictly positive
and ) has multiplicity 1. Therefore, c u.X > 0 and so )]’. If ci 0 for all >= 2,
then u cX1 is an eigenvector and G is regular. On the other hand, if ci 4:0 for some

>_- 2, then )]’ ,’. Now is simple, so n is even and k --k But the "pairing
theorem" 4, Thm. 4.2, p. 312 assures that -)1 is an eigenvalue ofA if and only if G
is bipartite. Furthermore, in this case, ); -p+_ i. Thus, the simplicity of ) implies
that p - is also simple. We have

Anu :An(c1Xl + cpXp)

c1 ()kl)nX -]- Cp )k )nXp

kT(c1X + cpXp)

Next, suppose that X (a, a2, ap), where then each ai > 0. The pairing theorem
also guarantees that in a bipartite graph, Xp is obtained from X by negating the entries
in exactly one of the partite sets. Thus,

Xp (a, a2, am, -am + 1, -ap).

Now consider the unit vector ei (0, 0, 0, 1, 0, 0, 0) which has its only
in the ith position. For every -< m, then ei .u ei .(cX + cpXp), implying that
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(cl + cp)ai. That is, for all _-< m, we have ai (1/cl + cp). Similarly, for all > m,
ai 1/(c cp). Finally, AX XX requires that each vertex in the first partite set has
degree di where di( 1/(cl cp)) X 1/(cl + cp)). That is, all vertices in partite set V1
have common degree d ),1((cl cp)/(Cl + Cp)). Similarly, the entries in the partite
set V2 have common degree d2 X((Cl + cp)/(cl cp)). Thus, nth degree regularity
implies either regularity or biregularity.

4. Directed graphs. For directed graphs, we define the nth outdegree and the nth
indegree of a vertex. The nth outdegree of a vertex vi <= <= p) is the number of walks
of length n that begin at v;, while the nth indegree of vi is the number of walks of length
n that terminate at vi. While these need not be equal, their properties are analogous.
Thus, we restrict our attention to nth outdegrees. There is a directed analogue to Theorem
5. In order to present this result, we begin by defining a few new terms.

A digraph is said to be m-cyclic if its vertices can be partitioned into rn sets
V2, Vm so that each vertex in the set Vi < _-< rn) is adjacent only to vertices in
Vi+l (where indices are expressed modulo m). An m-cyclic digraph is called m-cyclic-
outregular if for each i, all vertices in V,. have a common outdegree di. For rn 1, a 1-
cyclic-outregular digraph is, in fact, an empty digraph and thus a 1-outregular digraph.
Observe that m-cyclic-outregularity implies nth outregularity for every n divisible by m,
since for n km the nth outdegree is just (dl d2 dm) zc for every vertex ofthe digraph.
Syslo [5] credits the following theorem to McKay in an unpublished work. We find the
result sufficiently significant to merit a proof in print. Some additional terms will be
useful.

For a given matrix A, the digraph underlying A has an arc vivj, whenever aij 4: 0.
The matrix is called irreducible if its underlying digraph is strongly connected; otherwise
A is reducible. The Perron-Frobenius Theorem (see Berman and Plemmons [1, Thm.
1.4, p. 27]) states that the first eigenvector will be strictly positive ifA is irreducible and
will be nonnegative ifA is reducible.

THEOREM 6. Let D be a strongly connected digraph. IfD is nth outregular, then
there exists a positive integer divisor rn ofn such that D is m-cyclic outregular.

Proof. Since D is nth outregular, u 1, 1, r is an eigenvector of A n. Let
A nu tu (n > ). If u happens to be an eigenvector of A as well, then D is outregular
and we are done. Otherwise, let X1 be the (unique) positive eigenvector ofA guaranteed
by the Perron-Frobenius Theorem. Now AnX 7X1 so we have found a second posi-
tive eigenvector for A n.

Therefore, A" is reducible (even though the digraph underlying A is strongly con-
nected, and hence A is irreducible). Let Bo be one block ofA". Define a partition of the
vertices by setting Bi to be all vertices at distance from Bo. Suppose that this gives sets
Bo, B1, Bm-I. Now each vertex in Bi is adjacent from at least one vertex in Bi-
Since Bo is a block ofA n, then all walks of length n that start in Bo must also end in Bo.
This implies that rn divides n. But even stronger, all arcs in D must join a vertex in Bi
to one in Bi+l, where indices are expressed modulo m. If this were not so, let be the
smallest integer such that B; contains a vertex v that is adjacent to some vertex w in Bj.
with j 4: + 1. Ifj > + 1, then w is adjacent from a vertex in Bi so that w should be in
Bi+l, a contradiction. If j _-< i, then w can be reached from Bo in j steps and also in
+ (>j) steps. Continuing for rn -j additional steps, we have a walk oflength rn from

Bo to Bo and another walk of length rn from Bo to Bi + 1-j. But then Bo is not a block of
A n, contrary to its initial definition. Thus, the digraph D underlying A has the structure
shown in Fig. 9. All arcs with initial vertices in Bi have their terminal vertices in B; +
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FIG. 9

The adjacency matrix A of the digraph of Fig. 9 has the structure

0 A0,1 0 0 0 0
0 0 A1,2 0 0 0
0 0 0 A2,3 0 0
0 0 0 0 0

Am- 1,0 0 0 0 0 0

where Ag,;+ indicates the arcs that join vertices of Bi to vertices of Bg + 1. Now A has its
nonzero blocks appearing only on the main diagonal.

Each block Bi of A is irreducible since A is strongly connected. Thus each has a
unique positive eigenvector. However, Au tu and AX1 XX1. Thus, within blocks,
X1 must be a scalar multiple of u. Equivalently, X1 is constant for each block,

X (ao, ao, a, a l, a2, a2, am- 1, am- T.

Now for each vector v in a particular block Bi, the equation AX1 XX implies that

odv" ai + Nai.

Thus, all vertices in B; have the common outdegree Xlai/ai + 1. Since this holds for every
block Bi, the digraph is m-cyclic-outregular, as claimed in the theorem.

v

FIG. 10
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Ifthe digraph D ofTheorem 6 is not strongly connected, it can still be nth outregular
by having an m-cyclic-outregular subdigraph S along with additional vertices whose arcs
lead into S with an appropriate number of walks of length n. For example, the digraph
D shown in Fig. 10 is second outregular with r 8. The subdigraph S D v is 2-
cyclic-outregular with outdegrees 2 and 4. Thus, starting at any vertex in S there are 2.4
=8 walks of length 2. But v has been joined to three vertices in D so that v has second

outdegree equal to 8. A variation of this construction can be used for each n to form a
digraph with n different outdegrees that is, nevertheless, second-degree regular.
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PEBBLING IN HYPERCUBES*
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Abstract. This paper considers the following game on a hypercube, first suggested by Lagarias and Saks.
Suppose 2 pebbles are distributed onto vertices of an n-cube (with 2 vertices). A pebbling step is to remove
two pebbles from some vertex and then place one pebble at an adjacent vertex. The question of interest is to
determine if it is possible to get one pebble to a specified vertex by repeatedly using the pebbling steps from any
starting distribution of 2 pebbles. This question is answered affirmatively by proving several stronger and more
general results.
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1. Introduction. An n-dimensional cube, or n-cube for short, consists of2 vertices
labelled by (0, )-tuples of length n. Two vertices are adjacent if their labels are different
in exactly one entry. Because of its highly parallel structure, the n-cube possesses many
nice properties and is an ideal model for games ofvarious distributive types. In this paper
we investigate the following game that was first proposed by Lagarias and Saks [4], [7].

Suppose 2 pebbles are distributed onto vertices of an n-cube. A pebbling step
consists of removing two pebbles from one vertex and then placing one pebble at an
adjacent vertex. We say a pebble can be moved to a vertex ifwe can apply pebbling steps
repeatedly (if necessary) so that in the resulting configuration the vertex has one pebble.
The question of interest is to determine if it is always possible to move one pebble to a
specified vertex from any starting distribution of 2 pebbles.

In this paper we answer this problem affirmatively. Independently, Guzman also
solved the same problem by a different proof.

THEOREM 1. For any distribution of 2 pebbles to vertices ofthe n-cube, onepebble
can be moved to any specified vertex.

Theorem turns out to be an immediate consequence of some stronger and more
general results that lead to an alternative proof for the following result (due to Lemke
and Kleitman [5] through a different method).

For any given integers a l, a2, ad there is a nonempty subset

X_ {1,2, ,d}

such that

d[ ai and , gcd( ai, d) <= d.
iX iX

For any partially ordered set, the set of order ideals (downward closed subsets)
ordered by inclusion is a distributive lattice. The Hasse diagram of the lattice can be
viewed as a graph where the ideals u and v are adjacent if u contains v and u is exactly
one larger than v. One of many variations of our result is the following.

Consider a given partially ordered set S in which each element is assigned an integer
weight. In the corresponding finite distributive lattice, an admissible move involves two
adjacent vertices u and v, say u < v. That is, to remove w pebbles from v (where w is
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the weight of the element in v but not in u) and to place one pebble on u. If I-Ixs w(x)
pebbles are assigned to vertices in the distributive lattice, then by repeatedly applying the
admissible steps, one pebble can be placed on the empty set in the lattice.

2. Stronger and more general versions. We will first prove the following theorem.
THEOREM 2. In an n-cube with a specified vertex v, thefollowing are true:
(i) If 2 pebbles are assigned to vertices of the n-cube, one pebble can be

moved to v.
(ii) Let q be the number ofvertices that are assigned an odd number ofpebbles. If

there are all together more than 2 + q pebbles, then two pebbles can be moved to v.
Proof. The proof is by induction on n. It is trivially true for n 0. Suppose it is

true for n’ < n. The n-cube can be partitioned into two (n )-cubes, say M and M2,
where v is in M. Let v’ denote the vertex in M2 adjacent to v. The edges between M
and M2 form a perfect matching. Suppose Mi contains .Pi pebbles with qi vertices having
an odd number of pebbles, for l, 2.

Suppose there are p >_- 2 pebbles assigned to vertices of the n-cube. We will first
show (i) holds. Ifp >_- 2-, then by induction, in M, one pebble can be moved to v.
We may assume p < 2- and we consider the following two cases.

Case (al). q2 > P.
Since P2 P Pl > 2" q2, by induction from (ii) in m2 two pebbles can be moved

to v’. Therefore one pebble can be moved to v.
Case (a2). q2 =< Pl.
We apply pebbling steps to all vertices in M2 and we can move at least (P2 q2)/2

pebbles to vertices of M. Therefore, in M1 we have all together pl + (P2- q2)/2 >=
P + (P2 Pl / 2 (Pl + P2) / 2 2 pebbles. By induction, we can then move one
pebble to v. This establishes (i).

It suffices now to prove (ii). Suppose there are p p + P2 > 2" + q q2 pebbles
assigned to vertices of the n-cube. We want to show that two pebbles can be moved to
v. We consider the following three possibilities:

Case(bl). p > 2"- q.
By induction from (ii) in M1, two pebbles can be moved to v.
Case (b2). 2" ql >= P ;>-- 2"- 1.
Since p >_- 2"-, by induction from (i) in Mj one pebble can be moved to v. Since

P P P > 2 n+l ql q Pl >= 2" q2, two pebbles can be moved to v’ using
induction from (ii) in M2. Therefore an additional pebbling step results in moving one
more pebble to v.

Case (b3). p < 2"- .
For any integer satisfying P2 q2 d- 2t, pebbles can be moved to vertices

of Ml while P2 2t pebbles remain in M.. Note P2 > 2n+1 q Pl (2" q2) +
(2" ql P) >- q2 d- (2 ql Pl ), where the last inequality follows since q2 is at
most 2"-. Thus taking to be 2-1 [(ql + p)/2], pebbles can be moved to M1
leaving more than 2" q2 pebbles in m2. In .M there are Pl + 2"- (ql + P )/2]
2 + (P ql / 2 ] >= 2 pebbles. We can then move one pebble to v in M and at
the same time move two pebbles to v’ in M2, which will result in one additional pebble
to v.

This completes the proof of Theorem 2.
We remark that Theorem 2 provides an efficient algorithm for pebbling in the n-

cube. Furthermore in all the pebbling steps, pebbles are moved toward the specified
vertex.

Theorem 2 can be slightly strengthened in Theorem 2’. This variation is useful for
proving several generalized versions.
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We say pebbles are extracted from an n-cube if pebbling steps are performed in
a way that 2i pebbles are removed, but the placement ofthe new pebbles to the neighbors
will be suspended until a later time.

THEOREM 2’. If 2 n+l r + w + pebbles are assigned to vertices of an n-cube
while r vertices have at least one pebble, two pebbles can be moved to v after w/2j
pebbles are extractedfrom the cube.

Proof. Again we will prove by induction on n and view the n-cube as the union of
two (n )-cubes M1 and M. as described in the proof ofTheorem 2, where Mi contains
Pi pebbles with r vertices having at least one pebble for 1, 2. Suppose p Pl + P2
2 + r r_ + w + pebbles are assigned to vertices of the n-cube.

We consider the following three possibilities:
Case (cl). Pl > 2
By induction in Ml, two pebbles can be moved to v after l(pl 2 + rl )/2

pebbles are extracted from M. In M2, (P2 r2)/2] pebbles can be extracted. Therefore,
altogether two pebbles can be moved to v after (Pl 2 + rl + P2 r2) / 2 J >_-
w/2 J pebbles are extracted.

Case (c2). 2 rl >-- Pl >- 2 1.
Since Pl > 2 1, one pebble can be moved to v in M1. Since P2 P P >

2 n+l rl r2 Pl + w >= 2 r2 + w, two pebbles can be moved to v’ after lw/2J
pebbles are extracted by induction in M2. Therefore one pebble can be moved to v.

Case(c3). Pl < 2
Since P2 > 2n+1 rl r2 -p + w (2n- r2) + (2n- rl -Pl) + w, by induc-

tion two pebbles can be moved to v’ after (2 r Pl + w)/2 J pebbles are extracted
from M2, among which (2 r Pl )/2 pebbles will be placed in M1. In M1 there are
Pl -t- 2 n (r + Pl / 2] 2

__
[ (Pl rl / 2 >- 2 pebbles. We can then move

one pebble to v in MI and at the same time move two pebbles to v’ in M2, which will re-
sult in one additional pebble to v after w2 pebbles are extracted from the cube.

This completes the proof of Theorem 2’.
One of the original versions of the problem proposed by Lagarias is the following

theorem.
THEOREM 3. For integers Pl, P2, "’’, Pn >= 2, suppose PlP2"’’Pn pebbles

are assigned to the vertices of an n-cube Qn. Each admissible pebbling step is to re-
move Pi pebblesfrom a vertex al, ai- l, 1, ai+ , an) and place one pebble on
(al, ai-l, O, ai+ 1, an). One can now repeatedly use the admissible pebbling
steps to place one pebble on (0, O, 0).

Proof. The proof is very similar to that of Theorem 2 except that (ii) should read
somewhat differently. We say an admissible step is of direction and cost Pi ifpi pebbles
are removed from a vertex (al, ai-1, 1, ai+ 1,’’’, an) and place one pebble on
(al, ai-1, O, ai+ 1,’", an). For a fixed constant k, an admissible step of direc-
tion 0 if k pebbles are removed from a vertex and one pebble will be kept to be placed
later in a (possible future) direction of cost k. Let q be the number ofvertices that are as-
signed at least one pebble. If there are altogether more than kPl’"Pn q + w peb-
bles, then k pebbles can be moved to v after [wo/kJ, [wl/pl], [w2/P21, [Wn/Pn],
where Wo + wl + + Wn w, are extracted from the cube in the ith direction of
cost Pi, for 0, 1, ..., n, respectively.

3. The pebbling number. For a graph G, we define the pebbling number f(G) to
be the smallest integer m such that for any distribution of m pebbles to the vertices of
G, one pebble can be moved to a specified vertex. Theorem 2 states thatf(Qn) 2 n. We
here include some facts aboutf(G), most ofwhich are quite straightforward (the proofs
are left for the reader).
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FACT 1. f(G)>=
FACT 2. (G) >- 2D where D D( G) is the diameter ofG.
FACT 3. IfG’ is a spanning subgraph ofG, then f( G’) >= f( G).
FACT 4. For a path P, + on + vertices, f( P, + 2
FACT 5. For a complete graph K,, f(K) t.
A graph H is said to be a retract of a graph G if there is a mapping from V(G) to

V(H) which preserves edges, i.e., which maps adjacent vertices in G to adjacent vertices
in H. The reader is referred to ], 3 ], 6 for various facts about retracts. The following
simple fact turns out to be very useful.

FACT 6. IfH is a retract ofG, then f( H) <-_ f( G).
Duffus and Rival [2] showed that a finite distributive lattice of height n is a retract

of the n-dimensional cube. By using Theorem 3, we immediately have the following"
THORF.M 4. Suppose S is a partially ordered set in which each element is assigned

an integer weight. In the correspondingfinite distributive lattice, an admissible move is
to remove w pebblesfrom a vertex v and place one pebble on u where w is the weight of
the element in v u. If I-[xs w(x) pebbles are assigned to vertices in the distributive
lattice, then by repeatedly applying the admissible steps, one pebble can be moved to the
empty set in the lattice.

We remark that when S consists on n pairwise incomparable points, the distributive
lattice is exactly the n-cube. Theorems 1-3 are all special cases of Theorem 4.

For any two graphs G1 and G2, we define the product G1 V-] G2 to be the graph with
vertex set { (v, v2) V e V(GI ), vz e V(G2)} and there is an edge between (v, v2)
and (v’, v) if and only if (v v’ and { v2, v } e E(G2)) or ({ v, v’ } e E(G1) and
va v). It is easy to see that the 1-cube is K2; the 2-cube is K2 F-q K2; and the n-cube
Q, is Q,_ F-] K2.

We say a graph G satisfies the 2-pebbling property if two pebbles can be moved to
a specified vertex when the total starting number of pebbles is 2f(G) q + 1, where q
is the number of vertices with at least one pebble. Clearly the n-cube satisfies the 2-
pebbling property and the paths also have the 2-pebbling property.

THeOReM 5. Suppose G satisfies the 2-pebblingproperty. Then thefollowing holds"
(i) f(G F-] K) <= tf(G).
(ii) Iff(G V1 Kt) f(G), G V] K satisfies the 2-pebbling property.

The proof of Theorem 5 is extremely similar to the proof of Theorem 2 and 2’ and will
be omitted here.

Using Theorem 5 together with Fact yields the pebbling number for all products
of cliques.

FACT 7. f(Kt, ff] Kt2 D [[] Kts) tlt2" "ts.
FACT 8. f eq + [’-] et2 + [[] [--] ets + 2 q + t2 + ts

Proof. On one hand, we have f( Pt + ff] Pt2 + Vq Pts + >= 2ti +.../ t since the
diameter is t + t2 + + ts. On the other hand, since
is a retract of the (t + t2 + + ts)-cube, Fact 8 follows from Fact 6.

FACT 9. For integers p, P2, "", Pn >= 2, o, or2, "’’, an > 1. Suppose
P IiP2 Pn pebbles are assigned to the vertices of P,,
Each admissible pebbling step is to remove Pi pebblesfrom a vertex

(al, ,ai- 1,x, ai+ 1, ,an)

and place one pebble on (a, ai- 1, x 1, ai+ , an). One can repeatedly apply
the admissible pebbling step to move a pebble to (0, 0).

Fact 9 follows from Fact 6 and Theorem 3. We can now use Fact 9 to give a different
proofto the result ofLemke and Kleitman 5 ]. That Theorem 3 implies Theorem 6 was
Lagarias’ motivation for formulating the problem.
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THEOREM 6. For any given integers a, a2, aa, there is a nonempty subset
X
_

{ 1, d} such that dl Zix ai and ix gcd(ai, d) <-_ d.
-,..2... -, We consider P,+I [] P,2+1 IS] IS] Pan+lProof. Suppose d p ,2 Pn

For each integer ai, we place a pebble at (bl, bn) where d/gcd(ai, d) pb,pb2
p". Suppose there are Pi pebbles corresponding to numbers x, ..., xpi at the vertex
(b, bn). There is a subset S

_
1, Pi such that Pi[ is xi y. We note that

gcd(xi, d) <-_ Pi" gcd(x, d)
iS

gcd(y, d).

We can then replace numbers x, xpi by the number y. Ifwe can repeat this process
and eventually move a pebble to (0, 0), then this implies that there is a subset
X
_

{ 1, d} such that dl iX ai and iX gcd(ai, d) <= d.
This completes the proof of Theorem 6.
Suppose Tis a tree with a specified vertex. Tcan be viewed as a directed tree denoted

by T* with edges directed toward the specified vertex v, also called the root. A path
partition is a set of nonoverlapping directed paths the union of which is T. A path-
partition is said to majorize another if the nonincreasing sequence of the path size ma-
jorizes that of the other. (That is (a, a2, ai) > (bl, b2, bt) if and only ifai >
bi where min { j" ai =/= b; ).) A path-partition of a tree T is said to be maximum if it
majorizes all other path-partitions.

We define the pebbling numberf( T, v) to be the smallest integer m such that if m
pebbles are assigned to the vertices of T, then one pebble can be moved to v.

FACT 10. The pebbling number f( T, v)for a vertex v in a tree T is 2 al + 2 a2 +
+ 2 at + where al, a2, at is the sequence ofthe path size (i.e., the number

ofvertices in the path) in a maximum path-partition of T*v
Fact 10 is a special case of Fact 11 that considers the following general formulation.

Let J( T, v) denote the smallest integer m such that if m pebbles are assigned to the
vertices of T then k pebbles can be moved to v.

FACT 1. The pebbling number f( T, v)for a vertex v in a tree T is k2 al _j 2 a +
+ 2 a’ + where al, a2, at is the sequence ofthe path size in a maximum

path-partition of T*
Proof. The proof is by induction on the number of vertices of T. If we remove v

from T, the resulting graph is the union of subtrees T1, T2, Ts where Ti contains a
neighbor of v, say ui. It is easy to see that for any kl / 2 + + ks21 < k we have

f( T, v)- >=f,+ l( Tl,ul)+f+ l( T2, u2) + +J,+ l( Ts, us)-S.

In fact,

f(T,v)- 1= Max {AI+ I(T1, Ul)--A2+ l(T2, u2)-t-’’’-t-As+l(Zs, us)-S }
ki

Using the fact that 2 + 2 >_- 2 a- + 2/1 if a > b, the maximum is achieved when
kl k3 ks 1, kl 2k- while T1 contains a vertex furthest from v. It is then
straightforward to check thatj( T, v) has the desired expression.

FACT 12. A tree satisfies the 2-pebbling property.
Proof. From Fact 11 we know thatf2( T, v) =f( T, v) + 2 al where al is the number

of edges in a longest directed path in T with root v. It remains to show that

f(T,v)-IV(T)[+I>=2a

which follows from Fact 11.
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4. Questions on the pebbling number. There are many problems on the pebbling
number that we will mention here.

Question 1. Is it true thatf(G) max {2n(a), V(G)l }?
Answer. False. Consider the star of 3 edges. The pebbling number is 5 while 2z

4 V(G)].
Question 2. Is it true that f(G r-q G2) f( G1 )f(G2) .9
Answer. False. Consider G K3 and G_ P3.

f(K3[-IP3)=94:f(K3).f(P3) 12.

There are many questions not resolved at this point.
Question 3 (RLG). Is it true that f( G1 E] G2) =< f( G )f(G2) ?
Question 4. Is it true that any graph has the 2-pebbling property?
If these two properties are true, the proof of Theorem 2 can be much simplified.

Recently, Lemke constructed a counterexample to Question 4. His example does not
provide a "no" answer to Question 3.

We remark that Theorem 5 can be used to determine f(G) for a variety of graphs
other than products of cliques or paths. For example, for the 5-cycle C5, it is easy to see
thatf(C) 5. Theorem 5 assertsf( K5 ffl C5 25. It would be of interest to determine
f(G G [5] [:] G).

Question 5. Is it true that

nCs’s
f(GGrq.., cG) 5n?

The following generalization of Theorem 6 was conjectured in [5].
CONJECTURE. Any sequence of lGI elements (not necessarily distinct) ofthefinite

group G contains a nonempty subsequence gl, g2, g such that gg2""g e and
E/=, (1)/Igl --< 1.
When G is cyclic, the conjecture is true as seen from Theorem 6 and [5].
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Abstract. One of the assumptions made in classical scheduling theory is that a task is always executed by
one processor at a time. With the advances in parallel algorithms, this assumption may not be valid for future
task systems. In this paper, a new model of task systems is studied, the so-called Parallel Task System, in which
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1. Introduction. One of the assumptions made in classical scheduling theory [2] is
that a task is always executed by one processor at a time. With the advances in parallel
algorithms, this assumption may not be valid for future task systems. In this paper, we
propose a new model oftask systems, the so-called Parallel Task System (PTS), to include
tasks that implement parallel algorithms. We hypothesize that a task can be executed by
1, 2, m processors, each with different execution time requirements. In scheduling
a parallel task, we can assign any number of processors to it. However, once the number
ofprocessors assigned to a task is determined, it will remain fixed throughout the execution
ofthe task. This assumption is reasonable since most parallel algorithms are implemented
in such a way that it is difficult to dynamically change the number ofprocessors assigned
to them. For those parallel algorithms which have different processor requirements during
different parts of their programs, we can model them by a chain of parallel tasks such
that each task in the chain has the same processor requirement. The main purpose of
this paper is to examine the complexity of scheduling a Parallel Task System on m >= 2
identical processors to minimize the schedule length. Our study includes both non-
preemptive and preemptive scheduling disciplines.

Formally, we are given a set P P1, P2, Pm ) of rn > 2 identical processors
and a Parallel Task System PTS (TS, -, G), where TS { T1, T2, Tn } is a set
of n parallel tasks, z is a function giving the execution times of a parallel task (z( T,., j)
is the execution time of Ti when executed simultaneously by j processors, =< j =< rn),
and G TS, E) is a directed acyclic graph describing the precedence constraints among
the parallel tasks. Since a task takes less time to run on more processors, we assume
"r( Ti, j) >= ’( Ti, j + for each _-< =< n and =< j < m. Our goal is to schedule PTS
on the rn processors such that the length of the schedule is minimized. Such a schedule
will be called an optimal schedule.

Our model is similar to the one proposed and studied in [1 ]. The only difference
between the two models is that in the model of Blazewicz, Drabowski, and Welgarz, a
task must be executed simultaneously by a specified number of processors, whereas in
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our model, it can be executed by any number not exceeding m. For convenience, we
shall call their model the Multiprocessor Task System (MTS). We can model a Multi-
processor Task System by a Parallel Task System as follows. Let T; be a task in a
Multiprocessor Task System that requires k processors, and let Pi be the execution
time of T;. When transformed into a Parallel Task System, we can let z( T;, j) for

_-< j < k, and -( Ti, j) Pi for k _-< j =< m. Clearly, an optimal schedule for the Multi-
processor Task System has the same length as an optimal schedule for the transformed
Parallel Task System. We shall denote a Multiprocessor Task System by MTS
TS, , G). Since a Multiprocessor Task System can be transformed into a Parallel Task

System, it is easy to see that if a special case of finding an optimal schedule for Multi-
processor Task Systems is NP-hard (or strongly NP-hard), then the corresponding case
for Parallel Task Systems is also NP-hard (or strongly NP-hard). Conversely, if a special
case of finding an optimal schedule for Parallel Task Systems is solvable in polynomial
time (or pseudo-polynomial time), then the corresponding case for Multiprocessor Task
Systems is also solvable in polynomial time (or pseudo-polynomial time). Note that the
above two implications do not hold if the special case contains the condition that the
tasks have equal execution times.

In [1 ], it has been shown that finding an optimal nonpreemptive schedule for a
Multiprocessor Task System with equal execution times and empty precedence constraints
is strongly NP-hard for arbitrary m. However, the problem can be solved in polynomial
time for each fixed rn [1]. It is also shown in [1] that finding an optimal preemptive
schedule for a Multiprocessor Task System with empty precedence constraints is solvable
in polynomial time for each fixed m.

It is easy to see that a task system defined in classical scheduling theory can also be
transformed into a Parallel Task System. We shall call such a task system a Classical
Task System and denote it by CTS (TS, -, G). In the literature, there are many
complexity results concerning the Classical Task Systems [2], [3]. We shall mention a
couple ofthese results that are relevant to this paper. Finding an optimal nonpreemptive
schedule for a Classical Task System with empty precedence constraints is NP-hard, but
solvable in pseudo-polynomial time, for each rn >_- 2 3 ]. Finding an optimal preemptive
schedule for the same problem can be solved in polynomial time even when rn is arbi-
trary 6 ].

In this paper, we show that finding an optimal nonpreemptive schedule for a Parallel
Task System with the precedence constraints consisting of chains is strongly NP-hard
for each rn > 2. When the precedence constraints are empty, the problem can be solved
in pseudo-polynomial time for rn 2 and 3, and it becomes strongly NP-hard for each
rn >_- 5. For rn 4, it is not known whether the problem is strongly NP-hard or solvable
in pseudo-polynomial time. For preemptive scheduling, we show that finding an optimal
schedule for a Parallel Task System with empty precedence constraints is NP-hard, but
solvable in pseudo-polynomial time, for each rn >_- 2. For arbitrary m, we show that the
problem is strongly NP-hard.

We now define some notations and conventions that are used consistently
in the remainder of this paper. Let S be a schedule of a Parallel Task System,
PTS (TS, -r, G). We say that task Ti is a k-processor task with respect to S if Ti
is executed by k processors in S. A lower bound of the schedule length of S is
given by (1/m),’]= minjm={j-r(Ti,j)}. This follows from the observation that

minim= {j’(Ti,j) } is the minimum processing time requirement to execute task Ti.
IfMTS TS, -, G) is a Multiprocessor Task System, we say that task T; is a k-processor
task if Ti requires k processors to execute. The NP-hardness results in this paper are
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shown by reducing the PARTITION problem and the 3-PARTITION problem to our
problems. The PARTITION problem is known to be NP-complete [3] and the 3-PAR-
TITION problem is known to be strongly NP-complete [3].

PARTITION problem. Given a list A (al, a2, az) of z integers such that= ai B, can I { 1, 2, z be partitioned into I1 and I2 such that ]ieIl ai

ZiI2 ai B/2?
3-PARTITION problem. Given a list A (al, a2, a3z) of 3z integers such that

3zi= ai= zBandB/4 < ai<B/2foreach _-< i_-< 3z, canI= {1,2,..., 3z} be
partitioned into I1, I2, Iz such that iij ai B for each _-< j _-< z?

The organization of the paper is as follows. In 2, we shall study the complexity of
nonpreemptive scheduling of Parallel Task Systems. In 3, we study the complexity of
preemptive scheduling. Finally, we draw some concluding remarks in the last section.

2. Nonpreemptive scheduling. In this section, we consider the complexity of finding
an optimal nonpreemptive schedule for a Parallel Task System PTS TS, -, G). When
the precedence constraints are empty, the problem is easily seen to be NP-hard for every
m > 2. This result follows directly from the result in Classical Task Systems. Our interest
here is in drawing a sharp boundary between ordinary and strong NP-hardness for the
problem. We shall show that ifthe precedence constraints are not empty, then the problem
is strongly NP-hard for every m >_- 2. If the precedence constraints are empty, it remains
strongly NP-hard for m >= 5, while for m 2 and 3, it is solvable in pseudo-polynomial
time. It is not known whether the problem is strongly NP-hard or solvable in pseudo-
polynomial time for rn 4. In proving NP-hardness results in this section, we shall be
showing the corresponding decision problem for Multiprocessor Task Systems to be NP-
complete. From the discussions in 1, the result immediately follows for Parallel Task
Systems. Thus, we define the following decision problem.

Problem M 1. Given m, w, and a Multiprocessor Task System MTS TS, -, G),
is there a nonpreemptive schedule ofMTS on rn identical processors such that the schedule
length is no larger than w?

THEOREM 1. Problem M1 is strongly NP-complete for rn 2 and the precedence
constraints consisting ofa set ofchains.

Proof. We shall reduce the 3-PARTITION problem to Problem M1. Given an
instance ofthe 3-PARTITION problem, A al a2, a3z), we construct an instance
of Problem M1 as follows. Let TS { Q1, Q2, Q4z } tO {R R2, Rz-1 }, where
Qi, <- <= 4z, is a 1-processor task, and Ri, < _-< z 1, is a 2-processor task.
r(Qi) =aifor <= i<= 3z, r(Qi)=Bfor3z+ _-<i_-<4z, andr(Ri) for =<i_-<

z 1. G is as shown in Fig. 1. Finally, we let w z(B + 1. It is easy to see that the
construction can be done in polynomial time.

If the instance of the 3-PARTITION problem has a solution, then it is clear that
the constructed instance of Problem M also has a solution. Conversely, ifthe constructed
instance ofProblem M has a solution, then the chain in G must be continuously executing
from time 0 to w on one processor. Thus, on the other processor, there will be z separated
intervals, each of length B, left for tasks Qi, <= <= 3z. This implies there is a solution
for the instance of the 3-PARTITION problem.

The result of Theorem motivates us to consider the case of empty precedence
constraints. Unfortunately, this case is still strongly NP-hard for m >= 5, as will be shown
in Theorem 2. First, we need to define the following operation. Suppose Px and Py are
two different processors, and on each of them there is a task finishing at time t. Then a
new schedule can be obtained by swapping all the tasks (or parts of the tasks) executing
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) Q3z+l

) Q3z+2

(C)(C)
QI Q2

(C)
Q3z

Q4z-I

Rz-

Q Q4z

FIG. 1. Reduction in Theorem 1.

after time on Px with those on P.v. In the following discussions, we shall call this operation
on a schedule a swapping operation, denoted by SWAP(t, Px, Py). Observe that the
swapping operation preserves the starting and finishing times of all tasks.

TI-IEOREM 2. Problem M is strongly NP-completefor m 5 and emptyprecedence
constraints.

Proof. We reduce the 3-PARTITION problem to Problem M1. Let A
(al, a2,"’, a3z) be an instance of the 3-PARTITION problem. Without loss of
generality, we may assume that B > z(3z + 2). Otherwise, we can multiply each parti-
tion element by z(3z + 2) without changing the solution of the problem. We con-
struct an instance of Problem M1 as follows. Let TS Q t_J R U T, where Q
{ Q1, Q2,’", Q3z+ 2 } are the 1-processor tasks, R { RI, R2,’", R6z} are the 2-
processor tasks, and T { T, ]F2, Tz+ } are the 3-processor tasks. We divide Q
into three groups, X { Qg[1 =< -< z + }, X2 { Qg[z + 2 _-< =< 2z + 2 }, and X3
{Qgl2z + 3 =< -< 3z + 2}. R is divided into two groups, Y {R;I1 _-< =< 3z} and
Y2 { Ril3z + <= <= 6z }. T is divided into three groups, Z1 Till =< =< z }, Z2
Tilz + _-< _-< 2z }, and Z T12z + _-< _-< 3z + }. - is defined as follows:

-r(Qi)

B2 + B + (3z + )B
B2 -t- zB
B2 + 3zB
B2 + B4 + 3zB
B2 + B4 q- 2zB
B3+B4+(3z+2)B

(3z-2[i/3J)BS-B
"r(R/) [i/3qB

ai- 3z

B ifl<=i<=z
z(Ti) B3ifz+l-<i-<2z

B2 if2z+ =<i<3z+ 1.

if <-i<=z
ifi=z+
ifi=z+2
ifz+3=<i=<2z+
ifi=2z+2
if2z+3=<i_-<3z+2.

if _-< i_-< 3z and mod 3
if =<i=<3zand imod 3 =0 or 2
if3z+ <=i<=6z.
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Finally, we let w (z + )B2 + 2"B + zB4 -k- 2"(3z + 2)B5. It is easy to see that the
construction can be done in polynomial time.

If the given instance of the 3-PARTITION problem has a solution, then there exist
z sets {11, I2, "", Iz} such that 11 tO I2 tO tO Iz {1, 2, ..., 3z} and iij ai B
for each =< j =< z. It is easy to verify that the schedule shown in Fig. 2 is a valid schedule
for TS on five processors with a length w. Conversely, suppose that a schedule, say S, of
TS has a length w. Dictated by the total processing time requirement of all tasks, we
observe that S cannot have any idle processor time before w and it must have a length
exactly w. To show that the instance of the 3-PARTITION problem has a solution, we
shall show that by a finite number of swapping operations, SWAP(t, Px, Py), S can be
transformed into a schedule isomorphic to the schedule shown in Fig. 2. This is accom-
plished by proving the following three claims.

Claim 1. XI, X2, and X3 is the unique partition of Q into three subsets such that
the total execution time of the tasks in each subset is no larger than w.

Proof. Obviously, XI, X2, and X3 are such a partition of Q. We need to show the
uniqueness. Let us consider just the coefficients of the B term in the expressions of the
execution times of the tasks in Q. Observe that their sum is exactly 3z(3z + 2). Since
B > z(3z + 2), we have w < + z(3z + 2))B. Therefore, since the coefficient of the
B term in the expression of w is z(3z + 2), any partition of Q into three subsets such
that the total execution time of the tasks in each subset is no larger than o is also one
such that the sum of the coefficients of the B term in the expressions of the execution
times of the tasks in each subset is equal to z(3z + 2). Thus, instead of considering the
uniqueness problem, we first answer a more specific question: Given 3z + 2 integers
with z of them being 3z, z of them being 3z + 1, z of them being 3z + 2, one of them
being 2z, and one of them being z, is the partition of them into three subsets, each
totalling z(3z + 2), unique? In fact, it is readily shown that (z, 0, 0, 1, 0), (x, z 2x,
x, 0, for 0 _-< x _-< z/2, and (0, 0, z, 0, 0) are the only integer solutions to the equation

3zxl + (3z + )x2 + 3z + 2)x3 + 22"X4 + 2"X 2"( 3z + 2),

subject to 0 _-< xl, x2, x3 Z, and 0 _-< x4, x5 _-< 1. Hence, it is clear that the answer to
our question is positive, and so reasoning backwards, we have proved that X1, X2, and
X is the unique partition.

Qz+2 Qz+3 Qz+4

Tz+ T Tz+ 2
12

Qz-i

Q2z

R3z_

Iz_

R3z-4 R3z-

T2z-i Tz-i

Qz Qz+l

T2z

FIG. 2. The optimal schedule in Theorem 2.
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Claim 2. By a finite number of swapping operations, S can be transformed into a
schedule with the same length such that g(Pi) Xi kl Z for _-< =< 3, and g(P4)
g(Ps) R U T, where g(Pi) denotes the set of tasks which use processor P in .

Proof. First, we show that by a finite number ofswapping operations, we can make
all 3-processor tasks use processor Ps. If the first 3-processor task in S does not use P,
then by SWAP(0, P, P), where/6 is one of the processors that it uses, we can make it
so. Suppose that after a certain number of swapping operations, we have made the first
3-processor tasks all use P. Consider the (i + )st 3-processor task. Because m 5,

any two 3-processor tasks must use at least one common processor in any schedule. Let
P be the common processor of the ith and the (i + )st 3-processor tasks, and let be
the finishing time of the ith 3-processor task. Then if P is not the same as P, by one
more swapping operation SWAP(t, Ps, P), we would have made the first + 3-processor
tasks all use P. Therefore, S can be transformed such that all 3-processor tasks use Ps.

Let us denote the schedule transformed from S as above by . Note that has
length w and it has no internal idle processor time. Now, since all 3-processor tasks use
P in , the total execution time of all other tasks which use P5 has to be exactly
z(3z + 2)B5. Since B > z(3z + 2) and since each 1-processor task contains at least
one of B2, B 3, and B4 terms in the expression of its execution time, there can be no
tasks from Q executed by P. Thus, the only tasks that can execute on P are from R.
Since the total execution time of all tasks in R is z(3z + 2)B, we immediately have
g(Ps) R U T.

Next, we show that can be transformed into such that the tasks which use P5
in also use P4. If the first task which uses P in does not use P4, then by SWAP(0,
P4,/), where/6 4:P5 is one of the other processors that it uses, we can make it so.
Suppose that after a certain number of swapping operations, we have made the first
tasks on P also use P4. Consider the + )st task on P. Let/ 4 P5 be one ofthe other
processors that the (i + )st task uses. Notice that the starting time of the (i / )st task
is the same as the finishing time of the th task, say time t. Thus, if/ is not the same as
P4, then by SWAP(t, P4,/6), we can make the (i + )st task also use P4. Therefore, by
a finite number of swapping operations, we can make the tasks which use P also use P4.
Since the swapping operations do not involve P, we have g(P4) g(P) R to T in .

Finally, we need to show that in ,.q, g(Pi) Xg Z for _-< -< 3. Observe that the
only tasks left to execute on processors P, P2, and P3 are the tasks in Q. Using Claim
and by renaming processors if necessary, it is easy to see that the claim is true. [2

Claim 3. The starting times of the 3-processor tasks in are isomorphic to those
in the schedule shown in Fig. 2, up to a renaming of the tasks with the same execution
time and a switching of both ends of .

Proof. Let us first see at what time a 3-processor task can start in . Since B >
z(3z + 2) and since g(P4) g(Ps) R to T, we know, from the form of the execu-
tion times of the 2-processor tasks, that the starting time of a 3-processor task is of
the form

Xl 4c- X2B2 + x3B3 + x4B4 -4c- xsB,
where xl is an integer with [xll < B2, and 0 =< x < B is the number of 3-processor tasks
in Z_ which start before task f, for each 2 _-< _-< 4. Furthermore, since by Claim 2
g(Pi) Xi tO Z for each _-< _-< 3, the following three statements must be true: If
f" is in Z, then x 0 and either x2 x. or x2 x3 + 1. (2) If 2? is in Z, then x 0
and either x2 x4 or xz x4 + 1. (3) If is in Z3, then Xl 0 and x3 x4. From the
above facts and the fact that g(P4) g(P) by Claim 2, it is easy to show that the
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asks ///// tasks

FIG. 3. Canonical schedulefor rn 2.

3-processor tasks in must interleave in the same manner as in Fig. 2, possibly with the
two ends interchanged and the tasks with the same execution time renamed.

By Claim 3, we may assume that the starting times of the 3-processor tasks in are
exactly the same as the schedule shown in Fig. 2. Hence, the distance between the jth
and the (j + )st 3-processor tasks in is r(Rj) + B when j mod 3 and -(Rj) when
j mod 3 0 or 2. We now consider how the 2-processor tasks are scheduled on processors
P4 and Ps. Since B > z(3z + 2), we see from the forms of the execution times of the
2-processor tasks that there must be one task in Y1 between every pair of consecutive
3-processor tasks in order for to have no internal idle processor time. Consequently, z
separated intervals of length B are left over for the tasks in Y2. Thus, we conclude there
is a solution for the given instance of the 3-PARTITION problem.

Theorem 2 shows that finding an optimal nonpreemptive schedule for a Parallel
Task System with empty precedence constraints is strongly NP-hard for rn >= 5. In the
following, we shall show that the same problem can be solved in pseudo-polynomial time
for rn 2 and 3. First, we need to prove the following lemma.

LEMMA 1. Let PTS TS, -, G) be a Parallel Task System with empty precedence
constraints. Let S and be an optimal nonpreemptive schedule of PTS on 2- and
3-processors, respectively. Then, S and can be transformed, with no change in schedule
length, into a canonical schedule as shown in Figs. 3 and 4, respectively.

Proof. Let S and be an optimal nonpreemptive schedule of PTS on 2- and
3-processors, respectively. S can be transformed into a canonical schedule shown in Fig.
3 as follows. Move all 2-processor tasks with respect to S to the beginning ofthe schedule,
and shift the 1-processor tasks with respect to S towards the beginning of the schedule.
It is clear that this transformation cannot change the length of the schedule.

can be transformed into a canonical schedule as shown in Fig. 4 as follows.
Apply the swapping operations as in Claim 2 ofTheorem 2 to make all 2-processor tasks
with respect to use processor P2; (2) move all 3-processor tasks with respect to to

PI

P2

P3

y

FIG. 4. Canonical schedulefor rn 3.
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the beginning of the schedule; (3) move the 2-processor tasks with respect to which
use processors P2 and P3 fight next to the 3-processor tasks; (4) move the 2-processor
tasks with respect to which use processors P1 and P2 to the end of the schedule; and
(5) shift all tasks towards the beginning ofthe schedule. It is easy to see that the schedule
obtained is as shown in Fig. 4 and has the same length as

From Lemma 1, we see that an optimal nonpreemptive schedule, S, for 2-processors
is completely determined by three numbers: the total execution times, xl and x2, of the
1-processor tasks with respect to S executed on processors P1 and P2, respectively, and
the total execution time, y, of the 2-processor tasks with respect to S. An optimal non-
preemptive schedule, , for 3-processors is completely determined by six numbers: the
total execution times, xl, x2, and x3, of the 1-processor tasks with respect to executed
on processors P1, P, and P3, respectively, the total execution time, x4, ofthe 2-processor
tasks with respect to which use P1 and P2, the total execution time, xs, of the
2-processor tasks with respect to which use P2 and P3, and the total execution time, y,
of the 3-processor tasks with respect to . Using these characterizations, we can develop
pseudo-polynomial time algorithms for rn 2 and 3.

Let PTS (TS, 7., G) be a Parallel Task System with empty precedence cons-
traints to be scheduled on two processors. Let TS { T1, T2, Tn }, and let M= 17.(T;, ). We construct a three-dimensional table F(i, xl, x2), 0 < < n, 0 =<
xl + x2 < M, where F(i, xl, x2) gives the smallest total execution time ofthe 2-processor
tasks, among all schedules of the first tasks in TS, such that the total execution times
of the 1-processor tasks executed on processors P1 and P2 are xl and x2, respectively.
The table can be computed as follows. F(0, 0, 0) 0 and F(0, xl, x2) for 0 <
xl+x2 <M;(2)Foreach =<i=<nand0=<x+xz_-<M,

F(i,xl,x2)=min {F(i- 1,xl,xz)+7.( Ti,2),

F(i- 1,x -7-( Ti, ),x),F( i- 1,xl,x2- 7.( Ti, )) }.

Note that the first term is obtained by making Ti as a 2-processor task, and the second
and the third terms are obtained by making Ti as a 1-processor task executed on processors
P1 and P2, respectively. Also, the second term will be dropped if x 7.( Ti, < O.
Similarly, the third term will be dropped ifx2 7.( T;, < 0. After the table is constructed,
we find x f and x such that

max {x’,x +F(n, xf ,x)=min {max {xl,x2) +F(n,xl,x2)}.

The optimal schedule length is given by max x] x ) + F(n, x] x). It is easy to
see that the running time of the algorithm is O(nM2).

For rn 3, we can determine the optimal schedule length as follows. Let M1
Z --1 7.( Ti, and M2 -_1 7.( Ti, 2). We construct a six-dimensional table

F( i,xl,x2,x3,x4,xs), O <= <=n, O <=xl + Xz + X3 <=Ml, 0 x4 + xs <=M2,

where F(i, xl, x, x3, x4, xs) gives the smallest total execution time of the 3-processor
tasks, among all schedules of the first tasks of TS, such that the total execution times
of the 1-processor tasks executed on processors P1, P2, and P3 are xl, x2, and x3, re-
spectively, the total execution time of the 2-processor tasks which use P and P2 is x4,
and the total execution time of the 2-processor tasks which use P2 and P3 is xs. The table
can be computed as follows. F(0, 0, 0, 0, 0, 0) 0 and F(0, xl, x2, x3, x4, xs)
for 0 < xl + X2 -]" X3 M1 and 0 < x4 + x5 _-< M2; (2) For =< < n, 0 =< xl + X2 --
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X3 M1, and 0 _-< x4 + x5 --< M2,
F( i,xl ,X2,X3,X4,Xs) min { F(i- 1,Xl ,X2,X3,X4,X5) -]- 7"( ri, 3),

F(i- 1,Xl-r( Ti, ),x2,x3,x4,xs),

F(i- 1,Xl,X2- r( Ti, ),X3,X4,X5)

F(i- 1,Xl,X2,X3-r(ri, ),X4,X5)

F( i-- 1,Xl,X2,X3,X4--’r( Zi,2),Xs),

F( 1, xl, x2, x3, x4, x5 r( Ti, 2)) }.

The optimal schedule length is given by

max {x + x,xY + xg + x;,x + x;} +F(n,x,xY,x{,xg,x?)

min max xl + x4, x2 + x4 + xs, x3 +x } + F(n, Xl, x2, x3, x4, x) }.

The running time of the algorithm is O(nM5), where M max M1, M2 }.
From the previous discussions, we have the following theorem.
THEOREM 3. Theproblem offinding an optimal nonpreemptive schedulefor a Parallel

Task System with empty precedence constraints is solvable in pseudo-polynomial time

for m 2 and 3.

3. Preemptive scheduling. In this section, we examine the complexity of finding
an optimal preemptive schedule for a Parallel Task System with empty precedence con-
straints. We first show that the problem is strongly NP-hard for arbitrary m. We then
show that it is NP-hard, but solvable in pseudo-polynomial time, for every m > 2. The
following lemma is instrumental in proving the strong NP-hardness result.

LEMMA 2. Suppose f is a positive function such that f( x) < f( y) if x < y, and
(Cl, c2, Cz) is a list ofz real numbers such that Cl + c2 + + Cz O. IfEi= cif( i) >=
0 for each <= j <= z, then ci 0 for each <= <= z.

Proof. We prove the lemma by induction on z. It is obvious that the lemma holds
for z <- 2, since f is positive and strictly increasing. Suppose the lemma is true for
z- k; we want to show it is true for z- k + 1. Let f be a positive function and
(cl, c2, Ck+l) be a list of real numbers that satisfy the conditions of the lemma.
Observe that C 0, since f is a positive function and clf( -> 0. Let bl Cl + C2, and
bi ci+ for 2 _-< _-< k. We have blf(2) c2f(2) + Clf(2) c2f(2) + Clf(1), since
cl >= 0 and f is a positive increasing function. Hence, from the conditions of f and
(Cl, c2, ck /1), we derive two sets of conditions with smaller sizes. The first set is

b + b2 + + b 0,
J

and , big(i) >= 0 for each <j-< k,
i=1

where g(i) f(i + for =< =< k. The second set is

1+2=bl, clf(1)>=0, and c2f(2)+clf(1)>=O.

Since g has the same properties as f, applying the inductive hypothesis to the first set,
we have b; 0 for < =< k. Thus, ci 0 for 3 =< _-< k + 1. Since bl 0, applying the
inductive hypothesis to the second set, we have C 0 and C2 0. []

We now define the following decision problem.
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Problem P 1. Given m, w, and a Parallel Task System PTS TS, 7-, G), is there a
preemptive schedule of PTS on m identical processors such that the schedule length is
no larger than o?

THEOREM 4. Problem P is strongly NP-completefor arbitrary m and empty pre-
cedence constraints.

Proof. We reduce the 3-PARTITION problem to Problem P1. Given an instance
A (al, a2, a3z)ofthe 3-PARTITION problem, we construct an instance ofProblem
P as follows. Let m 4z and w zB(m 3 (z / 2). Let TS U tO V, where
U {U, U2,..., U3z} and V {V, V2, Vz}. For each _-<i_-< 3z,

w+ if <-_j<z
7"(Ui,j)

ai(m--j + if z <j_--< m.

For each =<i=<z,

w+ if =<j<2z+i-
7-(V,.,j)=

B(m-(2z-i)+ l) if2z+i-l <=j<-m.

First, if the 3-PARTITION problem has a solution, i.e., there exist index sets
11, I2, "", Iz such that Ziik ai B for _-< k _-< z, then we can construct a sched-
ule, as shown in Fig. 5, by executing Vk in parallel on 2z + k processors while exe-
cuting Ui for all e Ik in parallel on 2z k processors, for each _-< k =< z. Since
Zi Ik T( Ui, 2z k) 7-(V, 2z + k for =< k _-< z and Z= Zi Ik T( Ui, 2z k)
Y= 7-(V, 2z + k w, the schedule is a solution to Problem P 1.

Next, we show that if there is a schedule S of TS on m processors with length w or
less, then the 3-PARTITION problem must have a solution. From our construction, it
is easy to see that every task in U must execute in parallel on at least z processors and
that it is more advantageous to use as many processors as possible. However, every
Vi, <= <= z, must execute in parallel on at least 2z + processors, but there is no
advantage to use more. Thus, we may assume that in S, Vi executes in parallel on exactly
2z + processors. Furthermore, since the tasks in V all execute in parallel on 2z or
more processors, no two of them can execute simultaneously in S. Without loss of gen-
erality, we may assume that V; executes in parallel on processors P1, P2, Pzz + i-1

P2z
P2z+l
P2z+2

P3z-i
P3z

12

FIG. 5. Optimal schedule in Theorem 4.
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in S. Since = r(V,., 2z + 0, the tasks in U must all execute in the remaining
processors simultaneously with the tasks in V.

Let Ik, =< k =< z, be a subset of { 1, 2, 3z such that for e Ik, task Ui executes
in parallel on 2z k processors in S. We have I1 t.J I2 t.) t_J Iz 1, 2, 3z}.
Since no two tasks in U can execute simultaneously in S, the following conditions must
be satisfied:

(U;,2z-k)=< r(V,2z+k-1) for eachl <l=<z.
k iEIk k=

This inequality can be rewritten as

(,) B- a (m-(2z-k)+ l)>O for eachl<l<=z.
k=l

It is observed that

(**) B- a. =0.
k= ielk

For each <= k <- z, we let c: B ilk ai and f(k) m (2z k) + 1. Since

f is a positive increasing function, by (,), (,,), and Lemma 2, we have c 0 for each
=< k _-< z. Thus, I1,12, Iz constitute a solution ofthe 3-PARTITION problem.

THEOREM 5. Problem P1 is NP-complete for rn 2 and empty precedence con-
straints.

Proof. We show a reduction of the PARTITION problem to Problem P 1. Let A
(a, a2, az) be an instance of the PARTITION problem. We construct an instance
of Problem P as follows. Let w 3 B/4 1/2 and let TS { T, T2, Tz + }. r is
defined as follows.

and

"r( Ti, ai and r( Ti, 2) ai( 1/2 /B ), for each =< =< z,

r(Tz+l,1) =B/2 and r(Tz+l,2)=B/4+l.

First, if the PARTITION problem has a solution, say for index sets I1 and I2 such
that I1 t_J I2 1, 2, z and ,iIi ai ii2 ai B/2, then we can construct a
schedule as follows. Execute Tz + on processor P1 from time 0 to B/2. At the same time,
execute T;, in I1, on processor P_. When this is done, execute the remaining tasks (the
ones with indices in I2) in parallel on two processors. Since ai611 a B/2, the length
of the schedule is B2 +

Next, we prove that if the PARTITION problem has no solution, then there can be
no solution to Problem P 1. It is easy to see that if task Tz +l is a 2-processor task with
respect to a schedule, then the length of that schedule is at least 3B4, which is larger
than o. So in the following, we assume Tz +l is a 1-processor task in any schedule to be
mentioned. Suppose that S is an optimal preemptive schedule of TS on 2-processors.
Let Ii be the subset of { 1, 2, z } such that each task Ti, in 11, is a 1-processor task
with respect to S. Let I2 { 1, 2, z } I. Since there is no partition of A, either

ffiI1 ai < B/2 or iII ai > B/2. If ir, ai < B/2, then iI2 ai > B/2. Since Tz+l is
a 1-processor task with respect to S, the length ofS is B2 + i 12 ai( 1/2 /B) > w. On
the other hand, if Z ill a; > B/2, then Zi 12 a < B2, and hence the schedule length is
at least B2 + 1 ai B/ 2 / 2 + ,

12 ai( 1/2 / B) > . Hence, the length of S



484 JIANZHONG DU AND JOSEPH Y-T. LEUNG

is larger than co in both cases. Since S is optimal, there can be no solution to Prob-
lem P 1. K]

We now give a pseudo-polynomial time algorithm to find an optimal preemptive
schedule for a Parallel Task System PTS TS, r, G) with empty precedence constraints
for each m >-_ 2. The basic idea of our algorithm is as follows. For each schedule S of the
PTS, there corresponds a Multiprocessor Task System MTS TS, r, G) in which task
Ti is a k-processor task in MTS if Ti is a k-processor task with respect to S. By the result
in [1], finding an optimal preemptive schedule for a Multiprocessor Task System can
be done in polynomial time for each m >= 2. Thus, all we need to do is generate all
possible MTSs that correspond to some schedule of the PTS, find an optimal preemptive
schedule for each of the generated MTSs, and choose the shortest schedule among all.
The bulk of our work is to show that the number of MTSs that we need to generate is
bounded above by a pseudo-polynomial function of the size of the PTS.

We begin by presenting a result on a Multiprocessor Task System with empty
precedence constraints. Let S be a schedule of a Multiprocessor Task System
MTS=(TS, r,G) whereTS= T T T1,,,} u u u
{ T, T’, T,mm }, and T/, < =< nk, is a k-processor task. We divide S into N seg-
ments, S1, $2, SN, where the boundary of a segment is when task assignment on the
processors changes. The length of segment Si, =< < N, is denoted by li. We let L
l, 12,"’, lu). For each Si, we define a multiset Ki ki,1, ki,2, ki,Ul }, where
each kid, < j <= Ni, corresponds to a ki,j-processor task executing in S. Note that

Ef21 kid <= m for each =< < N. We let K (K1, K2, KN). The pair (K, L) is
called a preemptive schedule scheme induced by the schedule S. Shown in Fig. 6 is a
schedule S of an MTS, where S is divided into five segments. We have L (5, 3, 6, 3, 2)
and K= ({1, 2, 3}, {1, 2, 2, 1}, {3, 3}, {2, 2, 2}, {1, 1, 1}). In general, any pair
(K, L), where L is a list ofN real numbers and K is a list ofN multisets of integers with
each multiset totaling no more than m, is called a preemptive schedule scheme. Notice
that every schedule S ofan MTS induces a preemptive schedule scheme (K, L). However,
it is not the case that every preemptive schedule scheme corresponds to a schedule of
the MTS. A preemptive schedule scheme (K, L) is said to be feasible for an MTS if it
corresponds to a schedule of the MTS.

TS,

T, T), Td, T, T, T T, T2 T

r(T 7, r(r 2, r(T 5, r(r

r(r) 8, r(T)= 6, r(T)=
r(T3 5, r(T 6, r(T)

K,- {1,2,3} {1,2,2,1} {3,3} {2,2,2} (1,1,1}

1 13

T

P6 T3

S3

FIG. 6. A preemptive schedule ofa multiprocessor task system.
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In the following, we shall establish necessary and sufficient conditions for a preemp-
tive schedule scheme (K, L) to be feasible for MTS (TS, r, G). For the rest of the
discussions, we shall assume that an MTS satisfies the following two conditions. First,
the number of k-processor tasks in the MTS is at least m/kJ, for each -< k -< m. For
otherwise, we can always add in zero-execution-time tasks to make it so. Secondly, the
tasks have been indexed in nonincreasing order of execution time. Thus, we have
r(T1) >_- r( T2) >_- > r(T,k) and nk >--/m/kJ, for each _-< k =< m. Let (K, L) be a
preemptive schedule scheme, where K (K1, K2, "’", KN) and L (/1, [2, lN).
For each _-< k _-< m and _-< j _-< /rn/k/, we define E { =< < N and there are at
least j integers in Ki equal to k } and

Note that E+,
___
E and D+, =< D. For each k _-< m, we define a processor system

Pk { Pq, P, Ptm/j}, where the available processing time on processor P is
from time 0 to time D. Figure 7 shows the processor systems defined by the preemptive
schedule scheme of Fig. 6. We are now ready to establish necessary and sufficient con-
ditions for a preemptive schedule scheme to be feasible for a Parallel Task System.

LEMMA 3. Let K, L) be a preemptive schedule scheme and let D be defined as
above. K, L) is feasiblefor an MTS ifand only ifthefollowing conditions are satisfied
for all < k <= rn and < j <= rn/kJ:

J
r(T/) ifl<=j<Lm/kj
i=1

nk
i=1 r(r) ifj=/m/kJ.

i=1

Proof. Noting that D, <j _-< [ m/kl, define a processor system for the k-processor
tasks, the lemma can be proved by the same technique as in [4], [5]. Because of space
limitation, we shall omit the proof here. Vq

LEMMA 4. Let MTS1 and MTS2 be two Multiprocessor Task Systems. Then, they
have the same optimal preemptive schedule lengths iffor each <= k <= m, the execution
times of the largest ([m/kJ 1) k-processor tasks in MTS1 are the same as those in

El (1, 3} E2

Dt D

FIG. 7. Processor systemsfrom the preemptive schedule scheme ofFig. 6.
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MTS2, and the total execution time ofthe remaining k-processor tasks are the same in
both task systems.

Proof. Let S be an arbitrary preemptive schedule for MTS and let (K, L be the
preemptive schedule scheme induced by S. We have that (K, L is feasible for MTS.
Since for each _-< k _-< m, the execution times of the largest ([m/kJ k-processor
tasks in MTS2 are the same as those in MTS and the total execution time ofthe remaining
k-processor tasks in MTS2 is the same as that in MTS, by Lemma 3, (K, L is also
feasible for MTS2. Thus, there is a preemptive schedule S’ for MTS2 with the same
length as S. Similarly, if $2 is an arbitrary preemptive schedule for MTS2, then there is
a preemptive schedule S for MTS with the same length as $2. Therefore, the optimal
preemptive schedule lengths for both task systems must be identical. V1

From Lemma 4, we see that the optimal preemptive schedule length of an MTS is
completely determined by H ’= m/kl integers, namely, the execution times ofthe
largest (m 1-processor tasks, the total execution time of the remaining 1-processor
tasks, the execution times ofthe largest ([m/2 J 2-processor tasks, the total execution
time of the remaining 2-processor tasks, ..., and the total execution time of all m-
processor tasks. For every preemptive schedule S of a PTS, there corresponds an MTS
in which a task is a k-processor task if it is a k-processor task with respect to S. By
Lemma 4, the number of MTSs we need to examine is bounded above by MH, where
M max,’= { ’1 -(T/k) } Since H is O(m log m) and since finding an optimal
preemptive schedule for an MTS can be done in polynomial time, the running time of
the entire algorithm is bounded above by a pseudo-polynomial function of the size of
the input.

Before we finish this section, we briefly describe how one can generate all the
MTSs that need to be examined for any given PTS. Let PTS TS, -, G), where TS
{ T1, T2, Tn }. We generate a H-dimensional table F(i, x, x2, x/_ ), 0 =<

_-< n, 0 < x, x2, x/_ < M, where F(i, xl, X2,’’’, XH-1) gives the small-
est total execution time of the m-processor tasks, among all schedules of the first tasks
of TS, such that the largest execution time of the 1-processor tasks in the schedule is
x, the second largest execution time of the 1-processor tasks in the schedule is x2, ",

and the total execution time of the (m )-processor tasks in the schedule is xn-1.
Note that F(i, Xl, x2, "’, x/_ 1) if there is no such schedule. The MTSs that
need to be examined are those where F(n, Xl, x2, xn-1) < . It is readily veri-
fied that the table F can be constructed in O(nHMI) time. As an example, let us con-
sider m 3. In this case, H 5. F(0, 0, 0, 0, 0) 0 and F(0, Xl, x2, x3, x4) for
0 < xl, "’", x4 =< M. For each _-< _-< n and 0 =< xl, "", x4 < M, we compute
F(i, xl, x2, x3, x4) as follows: First, compute

F( i- 1,xl,xz,x3 -( Ti, ),x4)

mino_y=x2{F(i- 1,x2,y, x3- y,x4) }
X=

mino_yzx2 { F( i- 1,x, y, x3- y,x4) }

Now

if x >_-x2 > ’( Ti,

if ’( Ti, x > x2

if x >= x2 z( Ti,

otherwise.

F(i,x,x2,x3,x4)=min {F(i- 1,xl,x2,x3,x4)+’( Ti,3),

F(i- 1,xl,xz,x3,x4-z( Ti,2)),X}.

From the above discussions, we have the following theorem.
THEOREM 6. Theproblem offinding an optimalpreemptive schedulefor a PTS with

empty precedence constraints is solvable in pseudo-polynomial timefor each m >= 2.
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4. Conclusion. In this paper, we propose a model of task systems, the so-called
Parallel Task Systems, to model tasks that implement parallel algorithms. We study the
complexity offinding a minimum length schedule for both nonpreemptive and preemptive
scheduling disciplines. The following problems are left open in this paper: (1) For
rn 4 and empty precedence constraints, is the problem of finding an optimal non-
preemptive schedule for a PTS strongly NP-hard? (2) For m 2 and nonempty precedence
constraints, is the problem of finding an optimal preemptive schedule for a PTS strongly
NP-hard? (3) For arbitrary m and empty precedence constraints, is the problem of finding
an optimal preemptive schedule for an MTS strongly NP-hard?
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ON TWO CLASSICAL RAMSEY NUMBERS OF THE FORM R(3, n)*

GEOFFREY EXOOf

Abstract. New lower bounds are given for the classical Ramsey numbers R(3, 10) and R(3, 12). Both
constructions were made using a variant of the Metropolis Algorithm and were built on smaller cyclic con-
structions.

Key words. Ramsey numbers, heuristics
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Two new lower bounds for Ramsey numbers ofthe form R 3, n) are proved below.
Both proofs are completed by extending cyclic constructions for R(3, n ).

In general our notation follows that of Harary [2]. We use R(s, t) to denote the
classical Ramsey number of Ks versus Kt, defined to be the smallest integer n such that
in any 2-coloring of the edges of Kn there is a monochromatic copy of Ks in color or a
monochromatic copy of Kt in color 2. A coloring of a complete graph is called an (s, t)-
coloring if there are no monochromatic copies of Ks in color or of Kt in color 2. A
graph of order n is called a cyclic n(al, ak) graph if its vertices can be labeled with
the integers from 0 to n so that two vertices are adjacent ifand only if their difference
is ai, for some i, -< =< k.

The underlying algorithm we used to make these constructions is a procedure that
has been called simulated annealing [3 ], and is based on an algorithm devised by
Metropolis et al. [4] for application to statistical mechanics. We offer a brief descrip-
tion. Let f be an integer-valued function of integer variables x, xn, and suppose
we wish to find the minimum value off. At each step of the algorithm we have a cur-
rent vector (x, xn) that may initially be chosen at random. We consider a small
random change in one of the variables xi, yielding a new vector (Xl, x, Xn).
The values y f(xl, xi, Xn) and y’ f(x, x, x) are compared,
and Ay y’ y is computed. If AY =< 0, then the new vector is accepted as the cur-
rent vector, otherwise the new vector is accepted with probability exp (-AY/k T),
where k is the analogue ofthe Boltzmann constant and T is an analogue oftemperature.
In the course of running the algorithm we usually begin with a relatively large value for
T (i.e., a high temperature), and gradually lower the value of T (i.e., allow the system
to cool).

The first problem that arises when applying this procedure to Ramsey numbers is
that of determining f. This issue has been discussed in some detail in [1 ]. New issues
arise when dealing with far off-diagonal cases. Specifically, with R 3, t), we must decide
how much weight to give to a K3 in color 1, as opposed to a Kt in color 2. In the context
of the Metropolis Algorithm, the random change in the current vector corresponds to
recoloring one edge in a given 2-coloring. Suppose that coloring a given edge in color
yields ml monochromatic K3’s in color 1, while coloring it with color 2 yields m2 mono-
chromatic Kt’s in color 2. Let 0 mz/ml. The question that must be answered is: For
what values of 0 do we prefer color and for what values do we prefer color 2? Let 00
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be the value of o for which we are indifferent. In other words, for values of o > po we
choose color 1, for values of 0 < p0 we choose color 2, and when 0 00 we make a
random choice. In practice we have found that choosing

is a good choice, so that the weights are inversely proportional to the number of edges
in the graphs we are trying to avoid.

The table of Ramsey numbers given in 5 seems to be the most recently published.
The values listed there for numbers of the form R(3, n) are as follows:

R(3,3)=6,

R(3,5)= 14,

R(3,7) 23,

R(3,9)= 35,

46NR(3, 11)<54,

R(3,4)= 9,

R(3,6)= 18,

28 =<R(3, 8)=< 29,

39 =<R(3, 10)_-<44,

49 =<R(3, 12)=< 63.

We improve the lower bounds for R (3, 10) and R(3, 12) by one.
THEOREM 1. R(3, 10) >- 40.
Proof. Begin with the cyclic (3, 9)-coloring of K35 given by having the edges of the

cyclic graph 35( 1, 7, 11, 16, 19, 24, 28, 34) colored in color 1, and the edge of the
complement colored in color 2. To this graph we add four vertices labeled a, b, c, and
d. The edges joining a to c and b to d are colored in color 2. The remaining edges among
these four vertices are colored in color 1. In addition, the four new vertices are joined in
color to those of the original 35 as listed below:

a: 2 15 19 27 32

b: 11 17 25 29

c: 8 16 26 28 34

d: 4 10 18 22 24 30.

The remaining edges are in color 2.
THEOREM 2. R(3, 12) >- 50.
Proof. The construction proceeds just as in Theorem 1. We begin with the cyclic

coloring derived from the graph 45(3, 10, 11, 12, 16, 29, 33, 34, 35, 42). Again we add
four vertices, a, b, , and d, with a adjacent to in color 2 and b adjacent to d in color
2. All other edges among these four vertices are in color 1. The color edges joining the
new vertices to the original 45 are given below:

a: 22 24 31 39

b: 6 7 14 28 33 37

c: 10 12 27 34 35 36 40

d: 2 3 4 17 21 25 30 43.

We note that evidence seems to be accumulating for the conjecture that it is the
exception, rather than the rule, for Ramsey colorings to be cyclic.
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PAIR LABELLINGS WITH GIVEN DISTANCE*

Z. FUREDIy, J. R. GRIGGS:I:, AND D. J. KLEITMAN

Abstract. Given a graph G and d 7 /, the pair labelling number, r(G, d), is defined to be the minimum
n such that each vertex in G can be assigned a pair of numbers from 1, .., n in such a way that any two
numbers used at adjacent vertices differ by at least d. A question of Roberts’ is answered by determining all
possible values of r(G, d) given the chromatic number of G. The answer follows by determining the chromatic
number of the graph that has pairs of integers as vertices and edges joining pairs that are distance at least d
apart. For general e 7//, the analogous questions for t-sets instead ofpairs are considered. A solution for general
is conjectured which, for d 1, reduces to Lovfisz’s theorem on Kneser graphs.

Key words, generalized graph colorings, Kneser graphs

AMS(MOS) subject classification. 05C 15

1. Introduction. There has been a considerable effort [CR], [R to study properties
of"T-colorings" ofgraphs in which a set of nonnegative integers T is specified, and each
vertex of a simple graph G (V, E) is assigned a "color," denotedf(v), wheref(v) is a
positive integer and for every edge { v, w } E the value If(v) -f(w) T. Roberts
[R2 has proposed an analogous problem in which each vertex v is assigned an unordered
pair of integers as its color subject to the restrictions that adjacent vertices never receive
the same or adjacent integers. The proposed problem is motivated by the task ofassigning
channel frequencies without interference. Our investigations here will find a close con-
nection between this theory and Kneser graphs.

Throughout the paper, sets denoted by interval notation, such as 1, n ], are restricted
to integer values. For a set S and value 7/+, (ts) denotes the collection ofall (unordered)
t-subsets of S. All graphs G (V, E) are simple and undirected, i.e., E

___
().

7/+A pair labelling of a graph G (V, E) is a functionf V- 2 ). We are interested
in pair labellings such that no vertex receives a label that is too close to that ofa neighbor.
The distance between two pairs .4, B

_
(/) is defined to be the minimum value of

]a- b] over all a A and b B. A pair labelling f of a graph G has distance d(f)
where d(f) is the minimum, over all edges v, w ) E, of the distance between the
pairsf(v) andf(w). We wish to study, for given graph G and distance d, the minimum
number n such that there exists a pair labelling f with distance d(f)>= d and
maxvf(v) n. That is, we seek to minimize n such that there exists f’V---,,
with d(f) > d. Let r(G, d) denote this minimum.

More generally, for any 7/+, a t-labelling of a graph G is a function f V --7/+ ). We may extend the definitions above to distance between t-sets and distance d(f)
of a t-labelling f. Let rt(G, d) denote the minimum n such that there exists f V --(tinl) with d(f) >= d. Notice that the special case and d is the familiar one of
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vertex-coloring for graphs, so that r (G, X(G), the chromatic number of G. Of
course, r2(G, d) is the same as r(G, d).

The pair labelling number r(G, d) is a special case ofwhat Roberts calls the T-span
of G, denoted spT(G). Given a set T of nonnegative integers, spT(G) is the smallest
integer n such that there exists a pair labelling f of G using integers in [1, n with the
property that whenever { v, w } is an edge in G, a f(v), and b f(w), then a b
T. Thus r(G, d) is sPT(G) where T 0, 1, d- }. In general the t-labelling
number rt(G, d) is similarly the minimum span, denoted sp}(G) by Roberts, of an n-
tuple T-coloring of G where T { 0, 1, d }. An up-to-date survey of this sort
of generalized colorings has been prepared by Roberts [R3 ].

How can we efficiently label the complete graph Kk? Given and d, we can
assign the first integers to some vertex, skip the next d- integers, assign the next
integers to a second vertex, skip the next d- integers, and so on. It is easily checked
that no other labelling of a complete graph is as efficient. Hence rt(Kk, d) kt +
(k )(d- ), and the given labelling is the only one that attains rt(Kk, d) up to
permuting the vertices. The same labelling strategy works more generally for any k-
chromatic graph: Given a k-coloring of V, we can replace the first color by the first
integers, then skip d- integers, and replace the second color by the next integers,
etc. We have proved the following result.

PROPOSITION 1.1. Let t, d, k 7/+. Suppose G is a graph with X( G) k. Then
rt( G, d) <= kt + k- )(d- ), and this bound is sharpfor G Kk.

This establishes the close connection between the chromatic number and labelling
numbers. In the special case 2 and d 2 it is the motivation for the following problem
posed by Roberts [R2]: Determine the range of possible values of r(G, 2) for arbitrary
k where k x(G).

In the next section we explore the connection between t-labellings and graph ho-
momorphisms. For labellings we state our main theorem, which answers Roberts’ ques-
tion. More generally, for arbitrary d we determine the range of possible values of
r(G, d) for graphs G with given chromatic number. The proof is reduced to one essential
lemma that gives a lower bound on the chromatic number of a particular class of graphs.
The lemma, which is of independent interest in light of its connection to Kneser graphs,
has a purely graph-theoretic proof, given in 3. Further discussion of pair labellings
follows in 4. The paper concludes with a conjecture about what happens for t-labellings
for general t. A weaker version of the main theorem for pair labellings can be proven
for general t. A purely graph-theoretic proof ofthe general conjecture would be surprising,
since the conjecture yields the chromatic number of Kneser graphs as a special case.

2. t-labellings, graph homomorphisms, and the chromatic number. When we study
vertex-labellings of graphs, it is often helpful to consider graph homomorphisms.
That is the case here. A graph homomorphism from a graph G (V, E) to a graph
H (W, F) is a map g:V- W that sends edges to edges, i.e., for all { v, w) E,
g(v), g(w) } F. We say G is homomorphic to H if there exists such a homomorphism

from G to H. In this language, a graph G has a k-coloring, i.e., x(G) =< k, if and only if
G is homomorphic to Kk. For related work on homomorphisms, see [A l, [G l, [HN].

In a similar way we may view t-labellings as homomorphisms to the graph of labels.
We introduce the t-graph Gt(rl, d) with vertex set V (I linl and edge set E that contains
every pair { A, B (’) such that the distance between A and B is at least d. If 2 we
suppress the and write G(n, d), which we call the pair graph. It follows from the
definitions for any G, t, d, n that rt(G, d) _-< n if and only if G is homomorphic to the
t-graph Gt(n, d). For the case proposed for study by Roberts, t 2 and d 2, we discuss
characterizations by homomorphisms in more detail in 4.
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Given this homomorphism characterization of t-labellings, it is clear that the chro-
matic numbers for the t-graphs Gt(n, d) are ofparticular importance in our study. Suppose
t, d, k are given and n is the smallest value such that x(Gt(n, d)) k. Then consider
any graph G with rt(G, d) < n. G is homomorphic to Gt(n l, d), which is (k )-
colorable and hence homomorphic to K_ . By composition, G is homomorphic to
Kg_ , i.e., X(G) _-< k 1. Thus the range of possible values of rt(G, d) for graphs G with
X(G) k is contained in the interval [n, kt + (k )(d- )].

For pair labellings we can determine the minimum value n above and show that
for this n, (G(n, d)) k, so that this n is one of the attainable values of r(G, d) for
given k. Then we prove by induction on k that every value in the interval is attained.
We now state our main result which contains the answer to Roberts’ question.

THEOREM 2.1. Let d, k 7] +. Suppose the graph G has x( G) k. Ifk 1, then
r(G, d) 2. Ilk > 2, then r(G, d) [d(k + 3, d(k + k + ], and all values
in this interval are attained by suitable graphs G.

Proof. If k and X(G) k, then G consists of one or more isolated vertices.
Trivially, r(G, d) 2 for all d in this case. Then suppose k 2 and X(G) k. By Prop-
osition 1.1, r(G, d) =< d(k + k + l, and this bound is sharp. Next we show that
r(G, d) > d(k + 3. In view of the discussion above, this follows by bounding
x(G(d(k + 2, d)) above by k 1. We now prove a more general result that applies
for all t. []

PROPOSITION 2.2. Let t, d, k 7] +. Then

x(Gt(d(k- 1)+2t-2,d))<=k 1.

Proof of Proposition 2.2. It suffices to describe a suitable (k- )-coloring of the
vertices of Gt(d(k + 2t 2, d). For _-< rn -< k 2 assign color rn to all vertices
(t-subsets) { il < i2 < < it} such that il [d(m 1) + 1, dm]. The remaining
uncolored vertices form the set (t/), where I [d(k- 2) + 1, d(k- + 2t 2 ]. Let
A e (t/) be any such vertex. Then at least d + elements of I are within distance d
of some element ofA. Since II d + 2t 2, any other vertex B 6 (t/) contains some

element within distance d- of A. Hence every vertex in ([) may be assigned color
k-1. [3

We have shown that the bounds in the theorem are correct and that the upper bound
is sharp. Next we prove that the lower bound is also sharp. We must show there is a
graph G such that X(G) k and r(G, d) d(k + 3. Such a graph G must be
homomorphic to G(d(k + 3, d) which, by Proposition 2.2, has chromatic number
at most k. If we can establish that x(G(d(k- + 3, d)) k, then this graph can be
the G we seek. This follows from Lemma 2.3.

LEMMA 2.3. Let d, k 7]+. Then x(G(d(k + 3, d)) >= k.
The proof of this lemma is the most demanding part of our paper, and we devote

3 to it. Assume here that this lemma is true. To complete the proof of the theorem it
then remains to produce k-chromatic graphs that assume the intermediate values of the
pair labelling number r. We prove this by induction on k. For k and 2 the only
possible values for r(G, d) are 2 and d + 3, respectively, so we know they are realized
by suitable G (e.g., K1 and K2, respectively).

Assume for induction that k >= 2 and every value in the interval

[d(k- 1)+ 3,d(k- 1)+ k+ 1]

is realized by a suitable graph Gi (Vi, Ei). Attach a new vertex w that is adjacent to
all of Gi, i.e., let G} (V}, E}), where V} V,. U { w and E} Ei t.J { { v, w } v Vi }.
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It follows immediately that

x(G)=x(Gi)+ l=k+ 1,

and r(G) r( Gi, d) + d+ + d+ 1.

Hence the graphs G} all have chromatic number k + and exhibit the following values
of r(G, d) [dk + 4, dk + (k + + ]. This includes all values in the interval except
dk + 3, which is handled by Lemma 2.3. ff]

3. Proof of Lemma 2.3. We interpret the lemma in the following way: Pairs in
[1, n] correspond to edges in the complete graph Kn. So we must show that for all d,
k >- it is impossible to partition the edges of Kn into k- graphs Gi, i.e., E(Kn)=
E(G)t2... t2 E(Gk_), when n d(k-1)+ 3, such that no Gi contains dis-
tinct edges e and f unless a b < d for some a e, b f. When edges e, f have
a b < d for some a e e, b e f, we say that the edges are "close" to one another;

otherwise, they are "far." In these terms, we seek to prove that there is no k 1-
coloring such that all edges of the same color are close to one another. For d
the desired result, i.e., x(G(k + 2, )) k, is a special case (t 2) of the well-known
result about Kneser graphs (cf. 5). For the sake of completeness we supply a direct
proof here. For d > 2 we prove the result for a more general class of graphs by induction
onk.

First suppose d and n k + 2. We use induction on k. The result is trivial for
k 1. Suppose k > 2. Suppose E(Kn) E(G1) t2 t2 E(Gm) where m =< k and
for all any two edges in E(Gi) intersect. Then the edges in any color class E(Gi) either
form a triangle or a star (i.e., have a common vertex). Since IE(gn)l (k2) >
3(k >= 3m, some color class must be a star through some vertex j. Then the parti-
tion of E(K,) induces a partition of the edges in the subgraph of Kn on vertices [1, n]/
{ j } into just m < k 2 color classes, which is impossible by induction on k. There-
fore m >= k, and hence (G(k + 2, )) k as claimed.

Let d >= 2. For our induction on k to succeed we must consider edge-colorings of a
larger class of graphs, called cut-graphs. Suppose V { i, i2, ia }, where <- i <
i2 < < ia <- n. A cut between vertices that are consecutive in V, say between ij and
ij / , written ijli2 / , will mean two things. First, the edge ij., i / is removed from the
graph. Second, vertices below the cut, including iy, are considered far, i.e., distance at
least d, from vertices above the cut, including ij.+l.

Consider an example. Let d 3 and V { 1, 4, 5, 6, 8, 9 }. The graph G 1,415,
61819 has six vertices and three cuts. Thus E(G) is () except for { 4, 5 }, { 6, 8 }, and
{ 8, 9 }. Due to the cuts, the edge { 4, 8 } is now far (distance at least d 3) from
{ 5, 9 }. The cuts make the graph easier to color by removing edges, yet harder to color
by increasing distances.

We shall complete the proof of the lemma by proving for d >= 2 this stronger
statement.

PROPOSITION 3.1. Let d >-_ 2, k >= 1, and n >- d(k- / 3. Let V
_

7/+ with

VI n. Let G be any cut-graph on vertex set V. Then any coloring ofE(G) with distance
d requires at least k colors.

Proof. We assume that V [n] in order to make it as easy to color G as possible.
For example, with d 3 the graph G’ 1,213, 41516 is no harder to color than G 1,
415, 61819. Indeed, far edges in G may even correspond to close edges in G’, e.g., { 1, 8 }
and { 4, 9 } in G become 1, 5 } and 2, 6 } in G’. More precisely, any feasible coloring
of G induces a feasible coloring of G’.
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With d >_- 2 fixed, suppose first that k 1, n >= 3. To prove one color is required it
is enough to show there is an edge in any cut-graph on [1, 3]. If there is no cut, { 1, 2 )
is an edge. If there is one cut, the two vertices on the same side of the cut determine an
edge. If there are two cuts, they are 112 and 213. Then { 1, 3 is an edge. Hence at least
one color is required.

We induct on k. Suppose k >_- 2 and that the proposition holds for k 1. Let n >_-
d(k + 3, and let G be any cut-graph on [1, n ]. Suppose, for contradiction, that G
has an edge-coloring with k colors. E(G) E(G U U E(Gk_ ), where any
two edges in any Gi are close to one another. We say a set of vertices S __%_ [1, n] is
heavy for color i, written S Hi, if putting into (i every edge in G that meets some
vertex in S maintains the property that the distance is at most d- between any two
edges in E(Gi).

The interval [1, n] is partitioned into subintervals, which we call sections, by the
cuts in G. Suppose some section S has j vertices, say { a + 1, a + j), where 2 =<
j =< d. There is some edge e with both ends in S, say e E(G). Since every edge in
E(G is distance at most d from e, it follows that every edge in E(G meets S. We
now remove S and all edges that meet S from G. If a >= and a + j + _-< n, then also
remove the edge { a, a + j + and insert a new cut a[a + j + 1. We have a new cut-
graph, call it G’. All edges in E(G were deleted along with some others possibly, so the
color classes E(G2) U E(Gk_ ) induce a (k- 2)-coloring of E(G’)with distance
d. However, the cut-graph G’ has n -j -> d(k 2) + 3 vertices, and by induction on
k, it requires at least k- colors for E(G’), a contradiction. Therefore we may assume
hereafter that each section in G has only one vertex or else at least d + vertices.

Suppose now that G has single vertex sections on both ends, i.e., [2 and n In.
Then { 1, n } is an edge, say { 1, n } E(G). All vertices in [2, n 1] are distance at
least d from and n, so every edge in E(G contains or n. Thus the induced subgraph
G’ of G on [2, n is a cut-graph, and the coloring induced by E(G) uses only k 2
colors. However, V(G’)I n 2 >= d(k- 2) + 3, so by induction at least k- colors
are required for G’, a contradiction.

We assume for the remainder ofthe proofthat at least one end, say the end beginning
at 1, has at least d + vertices in its section. Suppose there is a cut near the other end,
i.e., n 1] n. The edge 1, 2) belongs to G, say 1, 2 ) E(G). To be closer than
distance d to { 1, 2 ), every edge in E(G) must meet [1, d + ]. Thus every vertex in
[2, d] is distance at most d- from every edge in E(G ). It follows that [2, d] 6 H,
so we may recolor every edge meeting [2, d] by color and still have a valid coloring.
Assume we have done this.

Since k >_- 2, we have n -> d + 3, so the edge 1, n ) is in E(G). If { 1, n ) E(G),
say 1, n ) E(G2), then every edge in E(G2) must contain or n. But then the k 2
color classes E(G kJ E(G3) U k3 E(G_ cover all edges in the induced subgraph
G’ on [2, n ], a contradiction to our induction hypothesis. Therefore, we must have
1, ; } 6 E(G). If every edge in E(G) meets [1, d], then the k-2 color classes

E(G2) U kJ E(Gk_ cover the induced subgraph on [d + 1, n], which is a contra-
diction by induction. It then must be that some edge in E(G) avoids [1, d], and the
only possibility is d + 1, n ) E(G ), since no other edge avoids [1, d] yet is close to
{1,2} and {1, n).

Suppose first that there is a cut d + lid + 2. Then every edge in E(G) meets
[2, d] U n ), except 1, d + 1) if it belongs to E(G). Remove vertices [2, d]

_
{ n)

and the edge 1, d + ), and replace them by a cut lid + 1. The edges of this cut-graph
on n d >= d(k + 2) + 3 vertices have a coloring with just k 2 colors induced by G,
which contradicts our induction hypothesis.
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Therefore there can be no cut between d + and d + 2. They then form an edge
in G which is too far from 1, n } to be color 1. Suppose, say, { d + 1, d + 2 } e E(G2).
All edges meeting [2, d] are color 1. So in order to be near { d + 1, d + 2 }, every edge
in E(G2) must meet the set [d + 1, p], where either p 2d + or else d + 2 =< p =< 2d
and [1, p] is the section before a cut PIP + 1.

Let q min {p, 2d}. Then every vertex in [d + 2, q] is distance at most d-
from every edge in E(G2), so that [d + 2, q] e H2. We may recolor every edge that
meets [d + 2, q] by color 2. (The purpose of this recoloring is to get edges { 1, j }, j
d + 2, q] out of E(G1 ).) Now the only edge in E(G1 that avoids 2, d] U { n }, if any

do, is { 1, d + }. So as in the previous case, there is a (k 2)-coloring induced on the
subgraph obtained by removing 2, d] U { n } and inserting a cut 11 d + 1. But there can
be no such (k 2)-coloring of the subgraph, by the induction hypothesis, so we have a
contradiction.

At this point we notice what the cut "bought" for us: an easy argument to reduce
to the case that there is no cut near either end of[l, n]. We assume now that there are
no cuts in [1, d + 1] or [n d, n]. The edges {1, 2} and {n 1, n} belong to E(G)
and are different colors since n >= d + 3. If k 2, then there are at least two colors,
and we are finished. Otherwise k >= 3, and suppose { 1, 2 }
E(G2). As before, we find [2, d] ell1 and similarly [n- d+ 1, n- 1] H2. We
may therefore recolor all edges meeting [2, d] by color and then all edges meeting
[n d + 1, n by color 2. If { 1, n } e E(G3), say, then every edge in E(G3) meets
or n so that by removing and n we get a (k 2)-coloring of a cut-graph on n 2 ver-

tices, a contradiction to our induction hypothesis. Therefore, { 1, n } is color or 2, say
{ 1, n } E(G1 ). We now proceed exactly as before: We replace [2, d] U { n } by a cut

lid / 1, eliminating all edges in E(G1 ). We carry out this replacement immediately if
there is a cut between d + and d + 2. Otherwise, if { d + 1, d + 2 } E(G), then it is
a new color, say { d + 1, d + 2 } e E(G3); we recolor all edges meeting [d + 2, q] by
color 3, with q as above, and then replace [2, d] U n }. We obtain a (k 2)-coloring
of a cut-graph on at least d(k 2) + 3 vertices, the same contradiction to our induction
hypothesis as before.

In every case we have reached a contradiction, so at least k colors are required to
color E(G), and the proposition follows.

This completes the proof of the lemma.
Remarks. A slightly stronger statement than the proposition can be proven by a

similar argument. We can take away more edges every time there is a cut. Specifically,
fix d and a set V { il, ia --- 1, n]. Then we may require that a cut ijlij / omits
not just one edge but omits every edge { ij +1-a, ij-/ b } where a >= 1, b >= 1, a + b =< d,
and no other cut separates i+ 1-a and i+b. Return to the earlier example, G
1,415, 61819 with d 3. Then edges { 1, 5 }, 4, 6 }, and { 5, 8 are also omitted be-
sides 4, 5 }, { 6, 8 }, and 8, 9 }, as before. However, 6, 9 } is not omitted because
two cuts intervene. The statement and proof of the proposition hold as above with this
new definition of cut, even though the graphs have fewer edges in general.

It is also worth noting that the proof of the lemma is deceptively simple. Without
introducing cut-graphs, there is no approach clearly available. Working on the ends at
1, 2 and n 1, n also appears to be crucial to the argument.

For d 1, the case of Kneser’s graph of pairs, the proof of the lemma is
rather easy. For the case originally proposed by Roberts, d 2, the lemma
states that x(G(2k + 1, 2)) >- k. This graph G(2k + 1, 2) induces on the subset
(1,3,5, .. ,2k +1) of its vertex set a graph isomorphic to G(k + 1, ). So we easily obtain
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(G(2k + 1, 2)) >= x(G(k + 1, )) k 1. However, obtaining the desired lower bound
of k in this d 2 case seems to be essentially as difficult as the problem for. general d.

4. Pair labellings with distance 2. We now discuss the consequences ofthe findings
above for the original problem of Roberts concerning pair labellings with distance 2 of
graphs with given chromatic number. It follows from our main theorem that for graphs
G with X(G) k the pair labelling number, r(G, 2), must be 2 if k 1, and if k >_- 2 it
may assume any of the k values in the range [2k + 1, 3k ]. The upper bound in
this range, 3k- 1, is attained by the complete graph Kk. Of course any k-chromatic
graph that contains Kk also requires 3k- labels. The lower bound in the range,
2k + 1, is attained by the "pair graph," G(2k + 1, 2), that was our main object
of study.

As noted above, the 1-chromatic graphs G, which consist of isolated points, have
r(G, 2) 2, while the 2-chromatic graphs G, which are bipartite graphs with at least
one edge, have r(G, 2) 5. The 3-chromatic graphs have r(G, 2) 7 or 8. It is curious
that no graph has pair labelling number with value 3, 4, or 6.

We have seen that a graph G has r(G, 2) _-< 7 if and only if G is homomorphic to
the pair graph G(7, 2) shown in Fig. 1. In the figure, G(7, 2) is drawn to make evident
its homomorphism to C5. On the other hand, C5 is immediately homomorphic to
G(7, 2) since it can be seen to be a subgraph. It follows that r(G, 2) =< 7 if and only
if G is homomorphic to C5. Hence we have the following result.

PROPOSITION 4.1. Suppose G is a graph with (G) 3. Then r( G, 2) 7 ifand
only ifG is homomorphic to Cs; else r( G, 2) 8.

Consider graphs G with X(G) 3. For instance, if G is an odd cycle C2- 1, k >= 3,
then r( G, 2) 7. IfG contains a triangle, then r( G, 2) 8 since G cannot be homomorphic
to C5. Next suppose the 3-chromatic graph G is also triangle-free. It may still be that G
is not homomorphic to C5, so that r(G, 2) 8. In Fig. 2 we show an example of such
a graph.

There is related work of interest on graph homomorphisms surveyed by Albertson
[A]. Vesztergombi [V] characterized the 3-chromatic graphs that are homomorphic to

C.. A different but more powerful result was recently given by Gerards [G ], who found
an elegant obstruction characterization of nonbipartite graphs that are homomorphic to
their shortest odd cycles. A related complexity result due to Maurer, Sudborough, and
Welzl [MSW] is that the problem of determining whether a graph G is homomorphic
to C5 is NP-complete in the size of G. Hence, determining whether r(G, 2) _-< 7 is NP-
complete. If G is restricted to the class of 3-chromatic graphs, the complexity of this
problem, i.e., the question of whether r(G, 2) is 7 or 8, appears to be open. We suspect
that this problem is NP-complete, so that there is no simple test to determine whether a
3-chromatic graph has r(G, 2) 7.

27 45 46 47

i112"2"2"2"2"2"2"2"2"2 15

3,

5 37

16 34 24 14

FIG. 1. The graph G( 7, 2).

25 26 36
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FIG. 2. A triangle-free, 3-chromatic graph with r( G, 2) 8.

For general k, graphs G with (G) k and r(G, 2) j, 2k + <_- j =< 3k 1, are,
as in general, characterized as those G with X(G) k that are homomorphic to G(j, 2)
but not to G(j 1, 2). For general j this condition can be somewhat simplified since
the graphs G(j, 2) are homomorphic to some smaller graph/-/j, as we saw above for j
7. However, no nice description of suitable graphs/-/j- for general j is evident.

Another interesting family of graphs is the set of complements of odd cycles. For
k > 3, Lundgren [Lu] found that the complement of the (2k )-cycle, C2k+l, has
chromatic number k and pair labelling number 3k 2, just one below the maximum
value. Here is a labelling that achieves the minimum: Consecutive vertices receive pairs
{1,2}, {3,4}, {4,5}, {6,7}, {7,8},.-., {3k-3,3k-2}, {3k-2, 1}.Indeed,
we can show that this labelling is the unique labelling of C2k_ on [1, 3k ], up to
isomorphism of the graph, but we omit the tedious details.

5. A Conjecture for t-labellings. A weaker version ofTheorem 2.1 holds for general
t. It follows from Propositions 1.1 and 2.2 and from the discussion preceding Theo-
rem 2.1.

THEOREM 5.1. Let t, d, k 7/+. Suppose the graph G has X( G) k. Ilk 1, then
rt( G, d) t. Ilk > 2, then rt( G, d) [d(k + 2t 1, d(k + kt k + ]. The
upper bound is attained by Kk.

We have learned that Theorem 5.1 was independently discovered by Tesman [T]
around the same time. For 1, the interval in the theorem consists of a single point,
d(k + 1. For 2, Theorem 2.1 shows that all values in the interval are attained
which is the main result of this paper. For k 2, the interval again consists of a single
point, d + 2t 1. Therefore, it is reasonable to propose the following conjecture.

CONJECTURE 5.2. All values in the interval in Theorem 5.1 are attained by suitable
graphs G.

If this conjecture holds, then the lower bound in Theorem 5.1 holds for some graph
G with (G) k. The same reasoning that we gave prior to the statement of Lemma
2.3 would then imply the following conjecture that generalizes Lemma 2.3.

CONJECTURE 5.3. Let t, d, k 7/+. Then x(Gt(d(k + 2t 1, d)) >= k.
Conjecture 5.3 appears to be slightly weaker than Conjecture 5.2 because the ar-

gument we gave to deduce Theorem 2.1 from Lemma 2.3 does not generalize for values
of >= 3. However, it may not be difficult to deduce Conjecture 5.2 from Conjecture 5.3.

For d l, Conjecture 5.3 is the famous theorem conjectured by Kneser [K] and
first proved by Lovfisz [L]. The graphs Gt(n, 1) are known as Kneser graphs and in
other notation are denoted by K( n, t) FF or by KGt,n 2t S ]. Bfirfiny B gave a simpler
proof. Schrijver S found a vertex-critical subgraph ofthe Kneser graph. Generalizations
of Kneser’s conjecture have been given recently in [FF] and [AFL]. All known proofs
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use topological methods relying on versions of the Borsuk-Ulam Theorem. Therefore,
a purely graph-theoretic proof of our conjectures would be surprising. Perhaps there is
a direct topological proof or one that follows from some of the work referenced above.
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CUTOFF POINT AND MONOTONICITY PROPERTIES FOR
MULTINOMIAL GROUP TESTING*

F. K. HWANG? AND Y. C. YAO:I:

Abstract. The classical binomial group testing problem studies plans to sort defectives from good items
using a minimum number of group tests where a group test is a test applicable to any subset of items with a
yes and no answer to the question ofwhether the subset contains any defectives. In a multinomial group testing
problem, each item can be in one of k ordered states and a group test on a subset always reveals the highest
state of any item in the subset. Two properties known for binomial group testing are the cutoff point, which
characterizes when individual testing is optimal, and the monotonicity, which states that the minimum expected
number oftests increases in the probability ofan item being defective. This paper studies the multinomial group
testing problem and gives a new sufficient condition that guarantees individual testing is optimal. (A sufficient
condition in Kumar SlAM J. Appl. Math., 19 (1970), pp. 340-350 is shown to be incorrect.) It is also shown
that the monotonicity does not hold for the multinomial case.

Key words, group testing, cutoff points, monotonicity
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1. Introduction. Consider a set Nofn independent items where each item has prob-
ability q., j 1, k, of being in state j and Z= qj 1. The problem is to determine
the state of each item through a sequence of tests. A test can be conducted on any subset
G ofN and the test outcome is j, written f(G) j, if there exists an item in G of state
j, but no item of a higher state. This problem is known [2] as the multinomial group
testing problem. The special case k 2 is the well-known binomial group testing, or
simply, group testing problem.

Let q { ql, q} and let E(q, n, k) denote the expected number of tests re-
quired by an optimal testing plan for given q, n, and k. It is very difficult to determine
E(q, n, k) in general, even for the binomial case. Thus, it is helpful to learn as many
properties ofE(q, n, k) as possible. Two such properties, cutoff point and monotonicity,
have been well studied for the binomial case. The cutoffpoint is a characterization on q
such that E(q, n, k) n, i.e., testing the items one at a time is optimal. Monotonicity
refers to the property that it takes more tests to sort the items if more probability mass
is distributed to higher states. More specifically, let q and p denote two probability dis-
tribution functions (pdfs) with no zero components. Then the conjecture states that E(q,
n, k) < E(p, n, k) if Z/= m qi --< ki= m Pi for each m 1, ..., k.

For k 2, Ungar 3 proved that q2 >= q2 is a necessary and sufficient condition for
the cutoff point, while Yao and Hwang 4] recently proved the monotonicity property.
Kumar attempted to extend Ungar’s result to the trinomial case [1 and the general k
case 2 ]. However, Kumar’s arguments contain some serious loopholes that cast doubts
on his results. In this paper we give a new sufficient condition for individual testing to
be optimal in multinomial group testing. We also show that the monotonicity property
does not hold true for k >= 3.

2. Kumar’s sufficient condition. Following Ungar, we will represent an algorithm
by a tree where each internal node is associated with a test, and we will consider only
"reasonable" procedures in which no set G will be tested if G contains a subset G’

___
G

such that f(G’) is known before the test. Let T be an algorithm in which there exists a

Received by the editors April 11, 1988; accepted for publication (in revised fbrm) March 31, 1989.
? AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
Colorado State University, Fort Collins, Colorado 80523.

500



MULTINOMIAL GROUP TESTING 501

test of size at least two. Let B be a node associated with a test on the set G of size g >= 2,
but all tests following B are of size one. (Such a B must exist, and the associated test is
not a final test because we assume T is reasonable.) Let T’ be the algorithm obtained
from T by substituting G a for G at B where a is some item in G. We then test a and
follow the branch of T associated with the output f(G), which we can figure out from
f( G a) andf(a), except the test on a is skipped iff( G a) k. T’ will skip any test
of T if its outcome can be deduced from f( G a) andf(a).

Kumar 2 purported to show that for k >= 3 and n >= 2 if

k j k-2

qj qi+ E qj(ql +qj)>=q,
j=k-1 i=1 j=2

then T’ is at least as good as T; hence, individual testing is optimal. However, this
conclusion is invalidated by the following loopholes contained in his proof.

(i) He uses the unconditional probability qj for an item that may have already been
included in some previous tests.

(ii) For GI >= 3 he requires a not to be the last item of G to be tested under T
along either the branchf(G) k or the branchf(G) k. But the last item on either
branch may still depend on the outcomes of future tests. Hence, there may not exist an
item a satisfying the requirement.

(iii) He ignores the possibility that an item b 6 G can skip an individual test if there
exists a previous test containing b and b is the unique item of the highest state in
that test.

There may be an easy correction for (i), but not for (ii) and (iii). In fact, we will
give an example to show that Kumar’s condition does not guarantee T’ to be at least as
good as T.

Example. Let N {A, B, C and k >= 3. Let Tand T’ be as shown in Fig. where
Ti’s are subplans of T. In Fig. 1, each node is labeled by the set of items to be tested and
each outlink is labeled by one of the k states 1, 2, ..., k, indicating the outcome of
the test.

Note that T’ differs from T only whenf(ABC) f(C) 2. The comparison between
T and T’ reduces to the case k n 2 where items A and B are each in state 2 with
probability q2/(ql + q2). The well-known result of Ungar implies that T’ is at least as
good as Tifand only ifq2/(q + q2)>= {q/(q + q2)} 2, or equivalently, q2(ql + q2)>
q. But clearly this condition is not implied by Kumar’s condition as stated earlier.

T

FIG. 1. Two plansfor the example.
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3. Sufficient conditions. In what follows, we assume that qi > 0 for 1, k.
(If some q equals zero, then the problem reduces to a smaller k case.) Let
E(n, q, ..., qg) denote the minimum expected number of tests required to classify
n items. Define

Q= {(q, ,q):q>O,i= 1, ,k;q + +q= 1;

E(n,q, ,q)= n for all n}.
In other words, Q consists of those probability distributions under which the individual
testing algorithm is optimal for every n.

THeOReM 1. (q, q) Q ifq(q + q) >= q.
Proof. Suppose T is a reasonable algorithm which includes a test of size >= 2. Let

G be a test of size m >= 2 associated with a node B in T such that every test below B is
of size 1. We will construct a new algorithm T’ so that the expected number of tests
under T’ is less than that under T if q(q + q) > q. (By continuing the type of
transformation used to produce T’ until all tests are of size 1, individual testing must be
optimal if q(q + q) > q. So, E(n, q, q) n if q(q + q) > q. Since
E(n,q,...,qg) is continuous in the q’s, we have E(n,q,...,qg)=n if
q(q + q) >= q. This shows that (q, q) Q ifq(q + q) >= q.) For every w
G, let F(w) k if w is not included in any test above B; and F(w) j if w is included
in a test (above B) with outcome j and included in no test with outcome < j. (Note
that Fis known before G is tested.) So, f(w) =< F(w). Let k max {F(w) w G} and
choose a e G so that F(a) kl. Let k2 max F(w) w e G a }. Clearly, 2 =< k2 <-
kl since T is reasonable. Now, consider T and T’ as shown in Fig. 2. Here T; is the same
as Ti except that tests with known outcome are skipped. Note that, under the new plan,
iff(a) _>- k, then f(G) f(a) since k2 max { F(w): w e G a }. This is why G a
is not tested whenf(a) >_- k2.

Let s be a sample which reaches B. Let O(s) and N(s) denote the number
of tests required to classify s under the old and new plans, respectively. Clearly,
N(s) <= O(s) + 1. Thus, N(s) <= O(s) if one of the following conditions is satisfied:

(i) f(a) >= k2,
(ii) f(a)<kz, f(G-a)>l, and f(a)=<f(G-a). (Note that under the

old plan, under condition (ii), a will have to be tested individually since, up to and
including G, every test which contains a must contain another item whose state is >_-
max (f(a), 2).)

(iii) f(G-a)= <f(a)< k.
Therefore, the set of s satisfying N(s) O(s) + is the union ofS and $2 where

S { s: s reaches B andf(G)

$2 { s:s reaches B, <f(G-a)<f(a)<k and N( s) O( s) + 1}.

T

FIG. 2. Two plansfor Theorem 1.
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We will show that for each sample in $1 or S_, there is another sample for which
the new plan saves at least one test over the old plan. Calculation of the relative proba-
bilities of these samples will then indicate that the new plan is better than the old one.

We claim that $1 is nonempty. To see this, note that the function F is defined for
w G, and it can be defined for w G in a similar way. Consider the sample s satisfying
f(w) F(w) for w g G andf(w) for w 6 G. Since T is reasonable, it is not difficult
to show that s $1. The set $2 is possibly empty. We assume $2 is nonempty. (Otherwise,
the following discussion on $2 is unnecessary.) Fix s 6 $2. Let

G’(s) wc=G-a:F(w)>f(a) ),
which is nonempty because s 6 $2 and max { F(w) w G a } k2 > f(a). Clearly,
under the old plan, every item w in G’(s) must be tested individually since up to and
including G, every test that contains w must contain another item whose state is >f(w).
Let b b(s) be the last item in G’(s) to be tested individually. (After b is tested, a will
be classified since, at this point, it is known that the value off(G a) must be less than
f(G)). Let Sa

6 be the same as s except that the states of a and b are interchanged. Note
that Pr (S6a) Pr (s). We introduce the notation d(al s) to denote the state of a for
sample s in order to avoid confusion. Clearly, under the old plan, Sba will reach the test
of b since Sa and s have the same outcomes for all previous tests. For Sa, both a and b
have to be tested individually under the old plan. But under the new plan, for
the sample s, fight before b is tested, the value off(G a lS6a) is known and equals
f(als), the value off(wls) is known and less thanf(als) for w G’(s) b, and the
value of f(zlSa) is possibly unknown but we know it must be -<F(z) < f(als) for
z G a G’(s). Therefore, the value off(bls6a) is known to bef(a]s), and the test
of b is skipped under the new plan. So, for every s $2, we have O(Sba) > N(sb) + 1.

Next, fix s S. We consider three separate cases.
Case (i). m 2. Let x denote the item other than a in G. Let Sa be a sample which

is the same as s except thatf(a Sax) f( x[ Sax) 2 =< k2. For Sax, every test H before G
which contains a or x must contain another item with state _-> 2 because, otherwise,
f( HI s) 1, which is a contradiction with the assumption of Tbeing reasonable. So, for
Sax, under the old plan, both a and x have to be tested individually. That is, O(sax)
N(sax) + 1. Now, for Sx, let y be that one of a and x which is tested first when the
old plan is applied to Sax. Let sy be the same as s except that f(ylsy) 2. Clearly,
O(s) N(sy) + 1. Therefore, for the case m 2, the expected number of tests saved
by the new plan is at least, {Pr(sa)+Pr(sy)-Pr(s)}+ {Pr(sa)-Pr(s)}

sS sS

SSl
qZ+---q >0 ifq2(q+q2)>q2.

It should be remarked that every sample in the first sum satisfies f(G) _-< 2 and every
sample in the second sum satisfies f(G) >= 3. Therefore, no sample is counted twice in
the above expression.

Case (ii). m >_- 3 and k >_- 3. Again fix s 6 S. Let Sa be the same as s except that
f(al Sa) 2. There is a net saving of at least m 2 when we test Sa under the new plan,
since every item in G a has to be tested individually under the old plan.

Next, let z be the last item of G a to be tested when we apply the old plan to Sa.
Let Saz be the same as s except that f(alSaz) f(ZlSaz) 2. Then z will also be the last
element of G a to be tested when we test Saz under the old plan, since all previous test
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outcomes are the same for s and Saz. When we test Saz under the new plan, we can
obviously skip the test of z. Also, a has to be tested when the old plan is applied to Saz.
SO, O(Saz N(saz) -t- 1.

Therefore, for the case m >_- 3 and k2 >_- 3, the expected number of tests saved by
the new plan is at least

{Pr(saz)+(m-2) Pr(sa)-Pr(s)} + , {Pr(sab)--Pr(s)}
sS sS

{qA q2 }q2
>_- Pr(s) +m_l >0, ifqz(ql+q2)>q2.

eSl ql

Case (iii). m >= 3 and k2 2. Fix s S1 and let Sa and Saz be defined as in Case
(ii). Note that for Sa, G a is not tested under the new plan sincef(a Sa) 2 k2. We
have O(saz) >= N(saz) + 1. Consider $3 { s e S1 item a of sample Sa is never tested
individually under the old plan }. So, for s e $1 $3, we have O(sa) >= N(sa) + 1. Recall
that z is the last item in G a to be tested when the old plan is applied to Sa. Let sz be
the sample satisfying f(z[ Sz) 2 andf( w Sz) f( w s), w 4: z. Under the old plan, for
s $3, Sz will reach the test of z since all previous test outcomes are identical for Sa and
sz. But for Sz, the test of z can be skipped under the new plan since it is known that
f(G a z] Sz) and f(G a lSz) 2. In addition, under the old plan, for Sz, a
still has to be tested individually. So, for s e $3, we have O(s) >= N(sz) + 1.

Therefore, for the case m 3 and k2 2, the expected number of tests saved by
the new plan is at least, {Pr(saz)+Pr(sz)-Pr(s)}

sS3

+ {Pr(saz)+Pr(sa)--Pr(s)}+ , {Pr(sab)--Pr(s)}
sS- $3 sSz

[qA q2 }q2Pr (s) +--- >0 ifqz(ql + q2)> q2,
Es ql

completing the proof.
We will extend the sufficient condition in Theorem to a more general form. The

vehicle of the extension is the following theorem.
THEOrtEM 2. For 2 <-_ k < l, if q, qt) is such that

and

then

q;>0, 1, ,1, q +... + ql

l-k+

qi,ql-k+ 2, ,ql- 1,ql GQk,
i=1

(q, ,ql)Ql.

Proof. We have to show E(n, q, ql) n. Consider a new problem in which
we want to classify each item into "k" categories: an item is in category l- k + if its
state is =<l- k + 1; an item is in categoryj (j l- k + 2, l) if its state is j. Consider
three different machines:
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Machine MI: the outcome of a test is l- k + if the state of every item in the test
is_-<l-k+ 1;isj(j=l-k+2,-..,l) if some item is in state j
and no item is in state > j.

Machine M2: the outcome of a test isj (j 1, l) if some item is in state j and
no item is in state > j.

Machine M3: the same as M2 except that if the outcome of a test is =< l- k + 1,
then the information about the state of every item in the test is also
provided.

Let Er(n, ql, q) denote the minimum expected number oftests for the new problem
using machine Mr, r 1, 2, 3. Clearly, /3 --< /2 /1. Also, /2(n, ql, qt) =<
E(n, q, qt) and

l(n,q, ,q)=E(n, -+lqi, qt_k+2, ,qt)=n,

since the new problem with machine M is equivalent to the original problem with k
states and probability distribution - +

qi, qt- k + 2, qz). For machine M3, there
must exist an optimal algorithm in which no test includes an item whose state is known.
So, under this algorithm, when a test has outcome -< l- k + 1, the state of each item in
this test is known so that these items will not be included in any future test. In addition,
the information about the states of these items should not affect the choice of the future
tests since the conditional distribution of the states of the unclassified items does not
depend on this information. Therefore, this algorithm can also be applied to machine
M1. This shows/3 =/l. So,

n =/1 =/3 =</2 -< E(n, q, qz).

So, E(n, ql, qt) n, completing the proof.
We now give an improved sufficient condition.
THEOREM 3. Fork >= 2, and qi > O, 1,..., k, if there exists 2 <= <= k

such that

< qi
i-2 j qj

then ql, qk) Qk.
Proof. We proceed by induction on k. The theorem holds for k 2 as a consequence

of Ungar [3]. Suppose the theorem holds for 2, l (l >_- 3). Let be such that
2 _-< =< and

< qi

If 2, it follows from Theorem that (q, qt) Q. If > 2, consider q’l q +
q2, q q3, q}- qt. Since

V-l<q=l

(q’l, q}-I) Q-1 by the induction hypothesis. By Theorem 2,

q q)6 Qt. v-1

The condition "qz(ql + q2) >= q2,, of Theorem implies that (/ )/2 _-< q/ql,
which implies the condition of Theorem 3. But the condition of Theorem 3 does not
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imply that of Theorem 1. For example, for k 3, (ql, q2, q3) (0.4, 0.1, 0.5) satisfies
the condition of Theorem 3 but does not satisfy the condition of Theorem 1.

4. Monotonicity. We first give a counterexample to the monotonicity property
for k 3. Let N {A, B }. Let q and p be two distributions such that ql e,
q2 e e3, q3 e3, and p e, P2 P3 e/2 where e is a sufficiently small posi-
tive number. Clearly qi 3i= Pi for rn 1, 2, 3. For sufficiently small e, an
optimal plan under eitherp or q must start with a test on N, since the minimum expected
number of tests required must be + O(e) and a plan starting with a test on a proper
subset ofN needs two tests. Let Ep and Eq denote the expected number of tests under p
and q, respectively. Then

Eq= + 3e-e - + 0(83)

and

Ep + 3e- 1.25e <Eq.

An optimal plan for N { A, B } for both distributions q and p (for sufficiently small e)
is given in Fig. 3.

This counterexample can be extended to the case k > 3 as follows. Again, let N
{ A, B }. For a sufficiently small positive e, let q and p be two distributions such that

ql =( -e3)( -e), q=( --e3)(t--e3), q3=( -83)83

qi=e3/(k-3), i=4, ,k;

pl=(1--e3)(1--e), p2 =p3 e3)e/2,

pi=e3/(k-3), i=4, ,k.

An optimal plan for either p or q must start with a test on N. The minimum expected
number of tests under q and p are, respectively,

Eq= + 3e- e2 nt- O(e2)

Ep +3e- 1.25e2+O(e3)<Eq.

FIG. 3. An optimal plan for N A, B }.
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Also note that
k k

qi <= Pi, m 1,’’’ ,k.
i=m i=m

Therefore, the monotonicity property does not hold for k >= 3.

5. Conclusions. Although binomial group testing (k 2) has given rise to a large
body of literature over the years, not much is known about the optimal plans and the
minimum expected numbers oftests. The only two known properties are the cutoffpoint
and monotonicity. In this paper we show that there is no straightforward extension of
these two properties to the multinomial case. In fact monotonicity simply does not hold
for k >= 3. Furthermore, we show that a previous attempt by Kumar ofextending Ungar’s
arguments on cutoff points to the multinomial case contains some serious loopholes. We
offer a different argument which leads to a new sufficient condition. Though this condition
is not a necessary one, the example (for any k >= 3) given in 2 showed that this is the
best condition we can get by adopting Ungar’s approach which concerns only a final
group of size greater than one. It seems that, to completely characterize the condition
for the cutoff point, we must find a way to analyze groups, other than the last one, of
sizes greater than one.
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AVERAGE PERFORMANCE OF HEURISTICS FOR SATISFIABILITY*

RAJEEV KOHLI]" AND RAMESH KRISHNAMURTIzl:

Abstract. Distribution-free tight lower bounds on the average performance ratio for random search, for a
greedy heuristic and for a probabilistic greedy heuristic are derived for an optimization version of satisfiability.
On average, the random solution is never worse than ofthe optimal, regardless ofthe data-generating distribution.
The lower bound on the average greedy solution is at least of the optimal, and this bound increases with the
probability of the greedy heuristic selecting the optimal at each step. In the probabilistic greedy heuristic, prob-
abilities are introduced into the search strategy so that a decrease in the probability of finding the optimal
solution occurs only if the nonoptimal solution becomes closer to the optimal. Across problem instances, and
regardless of the distribution giving rise to data, the minimum average value of the solutions identified by the
probabilistic greedy heuristic is no less than of the optimal.

Key words, satisfiability, greedy heuristics, probabilistic heuristics, average performance

AMS(MOS) subject classification. 68Q25

1. Introduction. This paper examines the average performance of random search,
ofa greedy heuristic and ofa probabilistic version ofa greedy heuristic for an optimization
version of satisfiability. We derive tight lower bounds on the average performance of
each heuristic. The analysis assumes no specific data-generating distributions and therefore
is valid for all distributions.

A variety of analytic approaches have recently been pursued to analyze the average-
case performance of heuristics. These include representing the execution of algorithms
by Markov chains (Coffman, Leuker, and Rinnooy Kan 5 ), obtaining the performance
bound for a more tractable function that dominates the performance of the heuristic for
each problem instance (Bruno and Downey [3 ], Boxma [2 ]), and obtaining the per-
formance bound for a simpler, more easily analyzed heuristic which dominates the heu-
ristic of interest for each problem instance (Csirik et al. [6 ). Bounds that hold for most
problem instances have also been employed to obtain asymptotic bounds for the average-
case performance of various heuristics (Bentley et al. [1] and Coffman and Leighton
4 ]). A number of results from applied probability theory have been used for average-

case analyses by Frenk and Rinnooy Kan 10], Karp, Luby, and Marchetti-Spaccamela
14 ], Shor 17 ], and Leighton and Shor 15 ]. The vast majority of these approaches

begins by assuming independent, identically distributed data from a given density function.
The subsequent analyses are often difficult, and one rarely finds an explicit formula for
the quantity of interest. One reason for this is that conditional probabilities arise in the
analyses, and after a sufficient number of steps, the conditioning can make the analyses
formidable. Appropriate choice of distributional assumptions also is difficult, as are in-
ferences regarding the robustness of results for a given distribution to other distributions.

A well-known algorithm for solving satisfiability is the Davis-Putnam Procedure
(Davis, Logemann, and Loveland 7 ). Goldberg, Purdom, and Brown 11 ], and Franco
and Paull [9] have analyzed the average-case complexity of variants of this procedure
for solving satisfiability. Johnson 13 considers an optimization version of satisfiability,
called maximum satisfiability, proposes two heuristics for solving the maximum satisfi-
ability problem, and proves tight worst-case bounds on the performances of these heu-
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ristics. One of these heuristics is the greedy heuristic that we use in this paper. If each
clause contains at least variables, Johnson [13 shows a tight worst-case bound of
l/(l + for the greedy heuristic. Since we consider the most general optimization version
of satisfiability, where unary clauses (clauses with just one variable) are allowed, this
bound reduces to 1/2. As one ofour results, we derive this bound using a different approach.
Lieberherr and Specker 16 provide the best possible polynomial-time algorithm for the
maximum satisfiability problem where unary clauses are allowed, but the set of clauses
must be 2-satisfiable, i.e., any two ofthe clauses are simultaneously satisfiable. The lower
bound obtained for their algorithm is 0.618.

In the present analyses, we consider the lower bound of the average performance
making no assumption regarding the data-generating distribution. For two of the three
procedures (random search and the probabilistic greedy heuristic), we also make no
assumption regarding the independence of data. For the third (the greedy heuristic), we
assume independence, but only in a certain "aggregate" sense, which we discuss later.
Each ofthe bounds we obtain is tight. Our central results are as follows. Random search,
which has an arbitrarily bad performance in the worst case, provides solutions that, on
average, are never worse than 1/2 of the optimal. The greedy heuristic can potentially
improve on this performance. Although the lower bound on its average performance
ratio can be 1/2 of the optimal, this lower bound increases with the probability of the
heuristic selecting the optimal at each step. A probabilistic algorithm related to the greedy
heuristic is then described. The probabilities are introduced into the search strategy so
that a decrease in the probability of finding the optimal solution occurs only if the non-
optimal solution becomes closer to the optimal. The search probabilities are not fixed
a priori but exploit the structure ofthe data to force a trade-off for every problem instance.
Across problem instances, and regardless of the distribution giving rise to the data, the
average performance of the algorithm is never less than of the optimal.

Section 2 describes the maximum satisfiability problem, the random search pro-
cedure, and obtains a tight lower bound on its average performance. Section 3 introduces
the greedy heuristic, derives its worst-case bound, and a tight lower bound on its average
performance. Section 4 describes the probabilistic greedy heuristic and derives a tight
lower bound on its average performance.

2. The Msat problem. Consider the following optimization version of satisfiability:
given n clauses, each described by a disjunction ofa subset ofk variables or their negations,
find a truth assignment for the variables that maximizes the number of clauses satisfied.
The above problem, which is the most general version of maximum satisfiability, is NP-
complete (Johnson 13 ). We call this Msat.

We use the following tabular representation of Msat. For a problem involving n
clauses and k variables, construct a table Tk with n rows and 2k columns. The ith row
is associated with clause i, 1, n. A pair of columns, uj, z, is associated with the
jth variable, j 1, k. Let tij denote the entry in the cell identified by row and
column u, and let ti denote the entry in the cell identified by row and column z. For

1, n,j 1, k, define

o 1, ti 0, if clause contains variable j,

ti O, tij 1, if clause contains the negation of variable j,

o O, ti 0, if clause contains neither variable j nor its negation.

A truth assignment for satisfiability results in the jth variable being assigned a T
(True) or an F (False), j 1, k. This corresponds to selecting either column u
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(if the jth variable is assigned a T) or (if the jth variable is assigned an F), j
1, k, for Msat. Consequently, selecting uj or tb for each j, j 1, k, such that
the maximum number of rows in these columns have at least one 1, corresponds to
solving Msat for Tk; i.e., finding a truth assignment that maximizes the number ofclauses
satisfied.

Let T(uk)(T(k)) denote the table obtained by deleting from T all rows with a
in column u(), and deleting both u and zTk. Let the resulting table be denoted T_ 1.

That is,

if column ug is chosen from Tk,
T_

T(zTk), if column zTg is chosen from T.

In general, let T( uj)( T(fla)) denote the table obtained by deleting from T all rows
with a in column uj(zT), and deleting both uj and z, j 1, k. Let the resulting
table be denoted T_ 1. That is,

T(u), if column uj. is chosen from T,
T_

T(ff), if column ff is chosen from Tj..

Let xj denote the number of ’s in u and let nj denote the total number of ’s across
columns uj and in table T, j 1, k. Without loss of generality, assume that the
columns u, j 1, k, comprise the optimal solution for Msat described by T. Let
m denote the optimal solution to Msat described by Tk. In general, let m denote
the value of the optimal solution to Msat described by Tj., j 1, ..., k. Also, let
a() denote the value of the optimal solution to Msat described by T(uj)(T()), j
1, ..., k. That is,

a, if column u is chosen from T,
m_

Tj., if column ffj is chosen from T.
Example 1. Consider a problem consisting of three variables Xl, x2, and x3

and seven clauses given by
xl + xz, and 1. Table T3 for this problem is given in Fig. 1.

For the table T3 above, table T(u3) is obtained by deleting rows and 4 and the
columns u3 and if3. Table T2 T(u3) is given in Fig. 2. Similarly, we can obtain table
T(if3) by deleting rows 2, 3, and 5 and the columns u3 and if3. Table T2 T(ff3) is given
in Fig. 3.

Consider a random procedure that selects column u or with probability 1/2, j
1, -.., k. The procedure can easily be seen to select an arbitrarily bad solution in the

Row u3 ff

0
2 0
3 0
4 0
5 0
6 0 0
7 0 0

u2 =
0
0

0
0 0

0
0

0 0

FIG. 1. Table T3 for Example 1.
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Row u2 if2

0
2 0
3 0
4 0
5 0 0

0
0

o o
o

0

FIG. 2. Table T2 T( u3) for Example 1.

worst case. But how poorly does it do on the average? That is, if any data-generating
mechanism is used to construct instances of Msat, and if for each problem instance a
random solution is selected, what is the average value ofthe ratio ofthe random solution
value to the optimal solution value? Theorem shows that it is never less than 1/2. That
is, if J is the random solution to Msat described by Tk, then the ratio rk
fk/mk has an expected value E[ rk] >= 1/2. We begin by proving the following lemma.

LEMMA 1. aj mj Xj and 5. >= max { 0, mj nj }, j 1, k.
Proof. As uj, the optimal column for Msat described by table T, has xj l’s, the

optimal solution value to Msat described by table T(uj) is, trivially, aj mj xj. Also,
xj <= nj (by definition), so that mj xj >= mj nj. Of the mj xj rows with at least one
in T(uj), at most nj xj can also have ’s in column z. of T. Hence the Msat problem

described by T() has an optimal solution with value no smaller than mj xj

(nj xj) mj nj. As nj can exceed mj, and as the value of the optimal solution to
Msat described by T is nonnegative, >_- max { 0, mj nj }, j 1, k. E]

THEOREM 1. E[ rk] >= 1/2 for all k.
Proof. We prove the theorem by induction on the number of variables.
Base case. E[ r -> .
As each column of Tl is selected with probability 1/2, the expected value ofthe random

solution is

n
E[rl]=-Xl +(n -x) =--.

As the optimal solution value, corresponding to u, is ml Xl rt, the expected per-
formance ratio is

E[rl] (n/2)>_ (n/2)
x n 2"

Induction hypothesis. E[ rt] >= 1/2 for all _-< k 1.
Induction step. To prove E[ rk] >= 1/2.

Row U2 /2

0
2 0 0
3 0
4 0 0

0
o

o
0

FIG. 3. Table T2 T(if3) for Example 1.
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By the induction hypothesis, the random procedure applied to table T( Uk)(T(ffk))
has an expected solution value no smaller than 1/2a( 1/2/). Hence the random solution,
for table T, has an expected solution

E[JI> x+- + - nk x+-As a m x by Lemma 1,

mk Xk + nk--Xk+E[JI > xk+ 2 -Also, 6 >_- max { 0, m- n } by Lemma 1. Consider m > nk. Then / >_- m- n > 0,
and the above inequality for E[J] simplifies to

mk Xk + nk-- Xk +E[A] >_- xk+ 2 E 2

or

mk n_L xE[ Jl >=---t 4 4

The right-hand side attains the least value at x n, at which value

and

E[
E[ rk] >_- ".

mk 2

Now consider m _-< n. Then d >= 0 (>mk- n), and hence

1( mk--X)E[A]>- x+ 2 +-(n-x).
Simplifying,

mk nk XkE[J] >=--+ 2 -"
Since mk <= nk, the fight-hand side attains the least value at x nk mz:, at which value

mkE[j] >

and E[ r] E[f]/mk >= 1/2.
The lower bound on the average value E[ r] of r, is tight and is illustrated by the

example in Fig. 4. Assume that the data pattern shown in the figure is generated each
time; i.e., the data-generating mechanism presents the same pattern with x ’s in column
u2 and (n2 x) ’s in column u,, where x can range from to n2. The probability of a
particular value of x for a problem instance is determined by the distribution of the
random variable x. The average performance of the random solution is the average of
the performance ratio across the four solutions that can be selected, each solution being
selected with probability . The average performance ratio can be verified to be 1/2, which
is the lower bound on the expected performance ratio for random search.
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Row u2 2

0

x o
x+l 0 0

n2 0 0

ul

0 0

o o
o

o

FIG. 4. Worst case examplefor random procedure, x is a discrete random variable rangingfrom to n2.

3. The greedy heuristic. Random search, of course, appears to be a simplistic pro-
cedure for solving the problem. A greedy heuristic that selects columns based on the
number of ’s they contain is presented next (Johnson 13]), and its worst-case perfor-
mance and average performance are analyzed. We begin by describing the greedy heuristic.

Initialization. Order the columns of Tk so that nk, the number of ’s across u and
u-, is largest among all pairs of columns ut, ill, 1, k (the ordering plays no role
in the analysis and is used merely to detect the termination of the algorithm efficiently).
Ifx >= n- x, select column uk; otherwise, select column ff. Eliminate u and ff, and
all rows with a in the chosen column. Note that the resulting table is denoted by Tk.- 1.

That is,

if column uk is chosen from T,
T_

T(ff), if column ff is chosen from Tk.

Recursion. Order the columns of Tj and rename the variables ul through uj so that
nj, the number of ’s across uj and , is largest among all pairs of columns Ul, ffl,
1, j. If xj >= nj xj, select column uj; otherwise, select column . Eliminate uj and, and all rows with a in the chosen column. Again, note that the resulting table is
denoted by Tj_ 1. That is,

T(uj), if column uj is chosen from Tj.,
T_

T(/j), if column ffj is chosen from T.
Termination. Stop if T contains no ’s, or ifj 0.
Note that

aj,

denotes the value of the optimal solution to Msat described by Tj_ l, j 1, k. Let
j) denote the value ofthe greedy solution, and let rj fj/mj denote the performance ratio
of the greedy heuristic for Msat described by Tj. Theorem 2 shows that the worst-case
bound for the greedy heuristic is 1/2 of the optimal. We also show by an example that this
lower bound on the performance of the greedy heuristic is tight. We begin by proving
the following lemma.

LEMMA 2. mj_ >= mj- nj, j 1, k.
Proof. By Lemma 1, aj mj xj. As xj <= nj (by definition), aj >= mj nj. Also,

> max { 0, mj nj } >= mj nj by Lemma 1. As mj_ l, the value ofthe optimal solution
to Msat described by Tj_ l, is either aj or ., it follows that mj_ - mj rlj. i-1
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THEOREM 2. rk >= 1/2 for all k.
Proof. We prove the theorem by induction on the number of variables.
Base case. rl > 1/2.
The single-variable problem is described by table T1 with column ul containing x

l’s, and column ff containing (n x) l’s. The greedy heuristic selects the column
with more ’s, which also is the optimal column. Thus

and hence

fl m max { x,, n- xl },

flrl==l>=m 2

Induction hypothesis, rj >= 1/2 for all j < k 1.
Induction step. To prove rk >-- 1/2.
At the first step, the greedy heuristic chooses uk or ffk, whichever has the larger

number of ’s. Hence

J= max { xk, nk-- Xk } +f-
By the induction hypothesis, rk- >_- 1/2, so that

fk- rk- lmk- >=- mk-1.
Hence,

A>--max xk, nk-- Xk +- mk-
As the maximum of two numbers is no smaller than their mean, max xk, nk xk } >--
1/2 nk. Also, by Lemma 2, rnk_ >= mk nk. Thus,

mkfk >=- rlk +- mk- nk) 2"

Thus rk f/mk >= 1/2.
The bound specified by Theorem 2 is tight, and is illustrated by the example in

Fig. 5. The optimal solution is mk 2 k, corresponding to columns uj, j 1, k.
The greedy solution is 2k- + 1, corresponding to column ffk. Hence rk =f/mk
1/2 + e, where e /2 k. Since e can be made to approach 0 arbitrarily closely by increasing
k, rk can be made to approach 1/2 from above arbitrarily closely, giving rise to an asymptotic
upper bound of 1/2 for the worst-case performance of the greedy heuristic. Observe that
the worst-case bound for the greedy heuristic equals the average-case bound for the random
solution.

We are now ready to prove the lower bound on the average performance of the
greedy heuristic. Assume that a probabilistic data-generating mechanism is used to obtain
instances of Msat. Specifically, assume that the mechanism generates a larger number of

’s in uj with probability p, and generates a larger number of ’s in G. with probability
p), j 1, k. Note that we assume that p does not vary with j. However, we

make no distributional assumptions about the data-generating process. Theorem 3 char-
acterizes the lower bound on the average performance ratio for the greedy heuristic.

THEOREM 3.

[r]>
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Row
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2k-2+

2k-

Uk

0

Uk- k- U2

0 0
0
0 0

0 0
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0 0 0 0

0 0

0 0

0

FIG. 5. Worst case examplefir the greedy heuristic with nk 2 + clauses

Proof. We prove the theorem by induction on the number of variables.
Base case. E[ r >= 1/(2 p
For a single-variable problem, the optimal column u has at least as many ’s

as the nonoptimal column ff. Therefore the value of the greedy solution equals the
number of ’s in the optimal column. Thus, the expected performance ratio ofthe greedy
heuristic is

E[f,]
E[r] 1_>- for any p, O_-<p_-< 1.

m 2 -p

Induction hypothesis. E[ rt] > /(2 p) for all =< k 1.
Induction step. To prove E[rk] > 1/(2 p).
If the greedy heuristic selects column uk from T, it guarantees a solution value of

at least x. In addition, table T_ T(u), generated at the first step, describes an Msat
problem for which the expected value ofthe greedy solution is, by the induction hypothesis,
no less than [1 /(2 p)]ak. Hence if column u is selected at step 1, the expected value
of the greedy solution is no less than x + /(2 p) a. By a similar argument, if the
greedy heuristic selects ff at step 1, the expected value of its solution is no less than
nk x + /(2 p) 7. Now u is selected with probability p, and ff is selected with
probability p). The expected value of the greedy solution is therefore

ak +(l-p) n-x+ 7E[J] >P x+ 2-p 2-p

Noting that ak m x by Lemma 1,

(m-x) +(l-p) nk-x+E[f]>=p x+2_p 2"P
Also, >= max 0, m- nk } by Lemma 1. Consider m > n. Then >- m- nk > 0,
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and the above inequality for E[J] becomes

1-(mk--Xk) +(1 --p) n:--x+E[f] >=p x+-_p 2-p

Simplifying,

1-Pxk+ m +(l-p) n-x+ (m-nk)E[AI>--p
2-p 2-p 2-p

Noting that x >_- (n)/2 if column u is chosen and nk x > (nk)/2 if column ff is
chosen, we get

m +(l-p) --+ (m-n)
2-p 2 2-p 2-p

which implies that

Hence

E[r]
E[J] >
m 2 -p

Now consider m < nk. Then 7 > 0 (>_-m- n), which implies

Simplifying,

E[J] >p m + -p)
2-p 2 2-p

pm+ -p)nk
E[j] >=

2-p

As m < n, the fight side of the above expression has a minimum at n m. Hence

pmk + p)rn rnE[J] >= =.
2 -p 2 -p

Thus, E[r] (E[f])/m >_- 1/(2 p).
The lower bound obtained in Theorem 3 is tight. To illustrate, consider the following

example involving k variables and n 2 rows, where s > k. Generate the data as
follows. Forj 1, k, set

ti,k-j + O, ti,k-j + 1,

ti,k-j + 1, ti,k_ j + O,

li,-j + 1, ti,-j + 0 with probability p,

li,k-j + =O, ti,-j + with probability -p,

if/= 1, ,2 s-J-

ifi=2s-J+ 1, ,2 s-j+l-

if/= 2s-j

if 2-J.

Generate O’s in all remaining cells.
Figure 6 is an example of the data generated for k 2, n2 2 7. The data

generated in this manner for arbitrary k and n 2 +l is shown in Fig. 7.
Since only one is generated probabilistically in column uj. or z, the probability of

the greedy heuristic choosing u is p, and the probability of choosing z is p), j
1, k. Note that each row has a in either column u or column ffk. The value of
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Row U2 /2

0
2 0
3 0
4 x2 yz
5 0
6 0
7 0

0
Xl Yl

0
0 0
0 0
0 0
0 0

FIG. 6. Data generatedfor k 2, n2 2 1. xi yi equals 0 with probability p, 0 with probability
1-p,fori- 1,2,-..,k.

Row
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3
4

nk+
--V--

n,+ 1_
4

nk+

nk+l+l
4

nk+
2

nk+

nk+---+

nk

Uk- k- Uk-2 k-2

0
0
0

0
0
0
0

0

0
0
0
0

0

Ii

Xk

0

0

xk_

Yk 0

0 0

0 0

FIG. 7. Data generated for arbitrary k and n, 2 k+l 1. xi Yi equals 0 with probability p, 0 with
probability p, for 1, 2, ..., k.
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the optimal solution to Msat described by Tk is mk n k, because the collection of
columns uj., j 1, k, has at least n k nonoverlapping ’s. The expected perfor-
mance of the greedy heuristic is

n,+ n+ ( nk+ n+ 1)E[J]=p
2

+(l-p)
2

+p p
4

+(l-p)
4

n+ nk+ 1)k-P2 P 8
+(l-p)

8
+

( n+l n+l)+pk-1 p.
2

+(l-p) 2

2 1+-+ +...+

Since

and

E[r]

we get

n+ 2
1-E[ rk] <= -m-- 2-p

As m >_- n- k,

n-k 2-p -Let el (k + )/(n k) and e2 (P/2)k. Since ng > 2 and p >_- 0, it follows that

e > 0 and e2 > 0 for all k >_- 1. E[ r] may then be written as

E[r]-< (1 +e,)(1 -e2)2_p
implying that

E[rk] =< +e)2_p
Since n > 2 1, n grows exponentially faster than k. Consequently, e (k + )/
(n- k) approaches 0 for large k. Hence the upper bound on E[rk] can be made
arbitrarily close to 1/(2- p). As it is also a lower bound on E[ rg] by Theorem 3,
/(2 p) is a tight lower bound on E[ rg].

How small can p, and hence 1/(2 p), be? For the data-generating mechanism
described above, p can be arbitrarily small. The lower bound on the average performance
ratio for the greedy heuristic then approaches 1/2, the same as the lower bound on the
average performance ratio for the random procedure. However, the data-generating
mechanism described above is "perverse." Other mechanisms can possibly guarantee
higher minimum values for p, and hence a higher minimum performance ratio for the
greedy heuristic. One mechanism, similar to that used in Goldberg, Purdom, and Brown
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], is as follows: for all j 1, k, generate

tij 1,7ij 0, with probability q,

0 0, 7ij 1, with probability q,

o O, ti 0, with probability 2q.

The choice of q is arbitrary, and as in many simulations may be based on random
sampling from a- parametric distribution. In this case, the probability that uj has a larger
number of l’s than is 1/2, j 1, k, and hence E[rk] >- ].

Is there a way to improve the lower bound on E[ rk] for the greedy heuristic? So
long as p is governed by "nature" (i.e., by a data-generating mechanism which the al-
gorithm cannot control), there appears to be no way. But there is no reason why the
choice ofp should not be made a part of the heuristic. For instance, we may introduce
probabilistic choice at each step ofthe greedy heuristic so that, whateverp is, the heuristic
selects a solution with a probability it chooses. The perversity of a data-generating mech-
anism may then be superseded by the heuristic. We pursue this approach below by
describing a probabilistic version of the greedy heuristic, which we call the probabilistic
greedy heuristic.

4. The probabilistic greedy algorithm. Like the greedy heuristic, the probabilistic
greedy heuristic selects at step j column uj or zij. from table T, j 1, k. However,
each column is selected with probability proportional to the number of l’s it con-
tains. That is, u. is chosen with probability p xj/nj, and is chosen with probability

p (nj x9)/n9. We describe the heuristic more formally below.
Initialization. Order the columns of T so that n, the number of ’s across ug and

u-, is largest among all pairs of columns ut, fit, 1 1, k. Select column u with
probability p xk/n, and select column ff with probability p (n x)/nk.
Eliminate u and ff, and all rows with a in the chosen column, to obtain table T_ ,
where, as before,

if column uk is chosen from T,
Tk-

T(ffk), if column ffk is chosen from Tk.

Recursion. Order the columns of T so that nj, the number of ’s across u and ff,
is largest among all pairs ofcolumns ut, fit, 1, j. Select column uj with probability
p xj/n, and select column with probability p (n9 xj)/nj. Eliminate uj and, and all rows with a in the chosen column, to obtain table T_ , where, as before,

T(u), if column uj. is chosen from T,
Tj_

T(tij.), if column zT is chosen from T.
Termination. Stop if T contains no ’s, or ifj 0.
The probabilistic greedy heuristic forces a trade-off between the probability of se-

lecting the optimal solution and the value of the nonoptimal solution it identifies. We
illustrate the trade-off below for the Msat problem described by Tk. Assume that at each
of the first k steps the probabilistic greedy heuristic chooses the optimal column. At
step k, the probabilistic greedy heuristic chooses column u with probability p x/n,
and column ff with probability -p (nl x )/n. Hence the expected performance
ratio is

E[rk] =xx +(m--x) n--x (n--x)+(m--x)
nl ml Hi ml
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where ml Xl is the number of clauses satisfied by the optimal columns selected by the
greedy heuristic in steps to k l, and hence xl + ml Xl is the value of the greedy
solution ifcolumn ul is selected and n x + m x is the value ofthe greedy solution
if column ffl is selected. The trade-off can be seen in the expression for E[rk]. The
probability of selecting the optimal column u decreases as x decreases. However, as x
decreases, the value of the nonoptimal solution n x + m x n + ml 2x
increases. The lower bound on E[ rk] is obtained by choosing x so that E[ rk] has its
smallest value. It can be verified that E[ rk] is minimized by setting x 3n/4, at which
value, E[rk] nl/8m. Hence m -> x 3n/4. Thus

n > 1- n 5
min E[rk] 8m---= 8(3n/4) =g"

That is, the lower bound on the expected performance ratio is when the first k
columns selected by the greedy heuristic are optimal. As described below, the trade-off
between the probability of selecting the optimal solution and the value ofthe nonoptimal
solution occurs in general for the probabilistic greedy heuristic.

THEOREM 4. E[ rk] >= for all k.
Proof. We prove the theorem by induction on the number of variables.
Base case. E[ r >= .
For the single-variable problem, the optimal solution to Msat described by T1

is ml xl, and corresponds to column u of T as per our assumption. As the prob-
abilistic greedy heuristic selects u with probability p x/nl, and selects ff with prob-
ability p (nl x )/n, the expected value of its solution is

E[fl] =px +( -p)(n-x),

and the expected performance ratio of the heuristic is

E[f] [(xl/n)]x +[(nl-Xl)/n](n-x)
E[rl]

ml Xl

Given n, the lower bound on E[ r] is obtained by minimizing the above expression
with respect to x, which can be verified to occur at Xl nl/4. Substituting this value
ofx in E[ rl] and simplifying yields

2E[r1]>=24-2>_- -.
3

Induction hypothesis. E[ r1] > for all _-< k 1.
Induction step. E[ rk] >= for all k.
Ifthe probabilistic greedy heuristic selects column u from T, it guarantees a solution

value of at least x. In addition, T_ T(uk), generated at the first step, describes an
Msat problem for which the expected value of the heuristic solution is, by the induction
hypothesis, no less than a. Hence if column u is selected at step 1, the expected value
of the heuristic solution is no less than x + ga. By a similar argument, if the greedy
heuristic selects ffk at step 1, the expected value of its solution is no less than n x +
2-ga. Now u is selected with probability p xk/n, and ff is selected with probability

p (n x)/nk. The expected value of the heuristic solution is therefore

= x+ a +... n-x+ dk
nk - nk -As a =mg xg by Lemma l,

= Xk+ (m--xk) + n--x+n - n -
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Also, dk >= max 0, mk- n } by Lemma 1. Consider m > n. Then d -> mk- n > 0,
and the above inequality for E[J] becomes

Simplifying,

E[f]>x(2m x)-5-+-2 + (n/-- Xk)2 2(n-x)+ m nk).
n 3n

E[j]_>(x)2 2mkxk (nk--x) 2 2(n--x)+ + + (m--n).
3nk 3n n 3n

The fight side of the above expression can be verified to obtain its minimum value when
x nk/2, at which value of x,

2m[A]>
3

and hence

E[J] 2
E[r] >=-.

m 3

Now consider mk -< nk. Then d >= 0 (>m n), and hence

Simplifying

E[j]>xk( 2 ) n--x= xk+ (m--Xk) + (n--x).
flk nk

2mx (nk-- Xk) 2

[A] > (x)- + +
3n 3n n

The fight side of the above expression can be verified to obtain its minimum value when
x (3n mk)/4, at which value ofx

nk mk mE[J] >=---+ 2 12n"
The fight side of the above expression takes its smallest value when n m, for which

mk m m 2
E[J] >-----+- 1-- m.

Therefore E[r] E[f]/m >= .
It can be verified that for the data in Fig. 8, the expected performance of the prob-

abilistic greedy heuristic is

el= + +.+ +
3 +T

Noting that m n, the expected performance ratio equals E[r] + e, where
e / 4). Since e can be made to approach 0 arbitrarily closely by increasing k, E[ r
can be made to approach from above arbitrarily closely. Since the asymptotic upper
bound for the probabilistic eedy heuristic is , the lower bound of specified by Theorem
4 is tight.

As the data-generating mechanism plays no role in determining the lower bound of
the performance ratio for the probabilistic greedy heuristic, the bound obtained by
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FIG. 8. Worst case examplefor the probabilistic greedy heuristic with n 2 clauses.

Theorem 4 also holds if the same problem is sampled repeatedly; i.e., if the probabilistic
greedy heuristic is implemented multiple times to solve the same problem, the average
heuristic solution will be no smaller than of the optimal. Of course, in this case the
solution with the largest value is ofgreater interest than the average value ofthe solutions
across trials. For a large number of trials, the distribution of the largest value of the
probabilistic greedy solution corresponds to the extreme value distribution for the largest
among a sample of n observations. Since the largest value of the probabilistic greedy
solution is bounded from above by the value of the optimal, the distribution in this case
is characterized by the limited-value distribution (Gumbel [12 ), which corresponds to
the type-three distribution in the Fisher and Tippett characterization of extreme-value
distributions (Fisher and Tippett 8 ]). Thus, regardless ofthe data-generating distribution,
the asymptotic cumulative distribution function of the largest value of the probabilistic
greedy solution is

H[z] =exp

with corresponding density

W(mk--Z)
w-1

H(z),h(z)
mk--V mk--v

where z is the largest value of the probabilistic greedy solution across trials, H(v)
1/e 0.36788, and w > 0 is the shape parameter of the distribution (see, e.g., Gumbel
[12, pp. 164-165; p. 275]).

5. Conclusion. Two aspects of the probabilistic greedy heuristic should perhaps be
mentioned. First, it guarantees an average solution value ofno less than ofthe optimal
value regardless of the distribution of data. Second, the trade-off it forces between the
probability of selecting the optimal solution and the value of the nonoptimal solution is
a feature that is not evidently observed in other heuristics. Indeed, it is this feature of
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the heuristic that ensures that its average performance is never too bad. In contrast, while
the greedy heuristic can do well, its ability to do so depends on the value of p. For
independent observations from parametric distributions with p 1/2, it does as well, on
average, as the probabilistic greedy heuristic. But for perverse distributions, the greedy
heuristic on average can do as poorly as random search. On the other hand, for an
"unintelligent" procedure, the random search does quite well to ensure an average solution
of no less than 1/2 of the optimal, regardless of the data-generating distribution. It remains
an open question whether relaxing the independence assumption, or assuming specific
distributions, strengthens the bounds on the average performance for the greedy heuristic.
It may also be possible to strengthen the average bound for the greedy heuristic with
restricting assumptions on problem instances, such as when the set of clauses are 2-
satisfiable (Lieberherr and Specker 16 ), or when each clause contains at least variables,

-< =< k (Johnson [13]).
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1. Introduction. Let A be a finite set. In this paper we study typical patterns ofBaire
mappings A A -- , where is a metric space. The set A naturally becomes a
topological space by taking the Tychonoff product topology, where A bears the discrete
topology.

Moreover, A is a metric space, where the Baire metric is defined by d((an)n
(bn)n ,o) / (k + if and only if ak =/= bk, but ai bi for all < k.

For [A[ 2 this is the Cantor Discontinuum. As { 0, }-sequences can be interpreted
as subsets of w, the set { 0, can also be viewed as the power set of w.

In [PSV86 it is shown that for every Baire mapping A- { 0, } -- , where is
a metric space, there exist subsets A c_ B c__ w such that B\A is infinite and such that
A] { C

_
olA

___
C

___
B either is a constant or a one-to-one mapping. The question is

raised as to whether an analogous result may be established also for A with AI >= 3.
We show that this is not quite the case. For some general background see, e.g., [PV85 ].

2. Parameter words. Unless stated otherwise let A be a finite set with A A
{ X0, X1, "} . By [A]one(:) we denote the set of mappings (words) F" w -- A tO
{ ,i[ < w } such that F- (hi) for every < w. So each parameter hi occurs exactly
once in F. For F [A ]one() and g A, we denote by F.g A the insertion of g into
the parameters of F, i.e.,

(F.g)(i) F(i) if F(i)A

g(j) if F(i)=

where g (g(0), g( ), ...).
We also consider ascending parameter words, viz., we let [A]asc(:)denote the set

of mappings (words) F" w -- A tO { Xili < w} such that F-(,i) 4: for every < w
and, moreover, max F-l(Xi) < min F-(j) for all < j < w.

For F [A ]asc(,) and g 6 A the insertion F.g A is defined as above.
The result from [PSV86] alluded to above can now be formulated as follows:
THEOREM A [PSV86 ]. For every Baire mapping A" O, } .. , where is a

metric space, there exists an F O, } o,e( : such that AqF. { 0, } either is a constant
or a one-to-one mapping.

The notion of a Baire mapping is explained in the next section. For the moment it
may suffice to note that every continuous, respectively, Borel, mapping is also Baire.
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From [PV83 it is well known that with respect to larger sets A, i.e., for AI -> 3,
we cannot expect an F such that AqF.A is just constant or one-to-one. Additional
patterns occur. But these are determined from equivalence relations on the set A.

Let be an equivalence relation on A. This induces an equivalence relation on A,
by abuse of language, the induced relation is also denoted by =, viz., for g, h 6 A, let
g h ifand only ifg(i) h (i) for all < 0. Let us call a mapping A A -- 1 canonical
if there exists an equivalence relation on A such that for all g, h A it follows that

A(g) A( h if and only if g h.

Observe that if A A -- is canonical, then for every F [A ]asc(o) the restriction
A]F.A is still canonical with respect to the same equivalence relation -=. In this sense
canonical mappings are hereditary, providing typical patterns of continuous mappings
A A -- . The same hereditary patterns also occur with respect to more general
concepts of parameter words (cf. PV85 ).

Note that Theorem A may be restated by saying that for every Baire mapping
A { 0, } -- there exists an F e { 0, } one(o) such that the restriction AqF. { 0, }
is a canonical mapping. In [PSV86 it has been asked whether this statement also holds
for larger sets A. We now show that this is not the case.

THEOREM B. LetA be afinite set with IA[ >= 3. Then there exist continuous mappings
A A -- A such that for each F [A]o,e(70) the restriction AqF.A is not a canonical
mapping.

However, by allowing a bit more structure, a positive result may be obtained, as
shown in Theorem C.

THEOREM C. Let A be a finite set. For every Baire mapping A A -- , where
is a metric space, there exists an F [A ]asc() such that the restriction AqF.A is a

canonical mapping.
In this paper we prove Theorems B and C. On the way we also obtain a short proof

of Theorem A.

3. Topological prerequisites. In this section we present some topological prere-
quisites. To keep this paper self-contained we give short proofs ofsome facts from topology
which are perhaps not widely known. Some of these results are valid in a more general
setting, e.g., in Lemma 2 up to Lemma 4, the space A may be replaced by an arbitrary
Polish space, and the same proofs still work. For even more general results cf. EFK79 ].
The space A is a complete separable metric space, i.e., a Polish space. A set 3 A is
a Baire set (has the property of Baire) if 90 may be written as a symmetric difference of
an open set (9 and a meager set /g, i.e., 9 (9\/t.J \ (9. A set is meager if it
belongs to the complement of a countable intersection of dense open sets.

Moran and Strauss [MS80 have shown that meager sets are Ramsey null:
LEMMA 1. [MS80] For every meager set /l

_
A, there exists an F [A ]one(

such that F.A) fq t[ .
A mapping A A -- , where is a metric space, is a Baire mapping if for every

open set (9
_

its preimage &-((9) is a Baire set. Baire mappings are very close to
continuous mappings. A first step in this direction is due to Kuratowski Kur30 ].

LEMMA 2. For every Baire mapping A A , where is a separable metric
space, there exists a meager set /[ A such that the restriction AJA\l is a continuous
mapping.

Proof. Let (Cn), be a basis for ; this exists because is separable. As b is a
Baire mapping each preimage A-l((9) is a Baire set in A, so it may be written as
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A-((9.) 90.\/’. U ///.\ 90., where 90n is open and ///. is meager. Then //=
has the desired properties.

Lemma 2 may be further extended by dismissing the separability ofthe metric space. Here we use an auxiliary result which is due to Prikry and Solovay [PS78 and to
Bukovsky BuT9 ].

LEMMA 3. Let ()sbe afamily ofmutually disjoint meager sets in A such that
for every T

_
S the union Us 7-//l is Baire. Then the whole union Ussl is still meager.

The proof actually requires the axiom of choice. For if (’)s is a partition ofA
into mutually disjoint meager sets, then Lemma 3 implies that some union Uv/g is
not Baire. However, it has been shown by Shelah [She84 that the consistency of ZFC
implies the consistency of "ZF + the axiom of dependent choices + every set in A
is Baire."

Proof (cf., [BCGR79 ]). As (ls)ssis a mutually disjoint family and [A[ [R[,
we may assume that S

_
R. Moreover, we shall assume that S does not contain any

uncountable analytic set, e.g., S is a Bernstein set (cf. Kur66 ). Here we need the axiom
of choice. Consider the mapping A" A -- R which is defined by A(g) s ifg ’s and
A(g) 0 otherwise. According to the hypothesis ofLemma 3, the mapping A is a Baire
mapping. As R is separable we may apply Lemma 2. Thus there exists a meager set
/_ A such that A]A\//is a continuous mapping. We may safely assume that
is a Borel set, hence A\ is Borel. So the image A(A\//) is an analytic subset of S
and thus, by choice of S, countable.

In other words, Us sg/’ can be written as a countable union of meager sets.
LEMMA 4. Let A A -- be a Baire mapping, where is a metric space. Then

there exists a meager set l
_
A such that AqA\ is continuous.

Proof. The crucial property ofmetric spaces that we exploit here is that every metric
n)n<o,seSn forspace possesses a a-discrete base. This means that there exists a basis C

such that for each fixed n < w the family ((9f)ss, is a family of mutually disjoint sets.
where s A is open and s A") "\sWrite A ((gs

is meager.
As ((9")sSn is a disjoint family, for every T

_
Sn it follows that

respectively,

The fight-hand side is a symmetric difference of Baire sets. A-l(Us r(gs’) is Baire
as A is a Baire mapping and UsT is even open. Hence UsT/ is Baire.

As the sets A-l((gsn) and A-((9n,) are disjoint for s 4: s’ it follows that s" f)

3, _ 3 f3 /’) f) 3, f) ,). But every nonempty open set in A is nonmeager.
n f sn, j The separability of A implies that at most countably manyHence, 3

n f) //n is a meager set for every T an3s are nonempty. In particular, Us
The sets J//\ are mutually disjoint. Also, for every T

_
Sn the union

Us\3sn is a Baire set, as it merely differs from a Baire set by a meager set, viz.,
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Hence (g//\ ) s, satisfies the hypothesis of Lemma 3 and thus

is a meager set.
Let’ U //. Then, by construction, A]A\ is a continuous mapping.
Putting Lemmas and 4 together yields the following desired reduction.
LEMMA 5. For every Baire mapping A A

_ , where is a metric space, there
exists an F [A]one( such that A]F.A is continuous.

4. Proofs of Theorems A and C. According to Lemma 5, we may restrict ourselves
to continuous mappings A A -- J. The crucial feature of continuity is a kind of di-
versification (cf., [Voi85 ]).

LEMMA 6. Let Ai A - , { O, }, where is a metric space, be two continuous
mappings. Then there exists an F [A]one(o) such that either Ao(F.A) f3 A(F.A), the two mappings have disjoint images on F.A or such that Ao(F. g) A (F.g)for
all g A, the two mappings agree on F.A

Proof. Assume that there exists some g A with Ao(g 4: A (g). As Ao(g) and
A (g) are distinct elements of a metric space they may be separated by disjoint open
sets. Hence, as A0 and A are continuous, there exists a positive integer n such that

{ Ao(h)I heA and h(i) g(i) for all <n }
f3 { A(h)I heA and h(i) g(i) for all <n } .

Then any Fe [A ]one(,) such that F(i) g(i) for all < n has the property that Ao(F.A)
f’) AI(F.A) . i-3

Proofof Theorem C. According to Lemma 5, we may assume that A :A -- is
a continuous mapping. By induction, using Lemma 6, we construct an F [A ]one()
such that for every n < co, every g e A and every pair a, b e A either

{A(F’(g(R)(a)(R)h))[hA’}f’){A(F.(g(R)(b)(R)h))[ha’}= or

A(F.(g(R)(a)(R)h))= A(F.(g(R)(b)(R)h)) for all heA ’.

Here, "(R)" denotes the concatenation of sequences. For every such g A n, this
induces an equivalence relation ---g on A. By the Carlson-Simpson Lemma CS84 ], there
exists an F’ e [A ]asc() such that this equivalence relation, say --, is the same for all g e
A n, rt < co.

We now claim that for all g, g’ A it follows that A(F. F’. g) A(F. F’. g’) if and
only ifg-= g’.

First let g g’, i.e., g(i) g’(i) for all < co. By induction on n it follows that
A(F.F’((g(O), ..., g(n 1)) (R) h)) A(F.F’((g’(O), ..., g’(n 1)) (R) h)) for all
h eA. Hence, by continuity A(F.F’.g)= A(F.F’.g’). Next let g g’, say, n
min { < co[g(i) g’(i) }. As before, we still have that

A(F.F’.((g(O), ,g(n- 1))(R)h))

A(F.F’. ((g’(0), ,g’(n- 1)) h)) for all h6A ’.

As g(n) g’(n) it follows that

{ A(F.F’.((g(O), ,g(n- ),g(n))(R)h))[h6A ’}
f3 { A(F.F’.((g(O), ,g(n- ),g’(n))(R)h))[hA}

and thus A(F. F’. g) :/: A(F. F’. g’); see Fig. 1. f--]
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g’l[n]f t gl[n]

g’(n) (
/
/

FIG.

ProofofTheorem A. Again, using Lemma 5, we may assume that A is a continuous
mapping. We commence as in the proof of theorem C, using Lemma 6 to construct an
F E { O, } ]one(w) such that for every n < w and every g E { 0, ) either

(i) {A(F.(g(R)(O)(R)h))lhE{O, 1}}fq{A(F.(g(R)(1)(R)h))lhE{O, 1}}=,
or

(ii) A(F.(g(R)(O)(R)h))= A(F.(g(R)(1)(R)h)) for all hE {0, 1} .
If there exists some g E ton { 0, } such that property (i) holds for all sequences

g (R) h, h E [.-Jn { 0, } n, then for G g (R) (X0, X, ...) the restriction AqF. G. { 0, }
is a one-to-one mapping. Otherwise there exists an infinite ascending chain of g’s which
all have property (ii). In other words, there exists a g’ E 0, } and there exists a strictly
ascending sequence (rli)i<,o such that each g’][ hi] has property (ii), where g’][ nil
(g’(0), g’(ni)). Define G E { 0, } ]one() by

G(ni) )ki and G(k) g’(k) otherwise.

A simple transitivity argument shows that if for some h and h (R) (0) (R) h’ property
(ii) holds, where h, h’ E t3n <{ 0, n, then property (ii) also holds with respect to h (R)

(R) h’. This argument actually implies that for every h E { 0, } and every < o the
restriction G. h)] n] also has property (ii).

Now the same continuity argument as in the proof of Theorem C shows that
A(F.G.h)= A(F.G.h’)forallh, h’E {0, 1} ’.

5. Proof of Theorem B. We give an explicit example for A { 0, 1, 2 }. From the
construction it will be obvious how to construct analogous mappings for any finite set
with more than two elements.

For g E 0, 1, 2 } and k < o, let pos (g, k) be the position of the (k + )st 2 in g.
In other words, g(pos (g, k)) 2 and { < pos (g, k) g(i) 2 } k.

Now we define A 0, 1, 2 } -- 0, 1, 2 } by A(g) g’, where

g’(pos(g,k))=2,

g’(i) 0 for all i< pos (g,0),

g’(i)= g(i) forallpos(g,2.k)<i< pos(g,2-k+ 1),

g’(i)=0 forallpos(g,2.k+l)<i<pos(g,2.k+2).
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For example,

A(0, 1, 1,2, 1,0, 1,2, 1, 1,2,0, 1,0,2, ")=(0,0,0,2, 1,0, 1,2,0,0,2,0, 1,0,2, ").

The mapping A is obviously continuous. It cannot be canonized by any F6
{ O, 1, 2 } ]one(o), simply because the role of the (2k)th, respectively, (2k + )st 2’s may

not be fixed in advance. Note, however, that for

G (Xo, Xo, X, kl, k2, X2, X3, X3,

the restriction AqG. { 0, 1, 2 } is a constant mapping, whereas for

H= (2, Xo, Xo, kl, Xl, X2, k2, X3, k3,

the restriction AqH. { 0, 1, 2 } is a one-to-one mapping.
These examples suggest the following question: what are the typical patterns of

continuous mappings A 0, 1, 2 - , where is a metric space, with respect to
substructures given by F 6 { 0, 1, 2 } ]one()?
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Abstract. The probable behavior of an instance of size n ofthe stable marriage problem, chosen uniformly
at random, is studied. The expected number of stable matchings is shown to be asymptotic to e-n In n for
n . The total rank of women by men in the male optimal (pessimal) matching is proved to be close to
n In n (respectively, n:Z/ln n), with high probability.
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1. Introduction. In the usual formulation, an instance of size n ofthe stable marriage
problem involves n men and n women, with each person ranking representatives of the
opposite sex in order ofindividual preference for a marriage partner. A complete matching,
i.e., a set of n marriages, is called stable if no man and woman, who are not married to
each other, would prefer each other to their actual partners under the matching. Gale
and Shapley, who introduced the problem, have shown that at least one stable matching
does exist; in fact, they provided an iterative procedure that finds a stable set ofmarriages
4 ]. Later, McVitie and Wilson 11 developed an alternative ("fundamental") algorithm;

its works is described by a sequence of proposals of men to women made one at a time,
while the Gale-Shapley algorithm used rounds ofsimultaneous proposals. Both algorithms
yield the same matching that is male-optimal compared to any other stable matching,
simultaneously for all men. Using a reduction to a classic urn scheme, Wilson [13] has
proved that the expected running time of the fundamental algorithm for the random
instance of the problem is bounded by nil,,, (H,, + + 1/n). In the course of a
detailed study of the stable marriages problem, Knuth [10] has found a better upper
bound (n 1)H + and has established a lower bound nH, O(log4 n). Among
several open problems, Knuth [10 has posed the question of estimating the expected
number of stable matchings. He has indicated that the answer to this question might be
found via an integral formula for the probability that a given matching is stable.

A primary purpose of this paper is to establishby using Knuth’s formulathat
the expected number of stable matchings is asymptotic to e-n Inn for n -- . Curiously,
it is of the same order as the average number of proposals in the fundamental algorithm.
This should be compared with the fact that the minimum number of stable matchings
for any problem instance of size n is one, while the maximum number grows at least
exponentially with n (Knuth 10 ], Irving and Leather 6 ]). (For other deterministic
results on the structure of the set of stable matchings, we refer the reader to Irving [7],
Irving, Leather, and Gusfield [8 ], and Gusfield, Irving, and Leather [5].)

Another purpose of this paper is to show that, almost surely (a.s.) for a random
problem instance, the maximum (minimum) total rank of women by men for a stable
matching is asymptotic to n In n (respectively, nZ/ln n). Since the minimum rank of
women by men coincides with the number of proposals by men in the fundamental
algorithm, the statement shows that this number is almost surely close to n Inn. On the
other hand, the maximum rank of women by men coincides, in distribution, with the
total rank of men by women in the male-optimal stable matching that this algorithm
determines. So, the latter rank is almost surely close to/7 2/ln n, and far exceeds n In n.
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The stable matching in question heavily favors men at the expense of women. The sit-
uation is just the opposite in the female-optimal stable matching.

The rest of the paper is organized as follows. In 2, we derive a general formula for
the probability that a given matching is stable and that its rank has a specified value.
This is a generalization of Knuth’s formula for the probability that a matching is stable.
The latter is used in 3 to obtain asymptotics ofthe expected number ofstable matchings.
The general formula is applied then in 4 to study the a.s. asymptotic behavior of the
minimum rank and the maximum rank for a stable matching. In the Appendix, we prove
some auxiliary results for a random partition of the unit interval.

2. Basic formulas. By symmetry, each one of n! matchings (pairings) of n men
and n women has the same probability Pn of being stable. Knuth [10] has proved that

2n

(2.1) Pn-- f ""f 1-[ (1-xiyj) dxdy
_i4j<=n

where dx dXl" dxn, dy dy.. dyn, 0 N X - 1, 0 < Yi < N i, j N n).
Define the (men-oriented) rank of a stable matching as the sum of the ranks of

women by men in this matching. The rank lies between n and nZ; it equals n (respectively,
n 2) if each man happens to be matched with a woman whom he ranks first (respectively,
last). Define Pnk as the probability that a given matching is stable and that its rank equals
k (n =< k =< n2). We want to show that

(2.2) l n,, f f "] rI
<=i4=j<=n

--Xi( --Z-t- zyj)) dx dy;

here the integrand equals the coefficient of zk-n in the product. Note that this relation
implies (2.1) since the sum of the integrands over k equals the integrand in (2.1).

Proofof 2.2 ). (a) Let U- (Ul, Un), V= (Vl, v) be the sets ofmen and
women, respectively. Each man u e U (respectively, woman v e V) ranks women (re-
spectively, men) uniformly at random, independently of all other men and women. A
way to generate such a random ranking system is as follows. Let us assume that there
are given two n n matrices X [X], Y Y] whose entries are all independent, each
uniformly distributed on the interval [0, 1]. For each man u; (woman vj) we define a
permutation, i.e., ordering, 71" (respectively, wj) of the set { 1, n} such that

Xi,ri(1) "<Xi,ri(2) < <Xi,Tri(n) (resp., Yo(1), < Y.(2),< < Ywj(n),j).
We postulate that the woman vi(j. is the jth best choice for the man Hi, and that the
man uj(i) is the th best choice for the woman v. By the definition ofX and Y, the 2n
random permutations are independent ofone another, and each is distributed uniformly.
(The cases when two elements of one row ofX, or one column of Y, coincide have total
probability zero, and thus can be neglected.)

(b) We may, and shall, consider the particular matching

M= {(Ui, Vi): -<iNn}.
The rank Q ofthis matching equals n + = l{ j:Xij < Sii }1, and we need to evaluate
Pg, the probability of the event A {M is stable and Q k }.

For x (Xl, xn) and y (Yl, Yn) (0 N xi, y < 1, < i,j < n), define
Pn(x, y) to be the conditional probability of the event A given that Sii xi, Yjj yj
N N n, =<j _-< n); in short Pg(x, y) Pr (AI ). Since all X,, Y, are independent,
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by the Fubini theorem, it will suffice to show that Pnk(X, y) equals the integrand in (2.2).
To this end, we first observe that

(2.3) enk(X, Y) z]E(X(M)ze"

where x(M) is the indicator of the event {M is stable }, and the expected value is con-
ditioned on Xii xi, Yjj yj <= <= n, < j <- n ). To evaluate this expectation, it is
convenient to introduce the following "marking" procedure. Fix z (0, ); scan the
pairs i, j) and, wheneverX, < X;i xi), mark the pair with probability z, independently
of all other pairs. Then, setting

B { Mis stable andall the pairs (i,j) such that Xij < Xii are marked },
we can write

(2.4) E(X(M)zQ" 1. )= zn Pr (B[.).

Let C { (i, j) 4: j }, and let Bij(( i, j) C) be the event

"Xii<Xo, or(Xii> Xi, Yj.< Yiand (i,j) is marked)."

A little reflection shows that

B--- A Bij.
(i,j)c

Besides, conditioned on X,, xa, Yee y =< a =< n, =</3 =< n), the events Bi are
independent, and

Pr (Bij[ xi) -1- xi( yj)z, (i,j)rC.

Therefore

Pr(BI .)= 1-[ (1--Yi(1--ZWZyj)),
<=i4:j<=n

so (see (2.3), (2.4))

Pnk(X, Y) Zk- n] H Xi( Z qt__ Zyj) ). []
<=i4jn

Note. To obtain (2.1) directly, rather than from (2.2), we can use a similar argument
setting the marking probability z 1, so that Pr (Bol.) xiyg. The original proof
of (2.1) given by Knuth [10] did not use the random matrices X, Y, but relied instead
on an inclusion-exclusion formula, and interpretation of each term as the value of a
2n-dimensional integral with the integrand equal to the corresponding term in the ex-
pansion of I-[ _i4:j_n xiyj).

3. Expected number of stable matchings for large n. We shall prove in this sec-
tion that

(3.1) Pn=(1 +o(1))
e-in In n

n
Since there are n! matchings, (3.1) immediately implies Theorem 1.

THEOREM 1. The expected number ofstable matchings is asymptotic to e-ln In n.
Proofof(3.1 ). In the course of the argument, and in the next section as well, we

will use the following facts. Let X, Xn be independent random variables each dis--
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tributed uniformly on [0, 1]. Set

Sn=ZX, T,= 2
j=l an

We also introduce the random variables L, , Zn that are the lengths ofthe consecutive
subintervals of 0, obtained by selecting independently n points, each uniformly
distributed on [0, (in particular, the L; sum up to one). Set

Un X Z, M max Lj.
j=l l-J<--n

LEMMA 1. Let fn ("), f, ", "), gn (") be the density ofSn, (Sn, Tn), and Un, respec-
tively. Then

sn-1
(3.2) fn(S)=Pr(Mn<=S-),

(n- 1)!

so, in particular,

(3.3) f.(s)_-<

Also,

sn-1
(n- 1)!

n-1

(3.4) fn(S,t)<-gn(t).
(n- 1)!

LEMMA 2 (Asymptotic behavior of M,, U,). In probability, as n -- ,M,/ n- In n-- 1, n U,-- 2.

Besides, for every p > 0,

Pr(M,>-_n-(ln n-ln In n-p))>= 1-O(n-’) Vd6 (0, ep- ).

Note. The relation (3.2) is well known (see Feller [3, Chap. ], for instance), but
(3.4) appears to be new. We prove both relations in the Appendix by using the fact that
the joint density of L, Ln- equals (n )!, whenever this density is not zero. As
for Lemma 2 (also proved in the Appendix), the argument is based on a classic result
as follows: { Lj < j < n has the same distribution as { Wff Z 7,= Wk <= j <= n },
where W, WE" are independent, exponential, with parameter one (Breiman ], Karlin
and Taylor [9], Rrnyi [12]). (Sam Karlin has informed me that, in a course he taught
in 1986, he used this connection for asymptotic study of Mn and other extremal char-
acteristics of { LJ =< j =< n .)

(a) Let us begin with an upper bound for Pn. Since a =< exp (-a a2/2),
from (2.1) we get

Y j(j’lfO _y2lj

where
2

Sj Z Xi, t= , xi,

i4:j i4j

and integration is taken over 0 _-< xi <= <= n ).
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Fix a > 0 and break the integral into two parts, f for s’= x -...--x "
w(n) a In In n and f2 for s > o(n). Let us show that, for a sufficiently small value
of a,

fll ( nlnn )(3.6) =o
n!

Dropping the factors exp (_y2%/2), and integrating with respect to y, we have

fill (jl -exp (-s) ) dx (dx dx, dx,,)
_w(n) Sj

To simplify the last estimate, we observe that for z > 0,

--Z
-1

eZz --1

implying existence of a constant c > 0 such that

(3.7) c<(ln 1-e-Z) <0;
Z

also

e-z)’(3.8) In =-(1 + o( 1))z-1 z-- oe.
Z

By (3.7),

ln
l-e-SJ

ln
l-e-S fsS (1-e-Z)ln dz

s s - z

=<ln+cx.
S

Therefore,
n e-sj e
] ln=<n ln+c x2,
j=l Sj S j=l

and, since Zj xj < a In In n, we have

w(n) S

The last integral is the expected value of (( exp (- Sn))/Sn)n over the event

(S, w(n)}. Then, by (3.3),

N (ln n)((n ))-1
S

=< (In n)ca((n 1)!)-w(n)

O( n(ln n) /2)n!

provided a < (2c) -. This proves (3.6).
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Turning our attention now to f2, i.e., to s > o(n), the genetic factor ofthe product
in (3.5) can be estimated as follows:

exp(-ysj-y2tj/2) dy<=S; exp(-z-z2(tjsf2)/2) dz

S exp (-2-z2(tjs-2)/2) dz

where

( )=S; 1--ljS -2 zexp(--z--z2(tjs-2)/2) dz

<--_sfl( tfi-2F(ts-2))

(3.9) xj2.,
j=l

F(u) z exp (-z- Z2U/2) dz.

Therefore, the integrand in (3.5) is bounded above by

S; lkS-2F(ls-2)) N S exp --S
k=l

-2

Here

tk=(n 1)t,
k=l

and (0 _-< xj. -< 1, s Y’= Xj >---- o4n)),

s1=s Xj

j=l
S

n

(())=-" FI exo X+o x
j=l S -S exp (1 + O(w(n)-l)).

Therefore

=< exp +O(oo(n)-l))_oo(n) S exp (-(n- )ts-2F(ts-2)) dx;

so, using (3.4) of Lemma (and the fact that s =< n), we have

(3.10) _-<exp (1 +O(o(n)-l))((n 1)!) -1 s -1 ds E(exp (-(n- 1)UnF(Un))).
(n)

Here, by Lemma 2 (see also (3.9)),

(3.11)

(P) lim exp(-(n-1)UnF(Un))=exp(-2F(O))

( )=exp -2 ze dz e-2
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((P) lim designates the limit in probability.) So, invoking the Dominated Convergence
Theorem, we can assert that the expected value in (3.10) converges to e-2. Besides,

(3.12) fo,(n) s-1 ds In n + O(In In In n/ In n) ).

Therefore,

+ o(1))
e-In In n

n!

implying (see (3.6)) that

/’ =< ( +o())
e-in In n
n

(b) It remains to estimate Pn from below. Denote by D the set of all nonnegative
x (xl, Xn) such that

(3.13) 3 In n<=s<=
In 2 n

In n
(3.14) s-lxj<=( +e), <=j<-n,

n

2
(3.15) s-2t<=( We)--,

n

2(S = Xj, ,’= Xj ), where e > 0 is fixed. According to 3.13 ), (3.14), we have

(3.16) xj <= +e)(ln n)-I < (1 <=j -< n)

for all sufficiently large n, so that

Dc {x:0_-<x=< 1, <=j<=n}.

We want to show that the dominant part of Pn is contributed by the region D, which is
not very surprising in light of Lemmas 1, 2 and part (a). Set

rn(,)= fxeD(j=l(oli#j(1--xiYj) dyj))dx,
so that Pn >= P,(e). Since c exp (-c 0/2( + O(c))/2), c --* 0, using (3.16)
we can write for fixed j,

I-I (1--xiyj)>--_exp -yjsj-yl)-----
ij

where

rn=C In -1 n, c=c(e)>O.
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2(Recall that sj. i=bj xi, tj i=bj x .) Hence, for each j,

Ij(x) := xiyj) dyj

>_- exp ys-yt dy

(3.17)

s2 e exp -z(ts2 +
2

1-e- ( 1+ )exp -(ts2)2(1 e-)
e-z &

s
(In the last step, we have used Jensen’s inequality, namely that

(z)(C(z)) &B (z)C(z) &

if B(- is convex, A (z) 0, and f A(z) & 1. To simplify this estimate, we observe
that, by the definition of D,

sj s-xj s(1 __XJ)s
s

=sexp ---+o
s s

c’lnn Vc’e(2,3),

uniformly over x e D, if n is large. Therefore

e-= + O(n-c’),
-s sj"e-z&= l+s+

=2+O(n-e’), c"=c’-2>0,

and (3.17 becomes

Butc’>2, sj<s ’= xj, ’= tj (n )t; therefore

I-I ij( x)>=( + o( ))es-" exp (-n(ts-2)( + O(ln- n)))
j=l

uniformly over x e D.
Let us switch to new variables, namely

n

u , xj s, vj xjs- <j < n
j=l

Define also I)n XnS-1 Clearly, 0 < vj. < and ’= v 1. The conditions 3.13 )-
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(3.15 ), that define D become

(3.19) 3 ln n<=u<=
In 2 n

(3.20) vj=<( +e)
In n

2
(3.21)

nj=l

Thus, in new variables, the region is the direct product of the interval defined in (3.19)
and a region D* defined in (3.20), (3.21 ). Besides, the Jacobian of (Xl, Xn) with
respect to u, Vl, Vn- equals u 1. So, it follows from the estimate (3.18 that

(3.22) Pn(e)>(l+o(1))e((n-1)!) -1 u-ldu
3Inn

exp -n(1 + O(ln -1 n) vs.2 (n- 1) dr, dv= dye.. "dvn_ 1.
"=1

The first integral here is In n( + o( )). Let us have a closer look at the second integral.
Its integrand is at least exp (-2( + e)( + O(ln -1 n))) evehere on D*. In addition,
(n )! is the joint density ofthe first (n subintervals among n subintervals L,
L, introduced in Lemma (see Breiman 1, Chap. 13 ], for instance). Thus, the inequality
(3.21 leads to

nlnn
P,(e) (1 +o(1)) exp (-1 -2e)n

(Pr max Lj(l+e)
lnn

L]<(l+e)
<=j<=n n j=l

for every fixed e > 0. But the probability of the event on the fight-hand side tends to one
as n --* (see Lemma 2). Letting n and then e + 0, we are able to conclude that

e-in Inn
Pn>=(1 +o(1))

n!

4. Probable behavior of the maximum rank and the minimum rank of a stable
matching. Let r and Rn be the minimum (male related) rank and the maximum rank
for any stable matching. It is well known that r, equals the total number of proposals in
the fundamental algorithm in which men propose to women. The resulting stable matching
is both male optimal and female pessimal. So, by symmetry, we can assert that, in dis-
tribution, R, coincides with the female related rank of that particular matching.

Our goal is to prove the following theorem.
THEOREM 2. In probability

(4.1) rn - 1,
nlnn

(4.2) Rn
n2 In -1 n
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Notes. According to this theorem, the stable matching reached via proposals made
by men to women is almost surely considerably more favorable to men than to women.
In short, initiative pays! Also, the relation (4.1) means that the number of proposals in
the fundamental algorithm is almost surely close to n In n.

The core of the proof is the following statement.
PROPOSITION. For every p > 0 and 6 (0, e ),

(4.3) Pr (r,>_- n(ln n-ln In n-o))>= -O(n-),

(4.4) Pr (Rn<=n 2 In -1 n( +(In In n+/9) In -1 n)) > -O(n-).

Proof Note first that for every k between n and n 2,
k

Pr(rnk)<=n! Pnm, Pr(R,>=k)<=n! , P,m.
m=k

Here Pnm is the probability that a fixed matching is stable and its rank equals m. In 2,
we have proved that

P.m= y([zm-n](X,y,Z)) dx dy,

(4.5)
d(x, y,z) :: H (1--Xi(1--Z+ Zyj)).

i4:j

Mimicking an approach due to Chernoff [2] (that allows us to estimate the tails of a
distribution through its moment generating function), we can then write

(4.6) Pr(rn<=k)<=n! ff inf (zn-k(x,y,z)) dxdy,
0<z_l

(4.7) Pr(R.>=k)<n! f inf (zn-k(x,y,Z)) dydy.
z_l

In the following argument we will not try to determine the best z z(x, y); it will be
sufficient to choose z z(s) (s = xi).

(I) Consider r, first. Bounding each factor 1-xi( 1-z + zyj) in (4.5) by
exp (-xi( z + zyj)), and integrating with respect to y (Yl, Y), from (4.6)
we obtain

Pr(rn<=k)n!f 0<z_inf (zn-k
n e-zsj)exp z- )( n s)I-I1.= zsj

dx,

(Sj ijXi)o Here, by (3.7), (3.8), and the condition z N 1, we have

1-e-zsj<=c ( e-ZS ]
j ZSj ZS /

where c is an absolute constant. In conjunction with (3.3) of Lemma 1, we then have

(4.8) Pr (r,,<=k) <=cn inf (exp (H(s,z))) ds,
0<z_l

(4.9) H(s,z)’=(z- )(n- )s+ n In -e-ZS)-k In z-ln s

for all n _-< k =< n 2. The relation (4.3) will be proved when we show that the fight-hand
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expression in (4.8) goes to zero as n- (6 (0, ep )), for

(4.10) k= n(ln n-In In n-o).

To make the best use of (4.8), it is natural to choose z z(s) that minimizes
H(s, z) for z (0, ]. But

Hz n )s + ns(ezs- )- kz- 0

if zs a and a satisfies an equation

(4.11) h(a)= k, h(a)’= c((n- )+ n(e- )-1).

Now, h(0+ n, and an elementary (albeit tedious) computation shows that

n
h’()->_h’(O+)=- .

Hence, (4.11 does have a unique positive root a a(k) for all k > n, and a(k) is
continuously differentiable with a’(k) > 0. In particular, if k is given by (4.10), then

(4.12) =lnn-lnlnn-o+O(lnzn)n
<lnn-lnlnn-p’ Vp’<p

for n sufficiently large.
Now, we can choose z a/s if s > a, and z for s =< a. Then from (4.9) it

follows that

inf (exp (H(s,z))) ds
0<z_l

where

-s)n _e-a (n- 1)a sk-e-(n-1)s ds<= s-l( e ds + a-k( )he

<=A+A2

A s-(1 e-S)" ds, A2=(a(n-1))-k(1-e-a)en-)a(k-1)!.

So, if k satisfies (4.10), then

(4.13) Aa <- a( e-a) O(a exp (-ne-a))

O(n -ep’) Vp’_(O,p).

Furthermore, by Stirling’s formula for factorials, we have

(4.14) A2 o((ln-nn) /2 )exp (4,(k))
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where

(4.15) ,,(k)=G(k,a(k)),

(4.16) Fn(K,a):=(n-- 1)a+n In (1 --e-)--K In a+(K-- 1)ln
e(n- 1)

To sharply bound n(k) from above, we need to look closer at Fn(K, a). First,

OFn( ,, ,
(n + n(e )-1 Kff-1,

so that

(4.17) =0

(see (4.11 )) and

(4.18)
OFn(K’ t)

Consequently, (Ko, ao) defined by

ln
a(n-1)"

(4.19) e"- nao,

(4.20) Ko=(n )ao+

is a stationary point of Fn(K, a). An easy bootstrapping shows that

(4.21 ao In n + In In n + O(In n)), Ko n (In n + In In n + O(In-1 n))),

so that Ko > k (see (4.10)). Then, by (4.15), (4.16), and (4.19)-(4.21), we have

4n(KO) F,,(Ko, ao)=n In (1 -e-")-ln ao
(4.22)

-In ao + O(ne-") -In ao + O(ln -1 n).

Let us show that, in fact, n(K0) max 4(K). Indeed, since a a(K) is differentiable,
using (4.17 ), (4.18 ), we obtain

dp’
Ofn( K’ a

n( K -K a()
(4.23)

=In l+a(n_l) ea_l

for K < (>) Ko. (a / (e decreases if a increases, and a’(K) > 0.)
Since K < Ko, we now know that Ckn(k) < 4n(K0). Still, we would like to do better,

knowing also that, in fact, Ko k is close to 2n In In n. To this end, choose K such that
a( satisfies

(4.24)
e"l

In In n,

that is (cf. (4.19), (4.21)),

(4.25) O/1 =In n+ln In n( +O(ln-1 n)).
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Then K E (k, Ko); really, K < o since a < ao (compare (4.21 and (4.25)) and k < 1
(compare (4.12) and (4.25)). Therefore,

(k) ,(o) ;,() d

(4.6
--< (o)- ;() &.

The derivative 4,() is given by (4.23). Since na/(e is at least In Inn (see (4.24))
on [k, 1], we easily get

(4.27) 4,(K) + o( ))e-, a a(),

uniformly over E [k, 1]. Besides, considering as a function of a, we have (see
(4.11 )) also

dr ea ae

(4.28) aa =(n-1)+n (ea_l) 2

n( + O(ae-a)) n( + o( )).

Combining (4.26)-(4.28 ), we estimate

n(k) < n(o)- (1 +o(1))n(e-a(k)-e-’1).
Here (as in (4.13)),

and, by (4.22), (4.25),

So, we arrive at

(4.29)

Therefore (see (4.14))

(4.30)

ne-a(k) >--_ e’In n VO’6(0,O),

)n( K0 - 0,

ne-"’ n exp (-In n In In n( + O(ln-1 n)))

O(ln -1 n).

4)n(k)<=-ep’ ln n Vp’(0,p).

A2 O( n -(1/2 + ep’))

The estimates (4.8), (4.13 ), and (4.30) show that

Pr (r,_-< n(ln n- In In n- o)) O(n -(e’- 1)) Vp’E(0, p). [[]

(II) Turn now to R,, the maximum rank of a stable matching. With the help of
(3.2) from Lemma 1, (3.7), (3.8), and (4.7), we obtain similarly to (4.8), (4.9),

(4.31) Pr (R>=k) <=cn inf (exp (Hl(s,z)))G(s) ds
z_l

where

On(S Pr (Mn-<- S-1 ),
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and

H(s, z) + "ysz, s <= so,
(4.32) H(s,z)=

H(s,z), s> So;

3’, So are absolute constants. (In part (I) we could afford to drop the factor On(s), but
this time we will need it.

Let us show that the right-hand expression in (4.31) goes to zero as n-( (0, e )), for

k=n2 In -1 n(1 +(ln In n+o)In-1 n).

The root a of (4.11 is this time

a n In- n + (ln Inn + on) In- n),

where

On--/9 + O( ).

We choose z a/s if s < a, and z for s >= a. (Recall that a feasible z must satisfy
z >= 1.) Set

(4.33) a n In- n( +(In In n+/9’) In -1 n), /9’e(0,/9).

Breaking [0, n] into [0, al ], [a, a l, and [a, n], and using (4.9), (4.32), we can write

f0inf ds<=a-k( e-a)ne (n- )a(B(exp (Hl(s,z)))On(s) +B2)+B3
z_l

where

1

B e"a s- e-n- 1)SOn(s ds,

B2 s1- le-(n- l)SOn(s ds,

B3 s-l( e-s)nOn(S) ds.

We estimate B1, B2, B3, moving backward.
(1) For s e [a, n],

On(s) Pr (Mn=< s-1 =< Pr (Mn <= a- On(a).

Since

a-1= n-(ln n-In In n-/9’n),

then by Lemma 2 we have

p3(4.34) B3 <On(a) s- ds=O(n V/93e(0,/9).

(2) Next,

p’n=p+O(1),

B2 <=On(a) s- e-(n- )s ds.
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Here

because (see (4.33 )),

Also

On(al)=O(n-e) VO2e(0,p’),

ai-l= n-l(ln n--In In n--p’+ o( )).

sk- e-(n- 1)s ds <- Sk- e-(n- 1)s ds

(n- 1)-k(k-- 1)! 0
e(n--

(k n 2 In- n. Therefore,

(4.35) B=O n
e(n-1)

(3) Finally,

al

B1 <=e"a sk-le-(n-1)s ds

e.a eq(S) ds, q(s)’=(k 1) In s-(n- 1)s.

The function q(s) achieves its maximum at

k-1
s, =nln-ln(l+(lnlnn+pn)ln- n), pn=p+o(1).

n-1

By (4.33), s, > a, so that q(s) is increasing on [0, a]. Also

s, al + o( )), s, a n In -2 n(p O’ + o( )).

Therefore, since q" s -s-2 k ),

:)B <-_ e aeu(l) <= ae exp (q(s.) + -q"()(a s* (ge[a,s*])

(4.36) O
e(n

exp (3,a Xn ln-3 n)

e(n
exp )kn 2 In-3 n/ 2) X > 0.

(Recall that a O(n In- n), so that a o(n 2 In -3 n).)
A combination of (4.31 ), (4.34)-(4.36) at last yields

p2 --eP3 ),Pr(R<k)<cn(n exp (,(k)) + n

for every 02 e (0, p’) and every/93 (0, /9), provided that ’ < p. Here, as in part (I),

n(k)=Fn(k,a), a=a(k).

It remains to recall (see (4.22)) that the maximum value ofthe function 4n(k) is negative.
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Proof of the proposition is now complete. E]

The rest is short. First, rn equals the total number of proposals in the fundamental
algorithm, and this number is stochastically dominated (Knuth [10], Wilson [13]) by
the total number of draws in the coupon collector problem with n coupons, and the
expected value of the latter is nHn Hn + /2 + + /n).

Given en > 0, let A be the event that a certain coupon, say j, has not been drawn
in the first N / en)n In n draws. Then

Pr (rn=<(1 +en)n Inn)> 1-n Pr(A)

-n( --n-1)N --n exp (-N/n)

n-’n--} 1,

provided that n In n --} . Combining this with (4.3), we obtain

Pr (n(ln n-In In n-o)<=rn<n(ln n+o(n)))--- 1,

for every o > 0, and co(n) -- however slowly. Consequently, rn/n In n - in prob-
ability.

Furthermore, denote by 7rnj the total number of proposals made to a woman j in
the course of the fundamental algorithm. Let Rnj be the rank of her eventual partner,
according to her preferences, needless to say. By symmetry,

(4.37) E( Jrn E( Jrnn) <= n-l rtHn) Hn.

Besides, given 7rnj k, Rn is binomially distributed with parameters n k and p
(k + )-1. Therefore

E Rn Trn + n-- Trnj n+
7rnj+ 7rn+

and, by Jensen’s inequality and (4.37),

So,

E(Rn2)
n+l n+l

E( Trn) + Hn +

E(Rn)= E Rn.i >=n
j

n+l

Hn+l

n 2 In- n( + O(ln- n)).

A simple argument that uses (4.4) and the last relation yields that, in probability,
Rn/n2 In- n --} 1.

Theorem 2 is proved.

Appendix.

ProofofLemma 1. For 0 < s < s2 < n,

Pr(Sl <=S,<=s2)= f dXl. .dx,
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where 0 =< xj _-< =< j -< n), and S ;= Xj E (S1, $2). We switch to new variables:

u , xj, v9 x9u
-1 <-j < n-

j=l

Define also I) X L1-1

where

so that ’= v 1. The inverse transformation is

Xj U l)j <=j <= n

n-1

v,=l-Zv.
j=l

Its Jacobian is u whence

where S U S2 and maxl __< j =<n /)j u-I" Therefore,

fn(S)= Sn-1 f f dVl" "dl)n-1

vj <= s-1
l<=j<=n

n-1

(n- )!
Pr (Mns-1

since (n 1)! is the joint density of the first (n 1) intervals L1, Ln_ in the
random partition of[O, by (n random points.

Similarly, denoting Z’= 2
vj. byt,

Pr (s <=Sn<=S2,tl <= Tn<=t2) f f bln-1 du dl). "dl)n_

Sl <= US2
tl Nt_t2

vj

_
u-l

SI <=US2
tl tt2

(in both integrals, Z]_--I vj. =< ). Since this inequality holds for all s < s2 and t < t2,
we have

fn(S,r)<=(--1)! rr (n- 1)!dVl.-"dl)n-1

tNr

sn-1
(n- 1)!
gn(’)

where gn(" is the density of Ej’n= L.
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Proof ofLemma 2. The random variables L1, Zn are exchangeable and, for
< k < n 1, the joint density ofL, L is given by

(A1)
k-1

(a b- a(a- 1)...(a-b+ 1))f

where 0 _-< x _-< 1, Z= xj _-< 1. In particular,

(A2) Pr (L1 >x, ,L>_-x) Z Xj
j=l

provided that Z= xj < 1. (See Feller [3, Chap. ].)
Fix z and let x (lnn + z)/n. Define Nn as the total number of the variables

Lj >_- x. Then by (A2), for every k > and n large enough,

E(N) n Pr (L > x, ,Lk > x)

=n-(1-kx)"=(1 +o(1))nexp(n In (1 -kx))

=(l +(1))exp(klnn+n(-kx+o(lnZn))2

+ o( ))(e-Z), n

Therefore, N converges in distribution to a Poisson distributed random variable N with
parameter X e-z. Consequently, denoting max <= j

_
Lj by M,

Pr (Mn<In nn+ z) Pr (N 0)-- Pr (N= 0) e-e-z,

and

ln n + Op(1)

where Op( stands for a random variable bounded in probability as n -- .(2) Let x (lnn In In n o)/n. We want to show that

Pr(M,<x) O(n ’) Vo’6(O,o).

To this end, we observe that (L, Ln) coincides in distribution with (&#,
where

and W, , Wn are independent, exponentially distributed with parameter one (Breiman
[1, Chap. 13], Karlin and Taylor [9, Chap. 13]). Using the Central Limit Theorem for
(moderately) large deviations (Feller [3, Chap. 16]), we have (E(W) var (W) )"

Pr( EW-n
j=l

>=n /7.n /2 O exp --
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So,

Pr(Mn<-x)Pr(l<__j -nmax Wj<=X(17nt-179/14))nt-O(exp(--2)).
Here,

Pr( l<--J<-nmax Wjx(/7--/79/14)) (1--exp(--X(lT+fl9/14)))

=<exp (-n exp (-x(n+ n9/14)))
=exp (-exp (In n-(ln n-ln In n-o)( + n-5/14)))

=< exp (-exp (ln Inn + O’))= n-e"’ VO’e (0, O).

(3) It remains to show that n Un -- 2 in probability, where Un f= L. To this
end, we note that U coincides, in distribution, with

(jn= W)
(Ec=I Wk) 2’

and, by the weak law of large numbers,

(P) lim -1 W x2e dx 2,
Fl j=

(P) lim Wj xe-Xdx
F/j=

SO,

(P) lim n U=2.
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A MATHEMATICAL MODEL FOR PERIODIC
SCHEDULING PROBLEMS*

PAOLO SERAFINIf AND WALTER UKOVICH

Abstract. A mathematical model is proposed for scheduling activities of periodic type. First a model is
proposed for scheduling periodic events with particular time constraints. This problem, which could be considered
the extension to periodic phenomena of ordinary scheduling with precedence constraints, is shown to be NP-
complete. An algorithm for it of implicit enumeration type is designed based on network flow results, and its
average complexity is discussed. Some extensions ofthe model are considered. The results ofthis first part serve
as a basis in modelling periodic activities using resources. Several cases are considered. Finally some applications
are presented for which the proposed model can be a useful tool.

Key words, scheduling, periodic scheduling, cyclic scheduling
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1. Introduction.

1.1. Scope of the paper. This paper deals with the problem of scheduling periodic
phenomena, that is, events and activities to be identically repeated at a constant rate.
Periodic phenomena may arise either naturally, or as the consequence of imposed con-
straints for reasons of convenience or efficiency. In particular this may occur whenever
a finite set of actions must be repeated with an infinite time horizon.

Examples ofperiodic phenomena are quite numerous and range over a wide spectrum
of different applications involving problems ofproduction, maintenance, transportation,
vehicle scheduling, personnel scheduling, control, real-time processing, and so on.

The aim ofthis paper is to develop a consistent model into which some ofthe above
problems might be conveniently approached both from the point ofview ofmodel clarity
and from that of computational effort. We do not pretend to provide efficient and con-
venient methods to solve every kind of periodic scheduling problem, even if we think
that the model proposed in this paper is sufficiently general to encompass several practical
problems.

We realize that generality can be a drawback from the point ofview ofcomputational
efficiency, which may be typically improved by avoiding generality and exploiting par-
ticular structures. Hence the computational approach we propose, while exhibiting a
good average behaviour, should nevertheless be regarded as a departure point for the
development of more sophisticated "ad hoc" exact and/or heuristic algorithms. In this
sense, even if part of the paper is algorithmically oriented, its main concern is more
about modelling issues.

A convenient way of defining and explaining the scope and the characteristics of
our model consists in comparing it to classical (nonperiodic) "project scheduling" prob-
lems like the ones usually dealt with by CPM/PERT techniques. The ordinary ingredients
of ordinary project scheduling are activities and their precedence constraints. The classical
problem then consists in finding a feasible activity schedule minimizing the overall project
completion time. This may be accomplished in polynomial time by dynamic programming
algorithms working on an acyclic directed graph whose structure expresses the activities
(nodes) and their precedence constraints (arcs).
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In the periodic version we are considering we deal with periodic activities with a
given common period; the precedence constraints, which are meaningless in a periodic
setting, are reformulated as "time window" constraints affecting the relative position of
pairs of activities within the period.

Clearly there is no completion time to "minimize," and the period value, in the
case ofnonnatural periodicity, is a design parameter. We approach the problem ofperiodic
scheduling by considering the period as a parameter given a priori. So we are primarily
interested in finding feasible schedules with respect to the time window constraints and
do not consider the problem ofthe best choice ofthe period value. If particular problems
do exhibit natural objectives to minimize, then the model proposed here could be regarded
as an initial formulation to be further refined.

A major difference between ordinary and periodic scheduling is given by their com-
putational complexity. In fact, while ordinary project scheduling is polynomial, periodic
scheduling is NP-complete, even if no resources are involved. On the other hand, the
presence of resources makes ordinary project scheduling a qualitatively much harder
problem, since it becomes NP-hard in most cases. Quite differently, the introduction of
resources in periodic scheduling makes the problem only quantitatively more difficult,
leaving it in the NP class. We remark that, in presence of resources, the same type of
computational complexity appears both in ordinary and periodic scheduling. Therefore
we think that our model could also benefit from the research carried out in ordinary
scheduling in order to gain computational improvements.

1.2. A brief review of pertinent results. Despite its potential interest, papers on
periodic scheduling constitute only a negligible fraction ofthe overall literature on sched-
uling problems (compare, for instance, 0 ], 17 ], 22 ). Most of them are concerned
with specific applications, such as cyclic staffing, production planning, etc. Both the
models and the methods proposed for such cases are often strongly application-oriented,
so they may bring little insight for a general approach.

A formulation of periodic scheduling problems with several similarities to our model
is proposed by Dauscha, Modrow, and Neumann [8]. They deal with activities of fixed
duration subject to constraints on the minimum time distance between their ordered
activation times, thus giving rise to "cyclic precedence orders." As a mathematical tool
they use the "cyclic sequence types" expressing the number of periods needed to carry
out any given cyclic set of activities in a given order. Then they derive some interesting
properties of the cyclic sequence types and a necessary and sufficient condition on them
that guarantees the existence ofa periodic schedule. A method is presented for constructing
a periodic schedule, once a feasible cyclic sequence type is provided with time complexity
bounded by the third power ofthe number ofconstraints; moreover, the overall problem
of finding an admissible cyclic schedule is shown to be NP-complete and is formulated
as a mixed-integer programming problem with Boolean variables. An application to a
simple problem concerning the setting of a traffic light system operating periodically is
thoroughly carried out.

Other aspects of periodic scheduling problems are considered by Kats 15]. He is
concerned with finding periodic scheduling and routes for a system of interprocessor
conveyors serving a production line. Processing and interprocessor transfer times are
bounded to lie within prescribed intervals, and a minimum period schedule is sought. A
result that allows the number of operators necessary along one route to be expressed as
the number of periods necessary to travel through it is used to restrict the search for the
optimal schedule to the solutions minimizing the number of operators in a given period.
A branch-and-bound solution method is proposed, acting on the elements of the matrix
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expressing the minimal number of periods required by a conveyor to perform two suc-
cessive movements for a given schedule. It solves in polynomial time the case with fixed
operation lengths, which corresponds to a resource minimization in our formulation.

A similar approach is considered by Orlin [18 ], who minimizes the number of
vehicles to meet a fixed periodic schedule, with deadheading allowed. He formulates the
problem by using a periodic version of the partially ordered sets and solves it in a poly-
nomial time using a periodic version ofthe Dilworth’s theorem, leading to results similar
to the ones found in the next 3.2, i.e., resource minimization in presence of a fixed
activity schedule. The same problem may be reformulated as a coloring problem for a
"periodic interval graph." A similar coloring problem, concerning "circular arc graphs"
(see 28 ], 11 ), corresponds again to the problem of assigning vehicles to a fixed periodic
schedule, with the additional requirement that the same vehicle must always perform
the same activity. As Orlin points out, although in general the latter problem is NP-hard,
some simpler formulations may be solved in polynomial time as in Orlin, Bonuccelli,
and Bovet 19].

Again similar problems are investigated by Gertsbakh and Gurevich 12], 13] in
the framework of vehicle scheduling for a given time table by using the concept of
"deficit function." Although their approach is entirely different from the ones previously
outlined and from ours as well, the results they obtain are quite similar, as far as resource
minimization is concerned. Along this line of research we may also quote a paper by
Ceder and Stern 7 ].

An interesting class ofperiodic scheduling problems arising from production planning
is the "economic lot scheduling problem." Its objective is finding an optimal schedule
that allows cyclic production patterns for several products that are made on a single
machine, in such a way that setup and inventory costs per unit time are minimized. A
peculiar aspect of this problem is that different products may well have different fre-
quencies of production, i.e., production periods of different lengths. Vemuganti [29]
proposes a mixed-integer linear programming approach for this problem. Hsu 14 proves
that this problem is NP-hard and presents an implicit enumeration scheme to test the
feasibility of a given set of production periods. Problems with similar structure may also
be approached by our model according to the results of 2.5 and 3.4.

A similar class of problems, in which different periodic events may have different
recurrence rates, is dealt with by Burkard [6]. He provides some interesting results for
several cases, dealing with two or more events, with respect to different types ofobjective.

Another problem concerning periodic activities with different period lengths is con-
sidered by Park and Yun [21 ]. They seek to minimize the maximum amount ofresources
required by such activities. The problem is formulated as a 0-1 linear programming
problem and the Chinese Remainder Theorem is used to decompose it.

A quite different kind ofperiodic scheduling problem concerns personnel scheduling.
Here time is normally discretized in large intervals and the aim is usually to meet some
given periodic workload pattern with weekly periodicity while trying to satisfy some
additional requirements. Such problems originated a relatively large number of papers;
just to quote a few of them, see the early paper by Baker and the ones by Bartholdi,
Orlin, and Ratliff [3 ], Bartholdi [2], Bechtold [5 ], Emmons [9]. Despite the interest
of these types of problems and some apparent similarities with the previous problems,
they are rather different and so we do not provide models for them, although it is perhaps
possible to adapt our model to some of them.

An overall glance at the literature dealing with periodic scheduling reveals a wide
spectrum of applications with a relatively more restricted range of approaches proposed
to solve them: usually NP-completeness is shown for the general problem and an integer
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(or mixed-integer) LP formulation is presented; then combinatorial heuristics for it or
polynomial algorithms for simpler subproblems are proposed. Surprisingly enough, papers
referring to different applications never consider the literature relative to other applications,
even if they deal with abstract models that could be conveniently applied or extended to
a larger class ofproblems. With this perspective, the present paper’s objective is to provide
a first unifying framework through abstract models apt to formalize basic features and
phenomena that may be faced in several different applications.

1.3. Plan of the paper. The paper is structured in three main parts. In the first part
( 2 the periodic event scheduling problem is defined with reference to time constraints
only. Then in the second part ( 3) resource constraints are taken into account, leading
to more complex problems. In the third part ( 4) some applications are described to
which the previous models can be applied.

The detailed plan ofthe paper is as follows. The periodic event scheduling problem
is first defined in terms of the abstract concept of a periodic event, its schedule, and a
particular type of constraints for the schedule that affect the relative positions of pairs of
periodic events. Then it is shown that the resulting problem is NP-complete.

The problem is reformulated as a network problem and an algorithm is derived
from this formulation based on an implicit enumeration technique. The probabilistic
performance ofthe algorithm is discussed and some computational evidence is provided.

Then the initial model is embedded with additional features, such as multiple pe-
riodicities and sequencing constraints, which turn out to be convenient when dealing
with resources and therefore in several applications. At the conclusion of this part, a
relationship with the triangular Traveling Salesman Problem is pointed out.

In the second part, activities and resources in a periodic setting are first defined and
the peculiar structure ofresource scheduling is investigated. As a consequence, the problem
of scheduling periodic activities with resource constraints is reduced to the models de-
veloped in the previous part. In particular, the problem of minimizing the number of
resource units is easily solved through a weighted assignment problem (obtaining a result
similar to Bartlett [4], Odin [18] and Gertsbakh and Gurevich [12], [13 ]), whereas
different models of increasing complexity are presented for the problem of scheduling
the activities with different types of resource constraints.

The last part is devoted to three applications. The first is a periodic version of the
Job-Shop Problem. Similarities and dissimilarities between the periodic and the non-
periodic version are investigated. A second application concerns the problem of vehicle
scheduling according to a periodic time table. Finally, the problem of traffic light sched-
uling is outlined and a simplified version of it is modelled according to the previous
results.

This paper is the refinement and extension of the preliminary results that already
appeared in 24 ].

2. The periodic event scheduling problem.

2.1. Basic definitions. A periodic event e is a countably infinite set of events e(p),
indexed by p Z, with occurrence times t(e(p)) R, such that for each p, t(e(p))
t(e(p )) T (Z denotes the set of integers and R the set of reals). T is referred to
as the period and e(p) as the pth occurrence of the periodic event e. We also define
t(e) := t(e(p)) mod T.

A periodic event e is said to be scheduled ifan element -(e) := R/ T is associated
to it, such that z(e) II.t(e(p)), for all p, where II is the canonical projection from R
to the abelian group .
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Let D [d-, d+ be any real closed interval. Then a span / of is defined by
A :- II. D. Note that itself is a span by this definition; proper spans are defined by
excluding the cases A and A .

Any proper span may be denoted by A 6-, 6 + ], with 6- II. d- and 6 + II. d+,
or, with abuse of notation, by/ [d-, d+], or even by/ [d-, d+ ]T if it is necessary
to specify the period. Note that A d- + zT, d+ + ZT]T for all z Z. The ambiguous
case in which 6- 6 + 6 will be proposed as [6-, 6 +] { 6} II. [d, d].

A span constraint a is a relationship involving an ordered pair of periodic events
(e- (a), e + (a)) and a proper span/(a) and requiting that (e+ (a)) (e- (a)) /(a).

Loosely speaking, while nonperiodic events are arranged in a linear chronological
order, periodic events have a cyclic chronological order and their occurrence times
may be considered as points on a circumference which is scanned e.g., clockwise. A span
constraint between two periodic events restricts the occurrence time ofone event relative
to the occurrence time of the other event to belonging to a certain time window on the
circumference.

Throughout the paper we have tried as much as possible to employ a notation which
should put in evidence the type of concepts with which we are dealing. So we use Greek
letters (e, ,/, 6, etc.) to denote periodic or group quantities, and Latin letters (e, t, D,
d, etc.) to denote either nonperiodic quantities or real representations ofgroup quantities.

The Periodic Event Scheduling Problem (PESP) is the following one.

Given
a finite set N of n periodic events with a common period T;
a finite set A of span constraints;

find a schedule -() , for all e N, satisfying all span constraints.

For an example of a simple PESP instance refer to Fig. 1.1.
Multiple span constraints for the same pair of periodic events can also be imposed,

thus allowing us to consider the intersection of the corresponding spans. However, a
remarkable fact, due to the periodic structure, is that the intersection of two spans is not
necessarily a span: in fact, it can be the union of two disjoint spans. As an example
consider 4, 5 0 LJ 7, 12 0 7, 15 0 CI 4, 12 0 (see Fig. 1.2). Hence it is possible
to model dichotomy constraints of the type (e2) "r(el G /%1 1 /%2 by simply imposing

T =10 N ={e,,e2,e3} A ={a,,a2,a3}
e-(al)=el, e+(al)=e2, A(a) [3,6]
e-(a2)= ez, e+(az) =e, A(az) [2,4]
e-(a3) el, e+(a3) e3, A(a3) [0, 5]

The two feasible schedules are shown below:

’(el

Ce2)

solution #1

’(el

solution #2

FIG. 1.1. A PESP instance.
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FIG. 1.2. Intersection ofspans.

two appropriate span constraints for the same pair ofperiodic events. Ofcourse, constraints
involving the union of more than two spans can also be dealt with in a similar way.

2.2. Properties of PESP.
THEOREM 1. PESP is NP-complete.
Proof. It is easy to see that PESP is in NP. In order to prove NP-completeness, a

polynomial transformation from the Hamiltonian Circuit Problem to PESP is produced.
Let G (V, E) be a nondirected graph with n vertices for which a Hamiltonian circuit
is sought. Let E’ and F’ be the arc sets of G and of the complete graph Kn, respec-
tively, with arcs arbitrarily oriented. Then consider the following instance of PESP with
T n, N identified with V, A identified with F’, A(a) 1, n if a E’ and A(a)
2, n 2 otherwise.

Then PESP has a solution ifand only ifG has a Hamiltonian circuit. In fact, suppose
a solution -(e) for PESP is produced: then t(e’) t(e") mod n >= for all e’, e" N,
e’ =/= e", and there exists a cyclic permutation P on N such that t(P(e)) t(e) mod n
with e and P(e), adjacent vertices in G.

Conversely, suppose that a cyclic permutation P is generated corresponding to a
Hamiltonian circuit of G; it suffices to set z(el 0 and z(P($i) "/’(t3i) -at- in order to
get a solution for PESP. ff]

It is immediate to check that PESP is also strongly NP-complete (see 20 ]).
It is useful to give a network representation of PESP. Given any instance of PESP,

consider G (N, A) as a network: periodic events are considered as nodes and span
constraints are considered as directed arcs. Furthermore, the following set of real spans
is associated to each arc a

D(a,z):=[d-(a)+zT, d+(a)+zT] VzeZ

in such a way that II. D(a, z) /X(a).
For any network, a function u N -- R is called a potential, and the corresponding

function v :A -- R such that v(a) u(e+(a)) u(e-(a)) is called a tension (see [23 ]).
In the context of the network representation of PESP, a span constraint is a constraint
involving the tension of some arc a so that v(a) D(a, z) for some integer z.

Then PESP is equivalent to the following network problem.
Find a potential u such that v(a) D(a, z(a)) for some z(a) Z, for all a A.
Figure 1.3 gives a network representation of the PESP instance of Fig. 1.1 and of

its solution # 1. Of course r(e) II. u (e).
If the resulting network turns out to be disconnected, then obviously the instance

splits into a certain number ofinstances (one for each connected component) which can
be solved independently. In view of this remark we shall always assume that the network
is connected.

It is important to note that the above network problem reduces to the Feasible
Differential Problem (FDP) if the values of the z’s for all arcs are fixed a priori (see
[23]). This fact will be exploited in designing an algorithm for PESP.
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3

3

FIG. 1.3. Network representation ofPESP.

The FDP is polynomial with complexity O(n 3) and the difficulty for PESP comes
in by allowing z to assume any integer value. It is interesting to point out some other
differences between FDP and PESP.

For any circuit C, let C+ and C- be the set of arcs having the same and the opposite
orientation, respectively, of the circuit C. Then define:

D(C)’=[ E d-(a)- , d+(a), , d+(a) _, d-(a)
aC aC- aC aC-

For instance, consider in Fig. 1.3 the unique circuit C oriented clockwise. Then C+

{a,,a2},C-= {a3}andD(C)=[3+2-5,6+4-0]=[0, 10].
An obvious necessary condition for PESP to have a solution is the following"
THEOREM 2. PESP has a solution only iffor any circuit C there exists z( C)

Z" z(C)T6 D(C).
Proof. First note that there is no difference in reversing the orientation of some arc

a and replacing its span d- a ), d+ (a) with d+ (a), d- (a) ]. Now take any circuit
C and reverse the orientation of the arcs in C-. Given a feasible potential, the sum of
the tensions along the circuit C, computed according to the new orientations, must be
zero. Since d-(a) <-_ v(a) z(a)T <= d+(a) ifa C+ and -d+(a) <= v(a) + z(a)T <=
-d-(a) otherwise, the thesis follows by simply summing up the inequalities along the
circuit. [3

In the example of Fig. 1, this condition is satisfied with both z 0 and z 1.
However, the condition is not sufficient. Consider the instance in Fig. 2 that satisfies the
condition but is not feasible. This result ofnonsufficiency was also expected by theoretical

[1,511o

o

FIG. 2
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considerations: in fact, the sufficiency of the above condition would allow a concise
certificate, namely a circuit, for the complement of the Hamiltonian circuit problem.
Note the difference with respect to the FDP where a similar condition, namely 0 e D(C),
is both necessary and sufficient (see [23 p. 193 ]).

2.3. An algorithm for PESP. In the following we shall borrow the terminology
from [23, Chap. 6 and some basic techniques used by the algorithm. We shall also use
the following notation: let P(J, zi) denote a new problem obtained from the network
representation of PESP by restricting the span constraints to a subset J c A, and by
fixing the values z(a) for the spans relative to the arcs a of a subset K c J to an array z/
of integers. By this notation PESP P(A, z).

The algorithm for PESP is outlined in Fig. 3. Below we describe its features in detail.
An instance of PESP is displayed in Fig. 4.1 and the description of the algorithm will
also refer to Fig. 4 for ease of presentation.

First let us note that it is immediate to find a solution for PESP if the network is a
tree: it is just a matter of assigning an arbitrary potential to an arbitrary node and then
assigning recursively the potentials to the other nodes so that the tensions on the branches
of the tree are feasible (see Fig. 4.2).

Indeed, the algorithm is based on the idea of first solving a problem P(B, z), with
B the arc set of a spanning tree (N, B) of G and then trying to make the span constraints
relative to the chords of the tree feasible one by one. In order to accomplish the latter
task, we shall design an implicit enumeration procedure for the integers z relative to the
spans of the chords.

It is important to note that the integers z relative to the span constraints of B can
be fixed to any value without altering feasibility or infeasibility of the PESP instance at
hand, or, more formally, P(A, z) is feasible if and only if P(A, z) is feasible for any
fixed z. In fact, suppose that there exists a feasible potential and that the integer z(d),
with e B, has the feasible value z; let (N/, B/) and (N-, B-) be the trees obtained
from (N, B) by removing the arc d, with e /(d) e N/ and e-(d) N-. If we replace Zl
with z2 a new feasible potential is immediately obtained by adding (z2 z )T to all
potentials on N+.

We call tree integrality the property for a given spanning tree (N, B) to admit
arbitrary fixed values for the integers z(a), for all a B without affecting the feasibility
of the PESP instance at hand. It is rather obvious that tree integrality holds for any
spanning tree ofa PESP instance and so this definition might seem superfluous. However,
we shall extend the PESP model in 2.5 and in this extended model tree integrality will
not always hold.

The initialization of the algorithm consists in finding a minimal spanning tree
(N, B) with respect to the costs (d+(a) d-(a)), sorting the chords as c, ca, Cq in
order of increasing costs (d/ (ci) d- (ci)) and assigning an initial potential u so that
v(a) (d/(a) + d-(a))/2, for all a e B. By this choice we have implicitly set z(a)
0, for all a e B. We shall explain in 2.4 why B has to be a minimal spanning tree, the
chords have to be sorted and the tension is initially set in the middle of the span.

The main body of the algorithm is made up of the implicit enumeration procedure
to make the chord span constraints feasible one by one. With every PESP instance, a
search tree is associated with at most q levels, corresponding to the q chords (obviously
q IAI INI / is also the number of independent circuits of G). The root of the
search tree at level zero corresponds to problem P(B, z). All other nodes correspond
to some problem P(J, zj) with B J A; at the ith level J B t_J c tO tO ci. In
order to explain the way the successors of a given node are generated in the next level
of the search tree we shall consider in detail how the successors of the root node are
generated by referring explicitly to Figs. 4.1-4.7.
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The successors of Problem P(B, ze), i.e., the root node, are the Problems
P(B tA cl, ZUcl), differing from each other for the value assigned to Z(Cl). The set of
admissible values for z(cl is generated in the following way (see Fig. 4.3)" the tension
v(c induced by the feasible potential for Problem P(B, z) is equal to 0.5 and it is not
feasible for Problem P(B tA c, z) since v(c) D(cl, z), for all z.

In order to make Problem P(B U Cl, z) feasible we have two possibilities, either
to raise the tension by at least the quantity v + 2.5 so that it belongs to the span at
fight with value Z(Cl 0 or to lower it by at least the quantity v- 4.5 so that v(c e
D(Cl, -1 ). The problem of raising (lowering) the tension on cl is the dual problem of a
shortest path problem from e- (Cl) to e + (cl) (from e + (c) to e- (Cl)) on the network
(N,B) with respect to the spans [d-(a)+zaT-v(a),d+(a)+ zaT-v(a)] for
a 6 B (again see 23 ), or alternatively, the dual problem of a shortest path problem on
a directed graph (N, B’) with B’ obtained from B by replacing each arc a B with a pair
of directed arcs e- (a) - e + (a) and e + (a) - e- (a) with lengths d+ (a) + za T v(a)
and v(a) d-(a) Za T, respectively. Roughly speaking, these lengths represent the
maximum amounts that the tension on the arc a can be "stretched" or "shrunk," re-
spectively. The directed graph (N, B’) is shown in Fig. 4.4 (the lengths of each pair of
arcs are equal because of the initial choice of the tension in the middle of the spans; this
situation does not happen, in general of course, on the other nodes of the search tree).

The tension can be raised up to the span D(c, 0) if and only if the shortest path
value from e-(c to e+(c is at least v + and the tension can be lowered up to the span
D(c, if and only if the shortest path value from e + (c) to e- (c) is at least v- If
so, the new feasible potential is computed in the following way (let us illustrate it for the
span D(cl, 0), the other case is symmetric)" Dijkstra’s algorithm generates a tree of
shortest paths from e-(c to all other nodes by appending recursively the nearest node
to an expanding tree starting from the source e-(c ). Let w(e) be the shortest path value
from e- (c) to a genetic node e. Then, in order to compute the new feasible potential it
is not necessary to run Dijkstra’s algorithm to its full completion; it is enough to stop it
as soon as a node is reached with distance w() >_- v +. Let N’ be the set of nodes reached
by Dijkstra’s algorithm up to this point with the exclusion of the last node . Then the
potential is updated according to

u()+w()-v
+

u()’=
u()

if e N’

otherwise.

In the example of Figs. 4.1-4.7, both raising and lowering the tension of the stated
amounts are possible, so both z(c and z(c 0 correspond to admissible successors
of P(B, z). Other admissible successors can be generated by raising (lowering) the
tension even more up to the span next to the fight (left), i.e., D(cl, (D(c, -2)). In
this case it is required that the shortest path value be at least 12.5 14.5 ). For this example
no feasible tension can be established for the spans D(c, and D(c, -2) and this
implies in turn that no feasible tension can exist for all spans D(c, z) with z >= or
z=< -2.

So the successors of P(B, ze) are all the problems P(B U Cl, zucl) with values
z(cl giving raise to feasible potentials (these z(c constitute a set of "adjacent" integers),
plus two infeasible problems corresponding to the integers immediately at the left and
at the fight of the set of feasible integers. These last two problems must belong to the
search tree because they are necessary for the algorithm to backtrack.

The above discussion for the successors of the root node of the search tree is also
valid for the successors of any node P(J, zj). So the structure of the search tree is the
following: each feasible P(J, zj) has at least two successor problems and exactly two of
them are nonfeasible. Nonfeasible problems do not have successors. Feasible solutions
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ofthe PESP problem are found as the feasible potentials for the problems at the qth level
(the bottom) of the search tree. See in Fig. 4.5 the search tree of the example. Note that
a infeasible instance of PESP may have less than q levels.

It is important to note that whenever the tension v(c) on a certain chord c cannot
be made feasible with respect to a certain span D(c, z), the shortest path between the
extremes of the chord together with the chord itself form a circuit for which the span
constraints are too tight to accommodate a feasible potential. Let us call this circuit a
blocking circuit, and the other chords besides c possibly belonging to the blocking circuit
blocking chords. We shall use the phrase blocking gap to indicate the quantity by which
v(c) differs from the span to which it is modified (i.e., the blocking gap is either
d-(c) q- ziT- max v(c) or min v(c) d+(c) ziT). As we shall see, the information
provided by a blocking circuit is very valuable.

The algorithm we suggest performs a depth-first visit of the search tree by selecting
at each level the most central successor in the next level, and backtracking to the most
central nonvisited node of the previous level whenever the two infeasible nodes of the
level are visited. See in Fig. 4.6 the nodes of the search tree actually visited. Note that,
in view ofthe previous considerations, a visit of a node consists of a run ofthe Dijkstra’s
algorithm.

The performance of this "naive" algorithm can be improved if we introduce a
device, which may be called accelerated backtracking, based on the following consider-
ations: when the algorithm backtracks from a certain level, this is because a certain set
ofblocking circuits has been discovered at deeper levels. In order to find a feasible potential
the only integers z of the previous levels which should be changed are the ones relative
to the blocking chords. Therefore there is no need to guess other z values at the level
immediately above if this refers to a chord nonpresent in any blocking circuit. Thus the
accelerated backtracking device consists in backtracking until a level is found corre-
sponding to a blocking chord.

Figure 4.7 shows the nodes of the search tree of the example actually visited by
using the accelerated backtracking.

In order to appreciate the importance ofthe accelerated backtracking let us consider
a PESP instance whose network consists of two networks G and G2 linked through a
node. The instance is actually made up oftwo independent instances, but let us suppose
that we have not realized the existence of this simpler structure and solve the problem
globally with the "naive" algorithm. Let us also suppose that the problem is infeasible
on G2 and feasible on G1 and that the chords are sorted so that all chords in G1 correspond
to the first levels of the search tree. So the algorithm will first find a feasible potential
with respect to G and then will discover that a feasible potential for the whole network
cannot be found with the fixed z values in G1. Therefore the "naive" algorithm will
backtrack to guess other z values for the chords in Gl. But this is actually a waste oftime
since these values do not affect feasibility at all on G2. This fact can be discovered by
looking at the blocking chords. In fact all blocking circuits in G2 are necessarily confined
in G2, so when backtracking from G2 to G1, the algorithm may realize that there are no
blocking chords in G, thus making a unique backtracking up to the root node and
concluding infeasibility of the instance.

The algorithm can also be embedded with a routine which records some of the
blocking circuits found as well as the relative gaps. This kind of information turns out
to be useful, in case of infeasibility, if the possibility is considered of relaxing some span
constraints in order to find a feasible solution.

2.4. Considerations for the probabilistic analysis of the algorithm. With regard to
the worst-case computational complexity ofthe algorithm described in the previous sec-
tion, we may note that it is given by O(s(n)n2), with O(n) being the complexity relative
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to the visit of a node (running the Dijkstra’s algorithm) and s(n) being a bound on the
number of nodes of the search tree. Obviously s(n) is exponential in the worst case.
Nevertheless it is possible to arrange things so that at least the probabilistic behaviour is
acceptable.

Of course the less the nodes of the search tree are the faster the computation is. It
turns out that the number of nodes not only depends on the instance data, but also on
the way the data are "fed" to the algorithm. Intuitively, it is better to have the most
"prolific" nodes at the bottom rather than at the top ofthe search tree, and this situation
can be achieved ifthe arcs considered first are the ones with narrowest spans. This explains
why in the stated algorithm we choose B as a minimal spanning tree and the chords are
sorted. Moreover, the initial value for the tensions is chosen in the middle of the span
in the presumption that selecting the most central successor of a given node ofthe search
tree gives the highest probability of finding a feasible successor.

These considerations are rather informal. However, it is possible to support them
with more rigorous arguments. In fact, each feasibility problem P(J, zj) is a relaxation
of P(A, zj) and we may think of it as an optimization problem with objective function
ZaJ distance (v(a), D(a, za)). Therefore a node of the search tree is nonfeasible if and
only if the optimal value of its corresponding relaxation is strictly positive. Averaging on
a random set of instances the probability for a node to be nonfeasible is monotonically
decreasing with respect to the span lengths of the arcs in J and increasing with respect
to J[. The same conclusion can be reached if we consider that nonfeasibility of a node
means that a shortest path between two given nodes is shorter than the quantity by which
v(a) "misses" the real span D(a, z).

Now, according to Stone and Sipala [27], if the probability of being forced to a
backtrack in a binary search tree (with consequent cutoff) is constant at any level, then
an algorithm will visit the tree probabilistically in linear time with respect to the tree
depth. Unfortunately this is a limiting case because any practical algorithm behaves in
such a way that the cutoff probability increases, due to the accumulation ofinformation,
as the visit goes deeper. What can be done about this is to keep this increase as small as
possible. We may apply these conclusions to our search tree since they are valid even if
a nonbinary search tree is concerned. Therefore in view of the previous observation on
the probabilities for a node to be nonfeasible in the PESP algorithm, the best thing to
do is start with a minimal spanning tree B and then consider sorted chords.

Tables 1, 2, and 3 report some experimental computations for the PESP algorithm
of Fig. 3. The data of each instance have been randomly generated with the following
rules: first the directed graph corresponding to the network PESP model has been generated
with independent arc probabilities given by d(n ), for all arcs i, j) with < j, where
d is the desired average degree at each node. Some additional arcs have been possibly
generated to make the network connected. Then the span constraints have been generated
for all these arcs as [[aTJ, [(a + b)TJ] where a and b are two independent random
numbers uniformly generated between 0 and and the period T has been set to 100.
The rounding is necessary to avoid round-off errors and consequent anomalous behaviour
of some routines.

The values ofd have been set to: 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00. These
values are the most significant ones, since for smaller values the algorithm runs almost
without backtracking to a feasible solution, whereas for larger values the span constraints
are so binding to make the depth ofthe search tree very small, and infeasibility is reported
almost immediately. The values ofn have been set to: 25, 50, 75, 100, 150, 200. Twenty
instances have been generated for each fixed value of d and n.

Table reports the average cpu time in milliseconds (on a VAX 11/780). The
smaller figures appearing as subscripts and superscripts of the average times refer to the
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smallest and to the largest cpu time, respectively, over the twenty instances. A threshold
value of 100 seconds cpu time was set to interrupt the execution of the algorithm. The
number of instances out of twenty requiting more than 100 seconds and thus being
interrupted is reported within brackets in the relative entry of the table if greater than
zero. In case of interruption, the cpu time was set to 100 seconds and the instance
considered infeasible.

Table 2 reports the average, the smallest, and the largest number of visited nodes
of the search tree, and Table 3 reports the percentage of feasible instances over the same
twenty instances.

The figures of Table 2 show a nondramatic increase in the number of visited nodes
as the instance size increases, thereby confirming the previous theoretical considerations.
The cpu times increase at a higher rate because on each node a shortest path problem
has to be solved on a network whose size increases with the search tree level. However,
average figures are poorly indicative of the behaviour of the algorithm: as is typical of
NP-complete problems, the running times for homogeneous instances range over a wide
spectrum of values. Whereas for most instances the running times are acceptable, once
in a while an instance appears with a very long running time. Due to these reasons we
also report the smallest and the largest running times to give a more precise idea of the
behaviour of the algorithm.

It is fair to say that for instances with large spans, say almost as large as the period,
the algorithm does not behave as satisfactory as for uniformly random spans. This is the
case for instance of the Hamiltonian circuit problem solved through PESP (see Thm.

). Moreover there are some scheduling problems where such large spans arise naturally
as we shall see in 2.7 and 3.4.

2.5. The extended PESP (EPESP). As we shall see in 3, the presence ofresources
may complicate the periodic character ofthe scheduling problem by introducing different
periods mT (for integers m), which have to be taken into consideration simultaneously
(see also for instance 6 ], 14 ], 21 ). For instance, spans of the type d-, d/ ]mT may
be present in the model.

In principle, the PESP model can handle these situations as well since it is possible
to consider the larger period rhT, with rh the least common multiple of the integers m
and to transform each span [d-, d/ ]mT into

(.J [d- + kmT, d+ + kmT],T
k= ...rh/m

and to express in turn this union as an intersection of spans, as explained earlier.
However, this is unnecessarily expensive from a computational point ofview because

each ofthese span constraints produces several arcs, thus increasing the number ofchords
and expanding the search tree.

It is more convenient to refer directly to the network model of PESP and then to
adapt with minor changes the previous algorithm to this case. More precisely we may
define the Extended Periodic Event Scheduling Problem (EPESP) in the following way:

Given
a period T;
a network (N, A);
positive integers m(a), Va A;
real spans D(a, z), Va A, Vz Z where D(a, z) [d-(a) + zm(a)T,
d+(a) + zm(a)T] also denoted as D(a, z) [d-(a), d+(a)]m(a)T;

find a potential u such that v(a) D(a, z(a)) for some z(a) Z, for all a A. Then
r(e) u(e)rood T.
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Note the difference with PESP where m(a) 1, for all a.
The practical utility of this model will be clear later when activities and resources

will be taken into account. For the moment let us focus on a solution method for EPESP.
First let us note that the PESP algorithm is not adequate to solve EPESP since tree

integrality does not necessarily hold for all spanning trees ofthe network (N, A ). In fact,
if the instance is feasible, and z(a) Zl is a feasible integer value for the branch a of a
spanning tree (N, B), and we replace zt with z2, then the tension on an arc c belong-
ing to the cutset generated by a changes by (z2 zl)m(a)T. Since it is required that
d-(c) <- v(c) z(c)m(c)T <= d/(c), the change in the tension v(c) will not affect
feasibility of the corresponding span constraint if (z2 zt )m(a) is an integer multiple
of m(c). So if we want to assign any integer value z to the branch a we must require
that m(c) divides m a ).

Consider for instance the following example: N { e t, e2 }, A { at, a2 }, e- (at)
e-(a2) et,e+(at)= e+(a2)= e2, D(at)= [1, 5]t0, D(a2)= [7, 8]5. Then ifB
the algorithm will report infeasibility if z(a2) is fixed to an odd value and feasibility if
z(a2) is fixed to an even value, whereas if B { at } the algorithm will report feasibility
for any fixed value of z(a).

In general terms, let us call chord integrality the condition for a given chord c of a
spanning tree that m(c) divides all the integers m( a) }ac), with C(c) the circuit
generated by c, and let us call branch integrality the condition for a given branch a of a
spanning tree that all rn (c) in the cutset generated by a divide rn (a); then tree integrality
holds for the given spanning tree if branch integrality is verified by all branches or,
equivalently, chord integrality is verified by all chords. See Fig. 6.4 for an example of a
spanning tree for which tree integrality holds.

Thus if a spanning tree satisfying tree integrality is available, the PESP algorithm
can be used without modifications. If there is no spanning tree satisfying tree integrality
(or if it is computationally hard to find one such tree), it is nevertheless possible to
modify the PESP algorithm in the following way.

Let the root node of the search tree correspond to the problem P(B’, z,) where
B’ B is a set of branches of a spanning tree B for which branch integrality holds
(B’ can be void). Then let the algorithm run as before with { ct, Cq, ) B\B’ and
{ Cq,+t, "", cq} A\B. The only difference with the PESP algorithm consists in the
generation of successor nodes at the first q’ levels. More precisely, when c; B\B’ the
successor nodes of P(J, zj), with J B’ I,.J ct I,.J I,.J ci- correspond to the problems
P(J IO ci, Zjc) with z 1, rh/m(c) and rh the least common multiple of the
m(a) relative to the arcs a belonging to the cutset generated by c; (including the arc ci).

Note that rh/m(ci) if branch integrality holds for ci. So this modification is
actually a generalization of the PESP algorithm. We have still to investigate whether it
is more convenient from the computational point of view to find a set B’ of maximal
cardinality, thus reducing the number of levels, or to find a set B’ with spans as narrow
as possible, thus reducing the number of successors.

2.6. Periodic events sequencing. A set of periodic events cannot be ordered with
respect to their schedules since these are elements of the group R/T. However a weaker
concept of ordering is preserved ifwe consider how the occurrences ofm periodic events
are displaced in a (real) time interval of length T. More formally, we say that m real
numbers at, "’", am are sequenced with respect to T if

(ai-t- b) mod T<=(ai+ + b) mod T

holds true for some real b and for all 1, ..., m and we say that they are strictly
sequenced if strict inequality holds in the above relationship.
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Then we shall say that rn periodic events e, ..., e are sequenced or are scheduled
in sequence (strictly sequenced or scheduled in strict sequence) if the real numbers
t(el), t(em) are sequenced (strictly sequenced). Of course two scheduled periodic
events are always sequenced and for rn scheduled periodic events exactly rn permutations
of them correspond to strictly sequenced periodic events.

Constraints requiting certain subsets ofperiodic events to be sequenced in a definite
way will appear naturally when we introduce resources in the model.

It is not difficult to impose the condition that m periodic events have to be scheduled
in sequence. The following lemma provides a key property.

LEMMA. Let al, "’, am be real numbers such that the numbers ai mod T are not
all equal, and let zij be integers so that 0 <= aj ai zoT < T. Then the TSP with costs
(-zi) has optimal value and the optimal solution is exactly the permutation which
sequences the ai’s.

Proof. Let zi be integers so that 0 =< ai zi T < T. Let Ol ai zi T. Therefore
we have

Ootj+zjT-oti-ziT-zijT<T i.e., O<=aj-ai-(zij-zjWzi)T<T.

Note now that the TSP with costs -(zi z / z) is equivalent to the TSP with
costs (-zij). However it is obvious that -(zi z + zi) must be either 1, if ay < ai, or
O, if ay >= ai and therefore, since the ai are not all equal, the optimal solution is the one
ordering the a;’s with optimal value 1. [

With the aid of the previous lemma, it is possible to handle a sequence or
strict sequence condition by means of span constraints. Actually if the periodic events
el, e have to be scheduled in sequence with respect to T (besides other possible
span constraints originally present in the problem), m arcs

S :--(el, e2) Sm:--(em, el)

forming a circuit S have to be added to the network with spans

D(si, z): [zT, T+ zT].

If el, e have to be strictly sequenced, we have to add the following spans:

D(si, z) :--- [zT, T- U+ zT]

where U is the greatest commensurability unit of the instance data (if we suppose the
data are rational numbers).

Then for any potential u(ei) we compute zi: v(si) D(si, zi) (the tie occurring if
u(ei) u(ej) mod T= 0 is broken by choosing the smaller z). From the lemma we know
that the events el, em are scheduled in sequence if and only if i Zi --l, unless
II. u(ei) are not all equal, in which case the events are trivially sequenced.

Therefore the algorithm runs as for a usual PESP with the only difference being that
whenever si S and S c J t.J si, i.e., the last arc of S is appended to J, then the value
z(si), according to the previous results, has to be fixed to the value

Z(Si)----1- Z Zsj"

Apparently a sequence condition on m periodic events introduces m new levels
to the search tree (not counting the one with fixed z). Sometimes this added complexity
can be reduced ifthe span D(si) contains a previous span D for the same pair ofperiodic
events, in which case D can freely subsume O(si), as it happens for instance, in the
problems dealt with in 3.3.
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For the tie to be broken for the choice of z(si) mentioned above, it can be seen that
the PESP algorithm itself will break the tie automatically as required and so there is no
need to explicitly impose this extra condition.

2.7. PESP and ATSP. The results of the previous section and the reduction given
by Theorem show that there is a close connection between PESP and ATSP. In fact it
is not difficult to see that for any instance of the symmetric ATSP with costs cij, the
question "does there exist a tour with cost less than or equal to T?" is equivalent to the
question about feasibility of the PESP instance with period T and spans [cij, T- ci] for
all pairs of periodic events arbitrarily ordered. Incidentally this is an alternative proof of
NP-completeness for PESP.

By this transformation a ATSP instance can be obviously solved via the PESP al-
gorithm described in 2.3 and 2.4. However, due to the particular spans involved in
this case, that algorithm does not perform in a satisfactory way. We must point out that
similar spans can occur for periodic scheduling problems (see 3.4). Therefore, whenever
this situation is faced, it seems to be advisable to solve the scheduling problem by using
known techniques developed for ATSP.

THE PESP ALGORITHM.
compute minimal spanning tree B;
sort chords cl,

compute potentials on B;
initialization search tree visit

J := B; := 1;status[1 := new; for := to q do blocking_chord[i] := false; feasible := false; backtracking := false;
search tree visit

{z is the next integer to be guessed at level i. Each level can be in one of three states: new, all times when it is reached
from above; the status new is immediately reset to alternating to guess integer values alternating away from the most
central integer; when one of the two extreme infeasible nodes is visited the status is reset to one__way and integer
values are looked for in one direction only.
Shortest_path (el ,2,J,#, feasible) is a routine computing the shortest path from el to e2 on the network J via the Dijkstra’s
algorithm with an anticipated stop if a node is found whose distance from e exceeds 7; feasible is set false if and only
if the distance from e to e2 is shorter than t7.

while1 _-<i_-<qdo
begin

repeat trying to find a feasible solution at level
if status [i] new
then begin executed only if level is reached from level

status [i] := alternating;
if :IE: v(c)
then begin tension is already feasible

z:=E+ 1;
feasible := true;
step[i] := 1;
direction [i] 1;

end
else begin tension is not feasible

compute z := argminz{d-(cl) + zT- v(c) >-_ 0};
compute z := argmin,{ v(c) d+(c) zT 0
if d-(c) + zT v(cl) <= v(c) d+(cl) zaT
then begin tension should be raised

z := zl;
direction[i] := 1;

end
else begin tension should be lowered
z := z2;
direction [i]

end;
step[i] := 0;

end;
end

FIG. 3
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else begin either remaining in level or reaching level from below
if direction [i]
then shortest_path cj ,c c J d c + zT v c feasible)
else shortest_path(c (c),c-(c),J,v(c) d+(c) zT, feasible);
if feasible
then begin

update_potential;
if status[i] alternating
then begin

step[i] := step + 1;
direction i] direction ];

end;

z := zj + direction[i] .step[i];
end
else begin

for j:= ltoi-ldo
if c blocking_circuit then blocking_chord[ j] := true;

case status [i] of
alternating: begin

direction[i] := -direction[i];
z := z + direction[i] .step[i];
step[i] := 1;
status[i] := one_way;

end;

one_way: backtracking:= true;
end;

end;
end;

until feasible or backtracking;
if feasible going down one level
then begin
J := J LJ c;
i:=i+1;

status[i] := new;
feasible := false;

end;
if backtracking accelerated backtracking
then begin

repeat
i:=i-1

J := J\c;
until (i or blocking_chord[i];
if blocking_chord i]
then for := to do blocking_chord [j] := false
elsei:=i- 1;
backtracking := false;

end;
end;
if 0 then output ("PESP is infeasible");
if := q + then output solution;

FIG. 3 (Continued)

FIG. 4.1. A PESP instance.
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FIG. 4.2. Spanning tree and initial potentials.
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FIG. 4.3. Admissible z(c values.

FIG. 4.4. Graph (N, B’).

FIG. 4.5. Full search tree.
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FIG. 4.6. Nodes visited by naive algorithm.

Solution 8283953)

FIG. 4.7. Nodes visited with accelerated backtracking.

TABLE
Cpu times in milliseconds.

25 50 75 100 150 200

1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

5912040

7627050

9824060

250
50

15647060

1694407O

1719520
186 770

lOO

2105 390 522940 10661170 18172150120 303 240 410 950 1570

R220 59o ,.’:’ 1o8o 192312290 oO-/A 5120
15o 384310 520 1030 1670

265830 432550 10987800 352231970 299522690160 340 560 1140 1530
10830 224716330 KQ40240 172731000003341901010 1534370 560 1220 2370 (2)
17880 595349400 855742850 452931000005383290190 1792390 770 1440 2600 8

1ooooo ,A 100000t"rj"/A/) 6270240 15777620470 793099000770 177481820 2880 (5)
5550 198619840 26393100000969 73270 1172510 830 1800 (4) 5578202303320

15950 151771000007052820310 2451 6207550 2755960 2170 (2) 10678777403940
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TABLE 2
Number ofvisited nodes.

25 50 75 100 150 200

1.50 8 6 13 8 18 ]8 26’ 423256 557437
2.00 12] 19] 3265 40] 59 66 71 a3
2.50 16 27 38 45]2 865 8619

3.00 16 33638 68’49 73]58 89]53 21332 (2)
3.50 23] 37]69 51 49 63335 11435 3068 (8)
4.00 20 35]5 3489 15939 142 o5o (1) 19446 (5)
4.50 14 4592 184 173229 243 (4) 15
5.00 14 ]8 27 4o 45 7o 27o 100sv (2) 32 o8

TABLE 3
Percentage offeasible problems.

25 50 75 100 150 200

1.50 95 90 85 95 100 100
2.00 80 80 95 90 70 75
2.50 70 60 80 50 55 65
3.00 50 75 55 45 35 35 (2)
3.50 50 40 20 30 35 10 (8)
4.00 25 20 5 10 0 (1) 0 (5)
4.50 15 20 0 0 5 (4) 0
5.00 5 10 0 0 0 (2) 0

3. Activities and resources.

3.1. Basic definitions. A periodic activity 3" is an ordered pair of periodic events
(e-(3’), e +(3")), corresponding to its beginning and ending. A periodic activity 3" is said
to be scheduled if both -(3") and /(3") are scheduled and a nonnegative real number
x(3"), i.e., its duration, is assigned in such a way that

x(3") t(+(3"))- t(-(3")) + z(3") T>=0 for some z(3") Z.

We shall be concerned with a finite set I’ of periodic activities.
The pth occurrence of the periodic activity 3" is the activity starting at t(e-(3", p))

and ending at t(e-(3", p)) + x(3"). It is denoted by (3", p).
It is interesting to deal with activities using resources. By resources we mean a

finite set , where each resource R is in turn a finite set of resource units of some
definite type. To each periodic activity 3", a set (3") c is associated, which corre-
sponds to the resources needed by the activity 3". Correspondingly, we define I’(R)
{ 3": R (3") }, that is, the set of activities needing the resource R.

The resource units constitute a set of indistinguishable units and so any activity
needing a particular resource may use any unit of it. Therefore we have to solve at the
same time the problem of scheduling the activities and the problem of assigning the
activities to the resource units. Formally we define as a resource assignment for the
resource R and denote it by RAR an assignment of (3", p) to exactly one r R for all
R t(3") and all p Z. For ease of presentation we shall occasionally simplify the
notation by dropping the dependence on the particular resource, if it is not necessary to
emphasize this dependence.
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A resource assignment RA can be viewed as a two-dimensional array, with rows
corresponding to periodic activities and columns corresponding to occurrences, whose
(7, P) entry refers to some resource unit r RA (3,, P) e R. By RA (p) we denote the pth
column ofRA (see Fig. 5 ).

For any two periodic activities "i and 3’2 using the same resource, let s(Ti, 3’2) be
the least amount oftime needed by a resource unit released by activity 3’i to be available
for the activity 3/2. This time will be called the set-up time.

Depending on how the activities are scheduled, the resource assignment may or
may not be feasible, where infeasibility is intended as the simultaneous request in the
real time of the same resource unit by two different activities, or also by two different
occurrences ofthe same activity (if for instance the duration ofthe activity is longer than
the period).

DEFINITION. An RA is feasible if RA (-ri, P) RA (,y2, q) and (7i, P) 4: (3,2, q)
imply that either t(e-(Ti, p)) + x(7i) + s(Ti, 2) <= t(e-(39, q)) or t(e-(’r2, q)) +
X("yj) -" S(j, i) t(e-(3/i, P)).

We shall model the problem of finding a feasible schedule (feasible with respect to
the span constraints) together with a feasible resource assignment (as defined above)
through a feasibility problem with respect to span constraints only, thereby exploiting
the results of 2. In order to achieve this result, we first need to show that the resources
are used in a peculiar periodic way. Thereafter we shall show that feasibility ofa resource
assignment can be expressed via span constraints.

First note that, due to the finiteness of R, there must be two occurrences p and p’
such that RA(p) RA (p’). We shall make the following assumption.

Assumption. RA (p + z) RA (p’ + z) for all z e Z.
This way the resource assignment exhibits a periodic behaviour with period T’

P’ pIT mT. We call this time period the resource cycle. Besides this cyclic aspect,
a resource assignment is also inherently periodic with respect to Tas shown in the following
theorem.

THEOREM 3. For anyfixed activity schedule there exists a resource assignment RA,
minimizing the number of used resource units, such that RA (p + is obtainedfrom
RA (p) by applying a fixed permutation PR (the samefor all p’s) to the elements ofR.

Hence a resource assignment is determined by the following two unidimensional
arrays of lengths Irl and R I, respectively:

T=10

= {R},
r(R) r,

R r, r2, r3, r4, r5 },
(3’i) Vi, S(i, /j) 0

P ")i/1, "Y2, "Y3, "]/4, "Y5, ")1/6

Activity schedule
t(e-) t(e) x(3’) z(3,)

"YI 0 5 5 0
3"2 7 2 5
3/3 2 3 0
’/4 4 8 4 0
3’5 3 6 13
"Y6 7 4

RA(0) [rl, rl, r2, r2, r4, rs]

M= (3, 2)Q {{ 3’,, "Y2, 3’3, "]/4 {’)’5, ’’6

Resource assignment
p 0 2 3 4 5 6

1 FI F2 r3 FI F2 3
if2 1 r2 r3 FI F2 r3
3 F2 r rl F2 F3 El F2
4 r2 F3 El F2 F3 FI F2
T5 r4 r5 r4 r5 r4 r5 r4
6 r5 r4 r5 r4 r5 r4 r5
PR (2, 3, 1, 5, 4) 1, 2, 3)(4, 5)

Resource plan

PA (2, 3, 4, 1, 6, 5) (1, 2, 3, 4)(5, 6)

FIG. 5. Example ofresource assignment and resource plan.



570 PAOLO SERAFINI AND WALTER UKOVICH

a particular column RA (p) of the resource assignment;
2) a permutation PR on R.
Proof. We limit ourselves to outlining the proof; the reader will have no difficulties

in filling in the necessary details. First we need to define a periodic bipartite graph. We
say that (V, U, E) is a periodic bipartite graph if IV[ [U[ n mk with m and k
positive integers such that

(1)i, lgj)-Ecz’(1)(i+k)modn, lg(j+k)modn)-E.
A weighted periodic bipartite graph has weights obeying a similar relationship.

We build a complete weighted periodic bipartite graph to represent feasible resource
assignments with resource cycle mTand k I’(R) I. In particular vj / - Vcorresponds
to the event related to the ending ofthejth occurrence (within the resource cycle) ofthe
ith activity of I’(R). Similarly, vertices of U are related to beginnings of activity occur-
rences. Two occurrences of the same activity distant m periods are identified, according
to the previous assumption.

Recall that all activities have been scheduled. Assigning a resource unit, whose use
by thejth occurrence ofthe ith activity has just terminated, to the pth occurrence ofthe
qth activity, is equivalent to matching the vertices vj/i and up/ q of G. The weight to
be attached to this arc is simply given by the actual idle time the resource unit would
spend during this transfer. The weights have an obvious periodic character.

The total weight of any matching plus the activity durations is equal to a certain
multiple ofthe resource cycle. This multiple is also the number ofresource units necessary
to produce a feasible resource assignment according to the given matching.

The given resource assignment (with resource cycle mT) corresponds to a definite
matching on the periodic graph just defined. Due to the previous observation, finding a
matching of minimum weight is equivalent to finding a possibly different resource as-
signment with less or equal resource units. We are therefore interested in finding a match-
ing of minimum weight in a weighted complete periodic bipartite graph.

Our claim is that there exists an optimal matching which is a periodic subgraph of
(V, U, E) (with the same m and k). We recall that a weighted bipartite matching can
be solved through a primal-dual method by solving a certain number of cardinality
bipartite matching problems (see 20 ).

Our subclaim is that there exists a maximum cardinality matching for a periodic
bipartite graph which is periodic as well. Let us suppose that a periodic matching is given;
then if it is not maximum there exist augmenting paths. Since the matching is periodic
these paths are periodic as well. The idea is to augment simultaneously all these paths
in order to have another periodic matching of larger cardinality. However this is possible
only if the paths do not intersect. So we want to prove that there always exists a periodic
set of nonintersecting augmenting paths. Therefore let us suppose that the augmenting
path vi -- uj intersects the augmenting path vi / -- uj+ with vi / nearer to the intersection
than v;. Then we may "exchange" the paths in the intersection to form a new augmenting
path vi / -- uj. By repetitively doing so for all augmenting paths, we are left with a new
periodic set of augmenting paths plus an alternating circuit intersecting all augmenting
paths. This circuit can be dropped and so we have a set of periodic augmenting paths
with fewer (if any) intersections than before. Now it is easy to prove the subclaim.

That the claim is true is also easily established by recalling the details ofthe Hungarian
algorithm 20 ].

The optimal matching produces a resource assignment whose resource cycle is, in
general, a positive multiple of m. Obviously it does not require more resource units over
this larger resource cycle than the resource assignment we started with.

The fact that the optimal matching is periodic suffices to prove the theorem.
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In order to grasp the feeling of the theorem, suppose that a specified resource unit
is used by a set I" c I’ of activities, that is the resource unit is released by some activity
in I" and then is resumed by some other activity of I" and so on, always in a cyclic way,
in view of the previous assumption. The time necessary for the resource unit to be used
by all activities in I", and to be again available for the first one, need not be equal to one
period; in fact it can be any value mT with m positive integer. The situation can be
viewed as if the resource unit were travelling through the activities of I" completing the
tour in m periods. If m > 1, since each periodic activity must be restarted after one
period, there must be another resource unit ready to be used by the first activity in I" at
the beginning of the second period. In principle there is no reason why this second
resource unit travels through the activities in the same sequence as the first unit did one
period earlier. What the theorem says is that it is optimal, in terms of number of used
resource units, that this second unit (and also all possible other ones) is used by the
activities in I" in the same sequence as was the first unit.

Therefore m resource units must be circulating in the tour equally spaced of one
period. This fact establishes that the number of periods necessary for a set I" of activities
to be completed by one resource unit is equal to the number of resource units needed
by F’.

Of course there may be several disjoint subsets I’ of activities, each one of them
using m resource units in a cyclic way. Hence the permutation transforming RA (p) into
RA(p + is the direct product of some cyclic permutations of cardinality mj.. The
resource cycle is then the least common multiple of the m’s times T. The presence of
resources therefore introduces several periods which have to be taken into account si-
multaneously, and this is the very point where the EPESP model is called for.

Due to the periodic behaviour of the resource units, a resource assignment can be
also expressed in terms of resources rather than in terms of activities. In fact, according
to the previous results, for each resource R there exists a permutation PA (R) on F(R)
specifying the sequences of activities using the same resource units. The permutation
PA R being the direct product of some cyclic permutations PA R PAq(R)(R ),
defines a partition Q(R) {F(R), ,Iq(g)(R)} of r(R) and to each Q(R)
an array M(R) { m(R), muR)(R } of positive integers is associated such that
,i mi(R) R (again see Fig. 5 ).

Hence it is possible to express an assignment of resources to activities by specifying
Q(R), M(R), and PAy(R) for each resource R. Indeed this is the way we shall relate
resources and activities and this will allow expression ofthe relationship among resources
and periodic events by span constraints ofthe type described in 2. With this respect we
shall use the following terminology:

A complete resource plan is a specification concerning Q(R), M(R), and PAy(R).
A partial resource plan is a specification concerning only Q(R) and M(R).
Of course any resource plan is completely determined by a resource assignment

together with an activity schedule, and conversely, any resource assignment is completely
determined by a resource plan together with an activity schedule. However, ifthe activity
schedule is not specified neither a resource assignment determines a resource plan nor
vice versa.

3.2. Resource planning with a fixed activity schedule. The results of this section
can be considered a corollary ofTheorem 3. In fact the periodic behaviour ofthe resource
units, implicitly assumed throughout this section, was established by that theorem.

In this section we consider the problem of finding a feasible RA minimizing the
number ofresource units needed for a fixed activity schedule. As was seen in the previous
section, the number of needed resource units is equal to 22j mj(R) for each resource R.
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This problem can be solved by finding permutations PA (R) of minimum cost, with the
cost directly related to the mj(R)’s. Of course the problem directly splits into separated
problems, one for every resource.

For each resource R we build a graph (V, E) where V V- U V+ with V-
{ e- (3,)" 3’ I’(R) }, V+ { e + (3,)" 3’ I’(R) }, and E A U B with A the set of arcs
from V- to V/ corresponding to the activities in I’ (R), and with B the complete set of
arcs from V/ to V- corresponding to assignments ofone resource unit from one activity
to another one. That is, each arc (e+(3,;), e-(/j)) B expresses the fact that resource
units may be assigned in sequence to the activities - and 39.

Then let us define

x(3’i, 3’) min {t(e-(3’))-t(e+(3’i))+zr>=s(3’i, %)}
xZ

and let z(3,;, 3’j) be the argument yielding the minimum.
To arcs in A the costs x(3,) are assigned whereas the costs x(3,i, 3,) are assigned to

the arcs in B. The problem is then to find a set C U Cj. of arc disjoint directed circuits
in (V, E) of minimum cost and such that A c C. In fact

It is immediate to see that this is equivalent to a weighted bipartite matching problem
for the complete bipartite graph (V+, V-, B) with costs given by the integers z(3,i, 3’).
From the optimal matching /, the permutation PA(R) is immediately derived
and obviously

Z m= Z z(7)+ Z z(7;, %.),
j A /

with

m: Z z(-r)+ Z z(;,).
ANC /NC

So the solution of the problem consists of several resource cycles C (possibly just
one circuit) each associated to a certain multiple mj of the basic period T. It may be
interesting to note that ifwe want a solution consisting ofone resource cycle, the problem
is no longer a weighted assignment but it becomes a TSP. On the other hand if we want
a solution in which each resource cycle is long T, a circular graph coloring problem
is produced which is also NP-complete 11 ]. Note also that if x(3,i) < T, for all and
S(’yi, ’’j) 0, for all i, j, then z(’yi, %) { 0, } and so the weighted bipartite matching
problem actually becomes a simpler cardinality problem.

3.3. Activity scheduling with a fixed complete resource plan. The problem consid-
ered in this section is the one of scheduling a given set of periodic events subject to some
span constraints of the type described in 2.1, with the additional condition that some
(or even all) events are starting and/or ending events of activities for which a complete
resource plan has been fixed and is required to be feasible. To say that a resource plan
has been fixed means that for each resource R the partition Q(R), the permutation
PA (R) and the arrays M(R) are fixed to some definite values.

In order to have a feasible resource assignment, we have to add the condition that
the events referring to the activities in I’(R) have to be scheduled in sequence with
respect to m(R)T (see 2.5 and 2.6), according to the sequence given by PA(R). So
it is just a matter of applying the results of 2.6. To be more specific, let rj(R)
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{ 3", , 3"p } with activities labelled according to the sequence. For the sake of simplicity
let us assume that the activity durations x(3’i) are fixed, so one periodic event
(say the starting event) ei is sufficient to identify the activity 3"i. Then the periodic events
el, ep have to be scheduled in sequence with respect to mj(R)T.

Furthermore, feasibility of the resource assignment is obtained by imposing, for
each pair of successive events,

ai:=(ei, ’(i+ 1)modp) i= 1, p,

and also imposing the span constraint given by

V( ai)E [x( 3"i) -[- s( 3"i, 3"(i+ 1)modp) -- zmj(R T, W+ x( 3"i) + S( 3"i, 3"(i+ 1)modp) -- zm(R T]

for some z E Z, where the quantities s(3’i, 3") have been defined in 3.1 and W is
computed as

p

W:= mj(R) T , X(3"i)’3f-S(3"i, 3"(/+ 1)modp).
i=1

The above span constraints clearly subsume the ones relative to the sequencing
condition.

This is an EPESP with the added feature of sequencing (an example is shown in
Fig. 6). Therefore a possible algorithm to solve it is the one described in 2.5 with the
modification pointed out in 2.6. There is no conceptual difficulty in dealing with variable
activity durations; it is just a matter of considering the ending events as well and of
sequencing the events in the natural way with possible span constraints between the
starting and the ending events.

Some particular cases are worth mentioning. If (3’)1 =< 1, that is, ifeach periodic
activity requires at most one resource, then the sequence circuits are disjoint and therefore,
since the span constraints involving multiples ofthe period Trefer to arcs in the sequence
circuits, the tree integrality condition expressed in 2.3 and 2.5 is automatically satisfied
for any spanning tree containing all arcs but one of every sequence circuit.

If I’(R)I 2, that is only two periodic events, corresponding to the starting events
of two activities 3"i, 3"j, have to be sequenced, the following span for (e-(3"i), e-(3"j.))
suffices to model a feasible resource assignment

X 3" -" S 3" 3"j mT x 3" s 3"j

In Fig. 6 an example is given with seven periodic activities of fixed duration and no
set-up times. Three resources are involved consisting of three, two, and three units re-
spectively (labeled r -r8). The first four activities need the first and third resource (i.e.,
any one unit of both the first and the third resource), and the remaining activities need
the second and the third resource. These are the problem data for which a feasible activity
schedule together with a feasible resource assignment is looked for.

We suppose that the resource plan has been fixed in the following way: the resource
cycle of resource R consists of one cycle, namely 3’1 -- 3"2 3"3 3"4 "- 3"1, lasting
three periods since RI 3. Correspondingly, four arcs are given on the network with
span [x(3"i), W+ x(3"i)]3o for the arc outgoing from node with W 15, i.e., the period
minus the sum of the durations along the cycle. Similarly the resource cycle of resource
R2 consists ofthe single cycle 3"5 -- 3"6 3"7 "- 3"5 lasting two periods and, correspondingly,
three arcs are given on the network with appropriate spans.

The resource R3 is used in a different way: its three units go over three independent
cycles, necessarily lasting one period. In particular one of the cycles (there is no need of
explicitly assigning cycles to resource units since these are indistinguishable) involves
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I "--{ "](1, 3"2, 3"3, 3"4, 3"5, 3"6, 3"7
x(3")=4, x(3"2)=3, x(3")=5, x(3"4)=3, x(3"5)=4, x(3"s)=5, x(3"7)=4
s(3",, 3") 0

= {R, R2, Ra}
R,={r,,r2, r}, a2={r4, r}, Ra={r6, rz, ra}
(T)= (T2) (Ta)= (4) {R, Ra}
(,)= ()= (,)= {a, a}
v(a,)= {,, , , ,}, v(a=)= {,, ,, }, v(a)=

FIG. 6.1. Activity data.

O(R1) I’(al) }, O(R2)= I’(R2) }, Q(R3) 3",, 3’6 }, 3"2, 3"7, 3"4 }, 3"5, 3"3

PA(R1)=(1, 2, 3, 4), PA(R2)=(5, 6, 7), PA(R3)=(1,6)(2, 4, 7)(5, 3) (cyclicnotation)
m(R1)=3, m(R)=2, m(R)=m2(R)=m(R)=l

FIG. 6.2. Complete resource plan.

FIG. 6.3. EPESP networkfor activity scheduling with fixed resource plan.

6.4. Spanning tree satisfying tree integrality.
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0

F,

10 2o 4o

FIG. 6.5. Solution.

5O 6O

the activities "}/2 -’ 3,7 -’ 3,4 3,2 (in this order) raising the corresponding arcs and
spans on the network. The other two cycles involve only two activities each, namely
(3,, 3’6) and (3,3, 3,5). Since two activities are always sequenced only one arc between
the activities suffices to model a feasible resource assignment, as was already pointed out.

The resulting network is shown in Fig. 6.3. A spanning tree satisfying tree integrality
is shown in Fig. 6.4. In problems involving sequence conditions it is not convenient to
sort the chords for increasing span lengths; in fact, since some span constraints have a
fixed value for z due to the sequence condition zi -1, (and hence they correspond
to a level with one successor only in the search tree) it is more convenient to have these
span constraints at the highest possible levels. So in the example c and c2 are the chords
closing the cycles of resources R and R2, respectively. In order to fulfill the sequence
condition, since all arcs of the cycle but one belong to the spanning tree in both cases,

FIG. 6.6. EPESP networkfor activity scheduling with fixed partial resource plan.
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it suffices to set D(c -27, 12 and D(c2) 16, -9 which correspond to the
condition zi -1.

As far as the resource cycle 72 -- Y7 -- ’]/4 "- "Y2 is concerned, only one arc of the
cycle belongs to the spanning tree with value z 0. So it is required z(c3) + z(c4) -1.
It can be seen that when the search tree level corresponding to c3 is reached a first guess
z(c3) -2 is made. This implies that in the next level z(c4) 1. It turns out that this
value yields a feasible potential and so the visit of the search tree may proceed to deeper
levels. For this particular example the final solution is obtained without backtracking. It
is displayed in the form of a GANTT diagram in Fig. 6.5; the numbers inside the boxes
refer to the resource units.

3.4. Activity scheduling with a fixed partial resource plan. A drawback ofthe model
described in the previous section is that a very detailed description of the resource plan
is required to be given in advance in order to schedule all events. In practical applications
any resource plan is all fight as long as it is feasible and consistent with the available
number of resource units. Therefore we describe in this section a model which is relaxed
with respect to the input data requirement but is computationally more expensive.

With respect to the problem of the previous section, the way the activities in each
I’j.(R) have to be sequenced is no longer part of the problem data but a variable to be
determined. Let us suppose again for the sake of simplicity that the activity durations
are fixed so that the starting events e, ep identify the activities in I’(R). Then the
following span constraints between all (unordered) pairs { e, e ), h 1, p 1,
k=h+l,...,p

[x(Th) + s(Th, 7),mT-x(7)-s(7, 7h)]mT

correspond to the requirement of a feasible resource assignment.
In terms of the network model of the EPESP, these span constraints form a certain

number of cliques. Scheduling the activities on each clique is a problem comparable to
a TSP as seen in 2.7. Furthermore, all these subproblems interact via other span con-
straints. It is clear that the problem of scheduling the activities with a partial resource
plan is a very hard one unless the cliques are rather small. Compare, for instance, the
network in Fig. 6.6 with the one in Fig. 6.3; both refer to the same problem data, but in
Fig. 6.6 the network has been drawn by fixing the resource plan only partially. This
relaxed requirement has the effect of increasing the number of arcs (only by two in this
case due to the small cliques) and the span lengths.

Therefore, in order to devise sensible strategies to solve the problem of scheduling
the activities with a fixed partial resource plan, it may be convenient to exploit the
problem of 3.3 as a subproblem to be used for a branch and bound strategy. We recall
that in the problem of 3.3 a complete resource plan is assumed, that is, the sequencing
ofthe activities on each clique is kept fixed. TSP techniques may be proper tools to assess
convenient sequences. In this sense especially the problem of scheduling activities with
a complete resource plan becomes a sensible and useful model.

3.5. Activity scheduling with a fixed number of resource units. In certain practical
applications only the global number of available resource units is prescribed in advance
and in general any partition Q(R) is accepted as long as it makes the schedule feasible.

Unfortunately the requirement on the use of the resources is so relaxed in this
problem that it is not possible to model it within the framework of span constraints as
we did for the problems in the previous sections. It is certainly out of question to check
all possible partitions Q(R) until feasibility is found. Nevertheless the following consid-
erations can provide some help.
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First of all note that if [R[ for all resources then only the trivial partition
Q(R) { I’(R)} has to be considered, with the obvious value re(R) 1. In this case
the problem is exactly the one of scheduling the activities with a fixed partial resource
plan, which can be solved through PESP.

Ifon the contrary there are several resource units ofeach resource, then a favourable
situation is faced if s(-i, 39) 0 for all and j. In fact let us suppose that an activity
schedule is given and that the goal is the minimization of the needed resource units. Let
us consider the following two alternatives: either we apply the results of 3.2 and solve
an assignment problem or we add the extra requirement of having an assignment cor-
responding to a cyclic permutation, which amounts to solving a TSP. According to
16 p. 99 ], the difference between the two optimal values for this particular set of costs

(in fact a graded matrix of 0’s and ’s) is at most 1.
Therefore if we want to find a feasible activity schedule with a fixed number m of

available resource units of some resource R, we may consider the following approach:

find an activity schedule with the following fixed partial resource plan

Q(R)={F(R)} m(R)=m.

If there exists a feasible solution, stop, otherwise
2) find an activity schedule with the following fixed partial resource plan

Q(R)= F(R) } m(R)= m + 1.

If there is no feasible solution, stop, because the original problem does not have
feasible solutions either, otherwise,

3) minimize the number rh of needed resource units for the activity schedule just
found. If th _-< m, stop, otherwise the situation is rather hopeless.

Special techniques could be conceived to handle the last point, but this is beyond
the scope of this paper.

4. Applications.

4.1. Periodic Job-Shop. Let us first recall the usual (aperiodic) Job-Shop
Problem (which will be referred to in the following as JSP). There is a set o ofjobs.
For each job JG q there is specified a set of activities (or operations) (J, k k 1,
q(J), to be executed on a certain piece r(J), in the sequence given by the index k. This
way, a one-to-one association between jobs and pieces is given. Each activity 3’ has a
certain given duration x(3,).

There is a set //of machines. Each activity q/is assigned to a definite machine
M() e.

The problem is the one of scheduling all activities such that
The activities ofthe same job are scheduled according to the prescribed sequence;

2) The same machine executes at most one activity at a time;
3) A prescribed criterion for the completion time has to be satisfied.
In the Periodic Job-Shop Problem (PJSP) each activity has to be repeated at regular

intervals of length T, so it has to be considered a periodic activity. Since its duration
is fixed, one periodic event identifies each periodic activity. In the periodic case each
job J describes a set of activities to be executed on infinitely many identical pieces
", rl(J), r2(J),

The pieces ri(J) enter the job-shop at regular intervals of length T and remain in it
for a certain time T(J), which is the same for all of them. Let (re(J) )T < T(J) =<
re(J) T for a certain integer re(J). Then we identify the pieces ri(J) and ri + m(J)(J) in



578 PAOLO SERAFINI AND WALTER UKOVICH

order to model this problem in our framework. This corresponds to having a finite set
R(J) := { r (J), rmj)(J) } of pieces. In the framework of 3.1, R(J) is a particular
resource, and we consider the pieces as resource units. Through the above identification
an open system is transformed into a closed (cyclic) one.

Each machine is a resource as well. In particular it is a resource consisting of a sin-
gle unit.

Each set (3,) consists of two elements, i.e.,

and obviously

(3"(J, k)) {R(J), M(3"(J, k)) }

I’(R(J)) { 3’(J, ), ..., 3"(J, q(J)) }
I’(M) { 3"(J, i): M=M(3"(J, i))}.

Then the problem is scheduling the periodic activities such that:
The resource plan concerning the resources R(J) (pieces) is completely specified

as follows: Due to the concept of "job," the partitions Q(R(J)) are the trivial partitions
Q(R(J)) { I’(R (J)) } and the permutations PA(R(J)) must be cyclic, corresponding
to the sequence 3’(J, ), 3"(J, q(J)), which are obviously assigned a priori by tech-
nological requirements. Concerning the integers m(J) assigned to each job, they are not
actually imposed a priori and constitute a set of design variables subject to the only
obvious limitation such that

m(J)T>= x(3"(J,k))+s(3"(J,k), 3"(J, k+ 1)).
k

At the moment they are arbitrarily specified by the designer. We shall comment on this
in a few paragraphs.

2) The resource plan concerning the resources M (machines) is partially specified
as follows: Due to the fact that each machine is considered different from all other ones
and hence each activity is assigned to one definite machine, the partitions Q(M) have
to be the trivial partitions { P(M) } and m(M) must be equal to one. The permutations
PA(M) must be cyclic, but they are not specified and have to be determined in order to
find a feasible schedule.

3) In the PJSP there is no completion time of course. A related measure of pro-
ductivity is given by the number of processed pieces leaving the job-shop in a time unit,
i.e., by Ill/T. So, if loll is considered fixed and T is not imposed a priori by some
other constraints, we might ask for the minimal T realizing a feasible schedule, a task
which could be performed via a bisection procedure.

Therefore a PJSP can be formulated within the framework of the model developed
in 3 and solved via the techniques described in 2.

Some other features of the PJSP are worth mentioning. Let 7 be the minimal T
realizing a feasible schedule. First just note that an obvious lower bound for 7 is
given by

max{max x(3");max x(3")}.ME /g
3’ r(M) JE

3" r(J)

The schedule obtained with 7 exhibits a critical circuit in the network model of PESP
in the sense that all span constraints ofthe circuit are satisfied exactly at the span bound-
aries. This situation is the exact counterpart of the critical path for the JSP.

The concept of "selection" of a machine for the JSP, that is, prescribing the pre-
cedence order ofthe activities on the same machine, is translated into PJSP as a sequence
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specification and therefore, if all machines are given a particular selection, all resource
plans are completely specified and the problem of scheduling the activities is solved as
described in 3.3.

An interesting feature of the PJSP, not present in the JSP, consists in the fact that
all pieces of a certain job J remain in the job-shop for an amount oftime given by T(J).
It is important to note that increasing T(J) (while keeping T fixed) has the effect of
relaxing the sequence constraints of the problem to such an extent that for sufficiently
large T(J) any resource assignment can be made feasible. However, large T(J) result in
a larger number of pieces simultaneously present in the job-shop and therefore produce
storage problems and raise the opportunity costs associated with the capital committed
to the material under process.

Thus two different objectives have been identified: A productivity rate associated
with the period T and the number ofjobs I1; 2) Opportunity costs associated with the
T(J) ’s and therefore with the m(J)’s.

As a further reference on this problem see [26]. For an example reconsider Fig. 6
where two jobs can be specified by the activities 3", ..., 3"4 and 3"5, "’", 3’7 respectively
and the three resource units r6, rT, r8 can be reconsidered as three different machines,
i.e., three different resources, each one of them consisting of a single resource unit.

An extension of the PJSP could take into account the pallet scheduling in case the
motion of pieces is performed automatically through pallets. If the pallets are a scarce
resource they could be considered an additional resource. Then it is just a matter of
considering new activities corresponding to pallet motions between two original activities.
The resulting problem could be very difficult. A more realistic approach would be to
disregard the pallet problem in the first stage of scheduling and then, once the activity
schedules are fixed, minimize the number ofneeded pallets through the bipartite matching
problem of 3.2.

4.2. Transportation scheduling. In transportation one typical problem is of mini-
mizing the number of vehicles needed to implement a given time schedule. This was
solved previously by Dilworth in the aperiodic case. The periodic case has also been
solved via different approaches both when deadheading is allowed and when it is not
12 ], 13 ], 18 ]. We recall that deadheading is the transfer ofa vehicle from one terminal

to another one with a trip out of schedule.
The model presented in this paper provides a rather simple framework to solve the

problem of minimizing the number of vehicles with no conceptual difference between
allowing deadheading or not. In this model each trip is considered as an activity 3". Then
we may define the setup times s(3", 3"2) to be the minimal time needed for a vehicle to
be available for trip 3"2 after completion of trip 3". If deadheading is allowed s(3", 3"2)
takes care of the actual time needed for transferring the vehicle between two distant
terminals, otherwise s(3", 3"2) can be simply set to infinity.

As shown in 3.2 this is a weighted assignment and this conclusion agrees with
previous results 12 ], 13 ], 15 ], 18 ].

An interesting extension consists in allowing some flexibility in the time schedule
within some prescribed tolerances. So it is possible to reschedule the trips according to
the results of 3.3 given a certain complete resource plan. It is beyond the scope of this
paper to give methods to derive a complete resource plan in order to find the periodic
trip schedule. Actually, by combining our model with other models it is possible to
develop efficient heuristics. This is a matter of current research.

4.3. Traffic light scheduling. This application deals with the problem ofscheduling
the switching times ofgreen and red lights in a system of signals controlling urban traffic.
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We look for a periodic schedule with a given period T. This is a common practice in
several applications at least for time intervals much larger than the period.

We may model the problem by considering a green time as a periodic activity 3’.
Therefore there are as many activities as the independent signals. For the sake ofsimplicity
we suppose that the green light durations x(3") are given a priori; so one periodic event
e(-), say the starting of green light, identifies each periodic activity. A more complex
model involving variable green light durations can be found in [25].

The periodic activities, i.e., the green times, are subject to the following constraints:
two signals (3", "/2) controlling the access to the same physical area cannot be green
simultaneously. So, by also taking into account proper clearance times s(3", 3"2) and
s(3"2, 3" ), the following span constraint must be obeyed by the two signals 3" and 3"2:

((u2))-((u,))[-x(u,)-s(,, u2), x(2)+s(2, ,)].

Besides this type of constraint we may also model a coordination between signals
controlling the same traffic flow, by imposing that the switching of a downstream signal
must occur within a given time interval 6-, 6 + from the switching ofthe corresponding
upstream signal. So PESP is enough to model this problem.

5. Conclusions. A general framework to deal with a large class of scheduling prob-
lems in a periodic environment has been proposed.

First the case involving only separate periodic events with constraints involving the
relative position of pairs of them has been considered. It has been shown to be NP-
complete and some other properties have been settled. An algorithm for it has been
devised, which exhibits a satisfactory average performance in practical cases. Some ex-
tensions have also been encompassed, such as multiperiod situations.

Then the concepts and methods for periodic event scheduling problems have been
exploited to deal with periodic activities using resources. Some different classes ofproblems
have been classified and the relationships among them have been analyzed in a unitary
approach.

Finally, some specific applications have been considered in detail. In the first one a
periodic version of the well-known Job-Shop Scheduling problem has been treated. The
second one dealt with vehicles scheduled to meet a given time table, possibly with some
assigned tolerances. The last one considered setting traffic lights controlling urban traffic
while complying with simple safety requirements. Each of the above problems has been
modelled as a specific periodic activity scheduling problem with resources.

In conclusion, it may be pointed out that this should not be intended as a conclusive
work on periodic scheduling issues. Rather, it should stimulate further research effort on
such topics. For instance it is worth mentioning the possibility of refining the algorithmic
aspects, for instance adapting them to specific problem features in order to achieve an
improved computational efficiency. Another challenging subject contemplates optimi-
zation problems instead of only feasibility ones.
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BIRIGIDITY IN THE PLANE*

BRIGITTE SERVATIUS-

Abstract. The two-dimensional genetic rigidity matroid R(G) of a graph G is considered. The notions of
vertex and edge birigidity are introduced. It is proved that vertex birigidity of G implies the connectivity of
R(G) and that the connectivity ofR(G) implies the edge birigidity of G. These implications are not equivalences.

A class of minimal vertex birigid graphs is exhibited and used to show that R(G) is not representable over
any finite field.
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1. Introduction and basic definitions. Let G (V, E) be a simple graph on the edge
set E, vertex set V. We define the support a(F) of a subset F ofE to be the set endpoints
of edges in F.

We define a subset F of E to be independent if F’[ _-< 2 r(F’) 3 holds for all
subsets F’ of F. It is well known, (see and 3 ]), that these independent edge sets are
the independent sets ofa matroid, the so-called two-dimensional generic rigidity matroid,
R(G), of the graph G. The closure operator and rank function of this matroid will be
denoted by c and r, respectively. The term circuit will always refer to a circuit in R(G).
Some properties of circuits are discussed in [4 ]. Note that R(G) may be considered as
a restriction of the rigidity matroid of a sufficiently large complete graph.

G (V, E) is called rigid if r(E) 2n 3, where V[ n. G is called edge birigid,
if r( E e) 2n 3 for every e E. G is called vertex birigid, if G is rigid and

r(E-star(v)) 2(n- )- 3 2n- 5

for every v V, where star(v) denotes the set of edges adjacent to v. We will henceforth
abbreviate E- star(v) with E- v. To simplify notation and language we will not dis-
tinguish between sets of edges and the subgraphs they induce. Some simple examples of
graphs with specified rigidity properties are given in Fig. 1.

The following observations are immediate consequences of the definitions. The
union of two graphs G1 and G2 having at most one vertex in common is not rigid, and
c( Jl UG2 c(G1 Uc(G2). If two rigid graphs intersect in two or more vertices, their
union is rigid.

Let us call two edges of G related if they are both contained in a rigid subgraph of
G. Clearly the so defined relation is symmetric. An edge constitutes a rigid subgraph,
which shows reflexivity. For transitivity, if edges e and f are contained in a rigid subgraph
HI of G and f and h are contained in a rigid subgraph H2 of G, then H1 and H2 intersect
in at least two vertices, namely the endpoints off, so their union is a rigid graph containing
e and h. Thus rigidity induces an equivalence relation the edge set of G. The equivalence
classes are called r-components. It follows that r-components have at most one vertex
in common and that birigid graphs are at least 3-connected. Moreover, R(G) can be
written as the direct sum over the r-components of G. This follows from the observation
that circuits are rigid, in fact edge birigid, (see [4]).

We shall often use the following property ofR(G): Assume the edge set F induces
a subgraph of G containing a vertex v of valence three. Then F is independent if and
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only if there is an edge e connecting neighbors of v such that e is not contained in F,
and F- v + e is independent. We say R(G) satisfies the 1-extendability property, see

]. Note that e need not be contained in G.
If the vertices of G are "genetically" embedded in the plane, see [3], and the edges

of G are replaced by rigid bars, which are pin-jointed at their endpoints, the resulting
structure will be rigid if and only if G is rigid in the sense defined above. (see 2 ).

If the vertices of G are restricted to a line, and the edges of G are again replaced by
rigid bars, the resulting structure will be rigid if and only if G is connected, and we may
characterize the one-dimensional genetic rigidity matroid M(G) ofthe graph G as follows:
A subset F of E is independent if and only if [F’] _-< (F’)] holds for all subsets
F’ of F, i.e., the independent sets in this matroid are simply the edge sets of subforests
of G. M(G) is called the cycle matroid M(G) of G, (see 6 ).

Observe that M(G) and R(G) are matroids defined on the edge set of G, and that
the vertex set of G is used only via the support function to define independent sets.
Consequently, there is no property of M(G) or R(G) that corresponds directly to the
connectivity of G. Whitney 7 calls a matroid M on S connected if r(A) + r(S A >
r(S) holds for every nonempty proper subset A of S. With this definition M(G) is con-
nected if and only if G is biconnected. It is natural to ask for relations between the
connectivity of R(G) and the rigidity of G. This will be done in 2.

Every pair of edges in a biconnected graph is contained in a cycle. A cycle is an
edge-minimal vertex-biconnected graph. Note that any cycle has exactly one edge more
than it needs to be connected. A biconnected graph can simply be thought of as a union
of sufficiently intersecting cycles.

It is natural to look for a rigid analogue: Given a birigid graph, we can write it as a
union of birigid graphs of minimal excess, where the excess of a rigid graph G (V, E)
is defined to be ]EI r(E). Observe that the only birigid graph of excess one is the
complete graph on four vertices, since the average valence in a birigid graph of excess

independent dependent

nonrigid

(v) (vi) edge birigid

(vii) (viii) birigid

FIG.

rigid

(iii) (iv) circuit
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one on n vertices is greater than or equal to 4 (4/n). Therefore, a birigid graph on
more than four vertices contains a vertex ofvalence at least four. The removal ofa vertex
of valence four decreases the excess by two, therefore a birigid graph on more than four
vertices has to have excess at least two. In 3 we show that there are infinitely many
birigid graphs of excess two. We give an inductive procedure to construct them all. We
also show that they do not, unfortunately, fulfill the role of universal building blocks of
birigid graphs.

2. Birigidity of G and connectivity of R(G).
THEOREM 2.1. IfG has no isolated vertices and more than one edge, and R G) is

connected, then G is edge birigid, but not conversely.
Proof. G (V, E) is rigid, otherwise R(G) could be written as the direct sum over

the rigid components of G. Hence r(E) 2lVl 3.
Assume that there is an edge, e, such that G-e is not rigid. Then r(E- e)=

2IV[ 4 and r(E- e) + r(e) r(E). The last equation contradicts the connectiv-
ity ofR(G).

The converse is not true:
Let Go be minimally rigid, having no vertices and 2no 3 edges. We attach to each

edge ei a circuit Ci, <= <-_ (2no 3), Ci having r/i vertices, by identifying one edge of
each Ci with one edge of Go. Then the resulting graph is clearly rigid and hence has rank
2n 3, where n no + o-3

i= (ni-2).Soni=n+3no-6. TherankifeachCiis
2hi- 3.

If we sum over the ranks, we get
2no- 2no- 2no-

r(Ci)

_
(2rti-3) =-3(2no-3)+2 iv/i

i=1 i=1 i=1

=-6no+9+2n+6no- 12 =2n-3 r(G).

So M(G) is not connected. On the other hand, G is clearly edge birigid. An example
with no 3 is drawn in Fig. (vi). El

THEOREM 2.2. IfG (V, E) is birigid and [VI > 3, then R(G) is connected but
not conversely.

Proof Assume that G is birigid and that R(G) is not connected. Consider the con-
nected components Ri of R(G). Then there is a partition of E,

E=E1UE2U UE,

such that

R(G)=R-t-R2+... +Rk,

where Ri R(Gi), with Gi (if(E/), Ei). Every Gi is rigid, so it follows that
k k

(1) 21vI-3=r(G) r(Gi) (21(Ei)I-3).
i=1 i=1

Let tti be the number of vertices in the support of Ei which are also contained in the
support of some Ej, :/: j and let Ni be the number of vertices contained only in the
support of Ei. Denote by N the number of vertices of G which are contained in exactly
one of the a(Ei)’s, and by n the number of vertices which occur in more than one of
these supports. Ni, N, ni, and n satisfy the following equations:

(i) Ni Ir(Ei)- U a(Ej)l (ii) la(Ei)l =rti-f-Ni
ij

k

(iii) N= Ni (iv) VI n /N.
i=1
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So
k

lni.(2) n_-<,
Rewriting in this new notation we obtain

k

2n+2N-3= (2(ni+Ni)-3)
i=1

or

k

(3) 2n= 3(l-k)+ 2n;
i=1

so that (2) and (3) give

or

2ni 3 k-1) ni,
i=1 i=1

k

(4) , ni<= 3(k- ).
i=1

Furthermore, since every cutset in a birigid graph has cardinality at least 3, we
have that

Io(Ei)CI U o(Es,)l >_-3,
i4=j

which implies that ni > 3 for all i. This combined with (4) gives 3k < /k= hi--<
3(k- ), a contradiction.

If R(G) is connected, G need not be birigid: If G is a wheel, R(G) consists of a
single circuit and hence is connected. But the removal of the center vertex leaves a
nonrigid graph if the number of spokes is larger than three.

3. Birigid graphs of excess two. G is called edge minimally birigid if G is birigid
but G e is not birigid for all e E(V).

In this section we will restrict our attention to an edge minimal vertex birigid graph
G (V, E), which has exactly two edges more than it needs to be rigid, i.e.,

IEI =21VI-],

r(E)=21VI -3.

We first list some elementary properties of G.
PROPOSITION 1. LI G b a birigid graph ofexcess two. Then

G contains at least five vertices,
(ii) Ife E(G), then G e is not birigid, and
(iii) G has exactly two vertices of valence three and the remaining vertices each

have valencefour.
Proof (i) Simple graphs on less than five vertices do not contain enough edges to

satisfy IEI 21VI- 1.
(ii) G e is not a complete graph. G e has excess one. Since the only birigid

graph of excess one is K4, G e is not birigid.
(iii) Since G is rigid, it contains no vertex of valence less than two. Suppose that

G had a vertex v of valence two. Let w be adjacent to v. Then G w contains a vertex
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of valence one and is not rigid. Now suppose G has a vertex v of valence k. Then
G v has n vertices and 2 (n (k edges. Since G v is rigid, k < 4,
which implies that k < 5. Finally, if there are m vertices of valence three, we have
3m + 4(n m) 2(2n ), which gives m 2.

The simplest birigid graph of excess two can be obtained from K5 by deleting an
edge. This graph contains two copies of K4 as subgraphs. By "attaching" to K4 two
adjacent vertices of valence three, we obtain a birigid graph on six vertices. We remark
that birigid graphs on more than six vertices do not contain a birigid subgraph ofpositive
excess.

Next, we examine the circuit structure ofR(G).
THEOREM 3.1. A graph on n vertices with 2n edges is birigid ifand only ifthere

is a partition ofthe edge set E ofG,

E=E1 UEU UE:
such that E- Ei is a circuit in R G) for all i, and either

Ei is an edge for 3 <= < k and El and E2 are stars of two vertices of valence
three, or,

(ii) Ei is an edgefor 2 <= < k and E1 is the union ofstars oftwo adjacent vertices

ofvalence three.
Proof Assume that there exists such a partition. Consider a class containing exactly

one element e. Then E e is a circuit of R(G), so G e is a graph with minimum
valence at least three, and e has endpoints of valence at least four in G. Condition (i) or
(ii) imply that G has two vertices of valence three and we conclude by a simple counting
argument that all other vertices are of valence four.

Depending on whether or not the two vertices of valence three are adjacent in G,
conditions (i) or (ii) imply that the removal of a vertex of valence three of G results in
a circuit or in a circuit with a vertex of valence two attached, a rigid graph in
both cases.

Consider a vertex v ofvalence four in G. Remove an edge e ofstar(v) with endpoints
of valence four. E- e is a circuit by assumption, and v has valence three in this circuit.
Recall that a circuit is edge birigid. By deleting an edge in star v, we therefore obtain a
rigid graph in which v has valence two. The removal of a vertex of valence two does not
destroy the rigidity of a graph, so E v is rigid.

Conversely, assume that G is edge birigid on n vertices and 2n edges. Since
r(E) EI 2, and every edge is contained in a circuit, E is the union of two distinct
circuits, and can be partitioned into a collection of sets { Ei } such that E Ei is a circuit
for each i, and E Eil 21 r(E Ei)l 2, (see for example 5 or 6 ). Subtracting
this equation from EI 21 r(E) gives

(,) IEil =2lr(E)-r(E-Ei)l + 1.

If E and E- Ei have the same support then Ei is a single edge. If a(E)-
a(E- Ei) 1, then Ei contains all edges of the star of a vertex in G. The equation
gives Eil 3. Since every vertex in G has valence at least three, Ei must be a star of
a vertex of valence three, and the two vertices of valence three in G are not adjacent
because E Ei is a circuit.

If a(E) r(E- Ei) 2, then Ei contains all edges of the stars of two vertices of
G. The equation (,) gives Eil 5, so Ei must be the union of two adjacent vertices of
valence three in G.

If r(E) r(E- Ei)l > 2, then Ei contains all edges of the star of three vertices
of G. One of these must be of valence four. But the removal Of a vertex of valence four
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leaves an independent set since G is birigid. The desired partition is so established, and
the proof of the theorem is complete. V1

Examples of graphs with a partition of type (i) and (ii) are given in Fig. 2.
Clearly we can "string together" as many triangles as we wish to obtain birigid

graphs of excess two of arbitrarily large size. Also the number of classes in the partition
described in Theorem is unbounded. From a theorem of Tutte [5 ], we know that, if
M is a matroid representable over a finite field k of order n, and S is the union of two
cycles ofM with r(S) SI 2, and S1, Sm is a partition of S such that S- Si is
a cycle ofM, then m is bounded by n + 1. Hence, we have proved the following corollary.

COROLLARY. There is no finite fieM k such that R(G) is representable over k for
all G.

Consider an edge minimal birigid graph G (V, E). For every edge e in E there
exists a nonempty set Ve of vertices of G such that E e v is nonrigid for all v Ve.
Elements of Ve are called essential vertices for the edge e.

From a given birigid graph ofexcess two, we want to construct a larger birigid graph
of excess two by attaching a vertex of valence three and removing one edge from the
given graph. To formalize this idea, we introduce some notation.

Let T be a graph on four vertices and three edges, where one vertex is of valence
three, and construct a graph G + T by identifying vertices a, b, c of G with the vertices
of valence one in T.

We can now prove the following theorem.
THEOREM 3.2. Let G be a birigid graph ofexcess two, and let T and { a, b, c be

as described above. Then:
G + T is birigid;

(2) a necessary and sufficient condition for G + T to be edge minimally birigid is
that the set { a, b, c } not be contained in V- Vefor any edge e ofG;

(3) if G + T is not edge minimally birigid, then there is an edge e such that
G + T- e is birigid ofexcess two; and

(4) there is always a choice of { a, b, c } such that G T is not edge minimal.

Proof (1) The removal of T results in a birigid, and hence rigid graph, and the
removal of any vertex v e G from G + T removes at most one edge from T, and since
G-visrigid, soisG+ T-v.

(2) Sufficiency. Let e be any edge of G. Since the intersection of Ve with { a, b, c }
is nonempty, the removal of e and any vertex v in this. intersection leaves a nonrigid
graph, G e v, which has the same rigidity properties as G + T- e v.

Necessity. Assume the existence of an edge e of G such that { a, b, c } is contained
in V- Ve. Observe that all vertices of valence four of G which are not endpoints of e
are elements of Ve. Therefore, at least one vertex in the set { a, b, c } is an endpoint
ofe.

FIG. 2

i ii
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There are two cases.
Case (a). a and b are endpoints of e, and c is of valence three in G. Theorem 3.1

implies that a vertex v of valence three is essential for a nonempty set of edges only if
the two vertices of valence three in G are adjacent. In this case v is essential for the two
edges not contained in a circuit in G v. It follows that c is not adjacent to a possible
endpoint of e of valence three and all essential vertices for e are of valence four. This
means that E-v is rigid of zero excess, i.e., independent for all v Ve. Therefore,
E v e is independent and e is not in its closure. By the 1-extendability property,
E + T- e v is independent and hence rigid.

Case (b). e has endpoints of valence four in G, one of them being a, and b and c
are of valence three. Remove e and star(v) for some v Ve. Repeating the argument in
(a) we show that E e v is independent and nonrigid. Consider the r-components of
E- e v, and assume that a, b, and c are contained in the same r-component. This
component is independent, and we count that exactly three edges of G e are incident
with it, contradicting the fact that G e is a circuit by Theorem 1. So, { a, b, c } is not
contained in one r-component of E- e- v, and the 1-extendability property implies
that E + T- e v is independent and hence rigid for all v in Ve, so G + T- e is birigid.

(3) If G + T is not edge minimally birigid, then there is an edge e in G + T such
that G + T- e is birigid. G + T- e has excess two.

(4) For an edge e with endpoints a and b, both ofvalence four, a vertex c ofvalence
three is not essential by Theorem 1.

The proof of the theorem is now complete.
Given an edge minimal vertex birigid graph of excess two on n vertices, we can

obtain an edge minimal vertex birigid graph on n + vertices by choosing an edge e in
G with IV- Ve] >= 3 and forming (G e) + T by identifying three vertices of V-
with the endpoints of T of valence one. In fact, we obtain all birigid graphs of excess two
by this process.

THEOREM 3.3. Let G be a birigid graph ofexcess two with VI > 5. Let v be one
ofits vertices ofvalence three, T star(v) and let x, y, and z denote the vertices adjacent
to v. Then there is an edge e with endpoints in { x, y, z } such that e is not an edge ofG
and G T + e is birigid.

Proof VI > 5 insures that G T is not complete.
There are two cases.
Case (a). The two vertices of valence three in G are adjacent. By Theorem 1, the

removal of v leaves a circuit, C, with a vertex, x, ofvalence two attached. Assume x and
y are in the same rigid component of C + x w, where w is a vertex of valence four in
C. We count that exactly three edges leave this component, contradicting the fact that
a cutset of C has cardinality greater than three.

Observe that x is not adjacent to y or z; this would contradict the birigidity of G.
So, x and y are never in the same rigid component of C + x w, and neither are y and
z; therefore, C + x w + e is rigid if e is one of (x, y), (x, z), respectively.

Case (b). The two vertices of valence three in G are not adjacent. By Theorem 1,
if we remove v, we are left with a circuit C. Let w be a vertex of valence four in C. C-
w + Tis rigid of zero excess, hence independent and, consequently, C w is independent
and nonrigid. By the 1-extendability property there exists an edge e with endpoints in
{ x, y, z } such that C w + e is rigid. However, the choice of e depends on w, and we
have to find an e that achieves rigidity independently from the choice of the removed
vertex w.

If C contains already two of the possible three edges with endpoints in { x, y, z },
we are done. Assume now that C does not contain e (x, z) and f (y, z) and there
is a vertex w of valence four in C such that x and z are in the same rigid component A
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FIG. 3

of C w, but C w + f is rigid and that there is a vertex u of C such that y and z are
in the same rigid component B of C u and C- u + e is rigid. A and B intersect in at
least one edge, since z is of valence three in C, and their union is not equal to C. A
contains at least two vertices which are not in B, so there are at least three edges
ofA B incident with vertices of B, and by symmetry, three edges of B A are inci-
dent with vertices of A. We count that exactly four edges leave each of A and B. So
I(C- (A LJ B)] < 2, contradicting the fact that C (A tO B) contains a vertex.

Therefore, we can always find an edge e with endpoints in { x, y, z such that
C w + e is rigid for all vertices w in C, i.e., G T + e is birigid.

We have now found all birigid graphs of excess two, and we have seen that they are
not only edge minimally birigid, but also minimal in the sense that they do not, with the
exception of the ones on five and six vertices, contain any birigid subgraph of positive
excess. Now we ask if every birigid graph on more than six vertices contains a birigid
graph of excess two. The answer is no. The graph in Fig. 3 is birigid, has excess three,
and is minimal. The question of whether or not there are minimally birigid graphs of
arbitrary excess is still open.

Acknowledgment. I wish to thank Jack Graver for introducing me to R(G), and
for his guidance throughout this research.
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Abstract. This paper develops an O(n2) algorithm for testing whether a graph is decomposable with respect
to the split decomposition. The fastest previous algorithm required 2(n 3) time for this problem. This leads to
an O(n2) expected time algorithm for computing the split decomposition of a graph.
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Introduction. The split decomposition for directed graphs, which is defined in the
next section of this paper, was developed by Cunningham. This decomposition has also
been called the join decomposition of a graph. A nontrivial decomposition of a graph G
can be used to simplify the weighted independent set problem and the dominating set
problem on G [Cu]. Two independent papers have been written which recognize circle
graphs by decomposing a graph G using the split decomposition. G is a circle graph if
and only if each of the separate components is a circle graph, and if there is no further
decomposition possible, the representation of the component on the circle is unique
[Bo2], [GHS]. This is used to develop a polynomial test to determine whether a graph
is a circle graph. Bouchet’s algorithm in particular relies on repeated calls to a prime
testing subroutine [Bo2]. The split decomposition also plays a key role in efficient al-
gorithms for isomorphism of circle graphs and circular-arc graphs, and simplifies algo-
rithms for circular-arc graph recognition [Hs].

The split decomposition is a generalization of a well-known form of graph decom-
position called the substitution decomposition [Mo2], [MR]. There is a natural corre-
spondence between the cographs [CLS], which are "completely decomposable" with
respect to the substitution decomposition, and the distance hereditary [BM or completely
separable [HM] graphs, which are "completely decomposable" with respect to the split
decomposition. Another close correspondence exists between the permutation graphs
[Go], [Sp] and the circle graphs. A permutation graph has a unique representation if it
is indecomposable with respect to the substitution decomposition, while a circle graph
has a unique circular representation if it is indecomposable with respect to the split
decomposition.

In this paper, we show that we can determine whether a graph is prime (i.e., inde-
composable) with respect to the split decomposition in O(n2) time, where n is the number
ofvertices in G. Since almost all graphs are prime with respect to the split decomposition,
this gives an O(n2) expected time algorithm for computing the entire split decomposition.
Previous algorithms for this problem are due to Cunningham [Cu] and Bouchet [Bo ],
and take O(r/4) and 0(/7 3) time, respectively.

Both Cunningham and Bouchet rely on a subroutine called Separate, which takes
two edges el, e2 as input and tests whether there is a split of G into V1, V2 such that el
goes from V to V2, and e2 goes from V2 to V. Each call to Separate takes O(n2) time
[Cu], which can be reduced to O(m) for undirected graphs, where m EI [GHS].
Cunningham’s algorithm takes a spanning intree and a spanning outtree for G, and calls
Separate for each pair oftree edges, thus taking O( n 4) time. Bouchet’s algorithm is more
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supported by National Science Foundation grant DCR-8604577.
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complicated to describe, but it chooses to make calls to Separate in a particular order,
cutting the number of calls to O(n). Bouchet’s algorithm thus takes O(n 3) time to
decompose the graph. We note that these algorithms actually find the entire split decom-
position, rather than simply testing whether the graph is prime. However, Cunningham’s
and Bouchet’s algorithms make O(n2) and O(n) calls to Separate, respectively, if the
graph is prime, and thus do not seem to run faster when the graph has a very simple
decomposition. This paper takes a different approach; we are able to test in O(n2) time
whether there is a split such that two vertices a and b belong on the same side of the
split. The advantage of this approach is that it is much easier to find a pair of vertices
which belong on the same side of the split than to find a pair of edges which go across
the split; any trio of vertices contains some pair which belong on the same side of
the split.

Definitions. In this paper, for any x in V, N(x) will denote the set

{yEV:(x,y)6E}.

For a set S of vertices,

N(S) Y6 V- S: 3s6S, (s, y)6 E}
As in the original paper defining the split decomposition [Cu], we will assume that

the input graph G (V, E) is strongly connected. Let V1, V2 be a partition of V such
that vll >= 2 _-< Iv21. Define Vin v V there exists w V2, (w, v) E}, and let
Vout { v 6 V there exists w 6 V2, (v, w) 6 E }. Vzin and V2out are defined analogously.
V1, V2 is a split of G if for all v Vlot, w Vzi,, (v, w) E, and for all x Vi,, y
V2ot, (y, x) E. In Fig. 1, { a, b }, { c, d} is a split of G; Vo { a, b }, Vi, { a },
V2o { d }, Vi { c, d}. If G has no split, G is called prime with respect to the split
decomposition.

An outforest is a directed forest in which each component is a rooted tree with edges
directed from parent to child. An inforest consists of rooted trees with edges directed
from child to parent. The level number of a vertex v in an outforest is the length of the
path from a root of the outforest to v, and the level number of a vertex v in an inforest
is the length ofthe path from v to a root ofthe inforest. A level of an inforest or outforest
is the set of vertices which have the same level number.

For a split V1, V2 of a graph, we can define a marker element v. The marker v can
be used to reconstruct the relationships between vertices from V and vertices in V2; v
is a new vertex that has edges to Vin and Vzi, and edges from Vlout and Vot. The split
decomposition of G is formed by choosing any split V1, V2 of G with marker v, and
recursively decomposing V to v } and V2 tO v }. This decomposition divides G uniquely
into prime subgraphs and certain "highly decomposable" subgraphs; Cunningham [Cu]

FIG.
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gives precise, unique decomposition theorems for both the directed and undirected case
of the split decomposition.

Algorithms. The algorithm described in this paper will start with any pair a, b of
vertices in V, and test whether there is a split of G such that a and b belong on the same
side of the split, which we will arbitrarily call V1. In any trio of vertices a, b, c, there
must be some pair that belongs on the same side of a split if G is not prime. Therefore,
to test whether G is prime, we simply need to run this algorithm for the pairs (a, b),
(a, c), and (b, c).

In the algorithm for testing whether a graph is prime with respect to the split de-
composition, we keep track of a number of sets. Each set is organized as a type of forest,
either as a breadth first search outforest, or as a breadth first search inforest. Each vertex
is in one inforest and one outforest. The first level of a forest (that is, the set of roots of
the forest) is called an initial level.

The proof ofcorrectness ofthe algorithm is based on several properties ofthe forests
which will be maintained by all procedures of the algorithm. These properties are stated
explicitly here. For these properties, we assume that there is a split of G into V, V2 such
that a and b are in V.

Property 1. V2 is contained within a single inforest and a single outforest.
Property 2. Let v be a vertex from the initial level of an outforest F. Then there is

a vertex u that is not in F, such that (u, v) is an edge of G, and for any vertex f of F
that is not at the initial level, (u, f) is not in G.

Property 3. Let v be a vertex from the initial level of an inforest F. Then there is a
vertex u that is not in F, such that (v, u) is an edge of G, and for any vertex f ofF that
is not at the initial level, (f, u) is not in G.

Intuitively, each forest can be thought of as an "approximation" of V2, with the
initial level of an outforest being an approximation of V2, and the initial level of an
inforest being an approximation of V2ot. The algorithm runs through a partitioning
procedure, making successively finer approximations of V2 when an inconsistency
is found.

To quickly summarize the algorithm, once we have our initial forests, we find edges
that go between different forests. Whenever such an edge (x, y) is found, we split the
level of the outforest that contains y into neighbors and nonneighbors ofx; the neighbors
ofx from this level become the initial level of a new outforest. Similarly, the level of the
inforest that contains x is split into vertices that have an edge to y and vertices that do
not have an edge to y; the vertices that have an edge to y become the initial level of a
new inforest. The rest ofthis section provides a more detailed description ofthe algorithm,
as well as a proof of correctness and an analysis of the time complexity ofthe algorithm.

A pseudoprogram for creating a first set of forests, which we will call Createforests,
is shown below. Createforests begins with three sets ofvertices that cannot occur together
in V and performs a variant of breadth first search from each set to place unmarked
vertices in a breadth first search forest from one of these three sets.

Createforests a,b,V,E );
G1 :=N(a)-N(b)- {b};
02 := N(b) N(a)- {a};
G3 := N(a) 71N(b);
mark all vertices in the sets { a }, b }, G 1, G2, G3;
fori:= lto3do

begin { create a breadth first outforest with initial level Gi }
thisforest := ;
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curlevel :=
nextlevel := Gi;
while (nextlevel 4: ) do begin

thisforest := thisforest tO nextlevel;
curlevel := nextlevel;
nextlevel := ;
for each vertex v in curlevel do

for each neighbor w of v do
if w is unmarked then begin

add an edge in the outforest from v to w;
add w to nextlevel
mark w

end;
end;
{ we now create an inforest for the same set of vertices }
unmark all vertices in thisforest;
curlevel := ;
nextlevel := { v thisforest 3 (v,w), w thisforest }
mark all vertices in nextlevel;
while (nextlevel 4: ) do begin

curlevel := nextlevel;
nextlevel := ;
for each vertex v in curlevel do

for each w such that w - v do
if (w 6 thisforest) and (w is unmarked) then begin

add an edge in the inforest from w to v;
add w to nextlevel;
mark w;

end;
end;

end;

OBSERVATION 1. The only routine in this algorithm that adds edges to forests is
Createforests. Furthermore, every level ofa forest F at any time in the algorithm comes
from a single level oftheforest created by Createforests.

OBSERVATION 2. There is never any edgefrom a vertex at level ofan outforest F
to a vertex at level greater than + ofF. There is never any edge to a vertex at level
ofan inforest Ffrom a vertex at level greater than + ofF.

Figure 2 shows a sample graph and the inforests and outforests that come from a
call Createforests (a, b, V, E). We note that we also consider a and b by themselves to
be forests. Every vertex must be in an inforest and an outforest, since the original graph
is strongly connected. We will assume that edges of the forests can be traversed in either
direction. The inparent of x is the parent of x in the inforest containing x, and the
outparent of x is the parent of x in the outforest which contains x.

LEMMA 1. For any split of G such that a and b are in V1, properties 1, 2, and 3
hold at the end ofthe call to Createforests.

Proof. It is easy to see that Properties 2 and 3 hold at the end of Createforests. The
initial levels of any outforest contain exactly those vertices which are neighbors of a
and/or b, so Property 2 must hold. The initial level of an inforest is defined to be the
set of vertices which have edges to vertices outside the forest, so Property 3 must hold.
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outforests inforests

b

FIG. 2

We now consider Property 1, which states that V2 is contained in a single inforest
and a single outforest. Since each inforest was created by rearranging the vertices from
an outforest, we only need to verify that V2 must come from a single outforest.

Assume that there are two outforests F1, F2 which contain vertices from V2. Let x
be a vertex of V2 f’l F1 that is at the first possible level of F, and let y be a vertex of
V_ N F2 that is at the first possible level of F2. Both x and y have an inedge from some
vertex in V1, since all vertices before x and y in the outforest are in V1 and a and b are
in V1. Therefore, both x and y must be in Vz;n. However, x and y cannot have edges
from the same set of vertices in V1, since the vertex that brought x into its outforest was
not the same vertex that brought y into its outforest. Therefore, x and y cannot both be
in V2in, and this is not a valid split of G. U]

An edge (v, w) such that v and w are in different outforests is called an out-crossedge.
Similarly, an edge (v, w) such that v and w are in different inforests is called an in-
crossedge. Collectively, such edges are called crossedges. Let (x, y) be a crossedge. When
this crossedge is found, it will have an effect on the inforest that contains x and the
outforest that contains y. We will discuss the effects on the outforest containing y. Let
F be the outforest that contains y, and let L be the set of vertices on the same level ofF
as y.

We use (x, y) to partition F. We move the vertices of L N N(x) to the front of a
new outforest. Vertices of F which are at a higher level than y are placed in the same
forest as their parents, so no extra work is required to deal with these vertices. The
subroutine to partition an outforest into subforests on the basis of a crossedge (x, y) is
given below and is called Outdivide. A similar program, which we will call Individe, is
used to split the inforest which contains x. We note that Outdivide can be called for any
pair of vertices (x, y) in different outforests, whether or not there is a crossedge from x
to y.

Outdivide (x,y);
F := the outforest which contains y;
L := vertices of F on the same level as y;
L1 := N(x) ffl L;
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remove L from F;
create a new outforest with initial level equal to L 1;
{ note that descendants of vertices in L become part of the new outforest

LEMMA 2. Suppose that properties 1, 2, and 3 are true before a call Outdi-
vide(x, y). Then Properties 1, 2, and 3 remain true after the call to Outdivide.

Proof. Property 3 is not affected by the call to Outdivide, so we only need to consider
Properties and 2.

We first consider Property 2, which states that every vertex in the initial level of an
outforest has an edge from a vertex u, such that u does not have an edge to any vertex
in a higher level of the outforest. Let L be the level that contains y, and let F be the
forest that contains y. If L is the initial level of F, it should be clear that Property 2
remains true for the new forest. If L is not the initial level of F, then every vertex of L
has an edge from some vertex u that is in the level below L in F. Vertex u cannot have
an edge to any vertex at a level above L in F, so Property 2 remains true for the new
forest created by the call to Outdivide.

We now consider Property 1, which states that V2 must be contained in a single
inforest and a single outforest. Let v be a vertex of V2 from the lowest possible level of
F, and let w be a vertex of V2 from the lowest possible level of F that is placed in the
other subforest of F by the call to Outdivide. Both v and w must be in V2in, since each
vertex is either at the initial level of F, or has an edge from a parent which is in V1, or
has an edge from x. This implies that v and w must have the same parent, since the
vertex which brought v into the outforest is a member of V, and also brings w into the
subforest. Children of the same parent can only be placed in different forests during a
call Outdivide(x, y) if both are in the same level as y, and one has an edge from x while
the other does not. Since x V1, this contradicts the fact that both v and w are in V2in,
so v and w will remain in the same forest after the call to Outdivide.

After the Outdivide procedure has been performed, we may have new crossedges,
since an edge between two vertices from the same forest F may now go between two
different subforests of F. We use the procedure below, which continues dividing the
outforests until every crossedge (u, v) has been used to Outdivide the outforests which
contain v. We say that a vertex y goes on x’s outforest active list as soon as x and y are
put into different outforests. Vertex y leaves x’s outforest active list when we divide the
level L that contains y into neighbors and nonneighbors ofx during a call to Outdivide.

Outstabilize;
while some outforest active list 4: do

find a pair (u,v) such that v is on u’s outforest active list;
Outdivide (u,v)

end;

A similar routine, which we will call Instabilize, performs the same task for inforests.
There is only one major task left to describe: the division of the outforests, which tells
us that certain vertices cannot belong together in V2, must also cause a division of the
corresponding inforests.

We use a routine called Insubdivide to divide the inforests. Insubdivide takes as
input a set of outforests F, F2, Fk that are part of a single inforest F. Each level L
of F is partitioned into sublevels Li such that every vertex in Li is contained in Fi. If a
vertex x is in Fi, but inparent(x) is not in Fi, then x is placed in the initial level of a
new inforest. This procedure is described in the pseudoprogram shown below. At the
end of Insubdivide, every vertex in an inforest F is contained in a single outforest. This
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will in general create many new in-crossedges, which will be used to subdivide the inforests
by a call to Instabilize.

Insubdivide(F,F2 ," ", Fi,F);
L := the first level of F;
partition L into subgroups which are in the same outforest, each

of which becomes the initial level of an inforest;
L := the next level of F;
while (L 4: ) do begin

newforest := { v 6 L v, inparent (v) are in different outforests }
L := the next level of F;
partition newforest into subgroups which are in the same outforest;
remove newforest from F;
create new inforests with initial levels equal to the subgroups of newforest;

end;

LEMMA 3. IfProperties 1, 2, and 3 hold before a call to Insubdivide, then properties
1, 2, and 3 hold after a call to Insubdivide.

Proof. Property 2 is a property of outforests, and does not need to be verified since
the outforests do not change as a result of this procedure.

Property 3 says that every vertex in the initial level of an inforest F has an edge to
some vertex u 6 V- F, such that u does not have any edges from vertices at a higher
level ofF. Note that the subforests created by Insubdivide are formed from Fby moving
some vertices to the initial levels of new forests. Let x be a vertex in the initial level of
one of the forests F created by Insubdivide. If x was in the initial level of F, Property 3
clearly remains true for x. Ifx is at level of F, then every vertex of Fj. that is not in the
initial level of F was at level at least + of F, while the parent p of x is at level

1. Vertex x has an edge to p, which must be in a different forest, since x was moved
to the initial level, while no vertex at a higher level of Fj. has an edge to p.

Property states that V_ must be contained in a single inforest and a single outforest.
Let v be a vertex of V2 from the lowest possible level of F, and let w be a vertex of V2

from the lowest possible level of F which is placed in a different inforest from v during
a call to Insubdivide. Since Property 2 holds before the call to Insubdivide, v and w must
be in the same outforest. Both v and w must be in Vzout, since each vertex is either at
the initial level of F or has an edge to its parent, which is a member of V. This implies
that v and w must have the same parent, since the vertex that brings v into the inforest
is a member of VI and also brings w into the inforest. Since v and w have the same parent
and were in the same outforest before the call to Insubdivide, v and w remain in the
same forest after the call to Insubdivide. V]

The program below, called Primetest, is used to determine whether there is any split
of G such that a and b are both in V and can easily be used as a subroutine to determine
whether G is prime. When Primetest halts, no outforest subdivides any infbrest, and no
inforest subdivides any outforest. Therefore, after Primetest halts, the vertices of each
inforest correspond to the vertices ofone outforest. We will therefore say that the vertices
are divided into forests, since we no longer have to distinguish between inforests and
outforests.

Primetest (a,b,G);
Consider all vertices, including a and b, as part of a single forest;
Createforests (a,b,V,E);
while (some inforest or outforest has been split in the last phase) do
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begin
Outstabilize;
for each inforest F which is in > outforest FI"" Fi do

Insubdivide (Fl,. ,Fi,F)
Instabilize;
for each outforest F which is in > inforest F1.-. Fi do

Outsubdivide F ,. ., Fi, F);
end;

if (some forest contains > vertex) then return (’split possible’)
else return (’no such split’);

THEOREM 1. Primetest a, b, G) answers that a split is possible ifand only ifthere
is a split ofG such that a and b are in V.

Proof. Suppose that Primetest answers that a split is possible. There must be some
forest F that has at least two vertices at the end of Primetest. The split of G is V- F, F.
V2i is the initial level of the outforest corresponding to F, while V2out is the initial level
of the inforest corresponding to F. No vertex v of V has an edge to any vertex v2 of
V2 Vin; v2 must have been removed from vl’s outforest active list, and if(v, v2) was
an edge, this would have placed v2 at the initial level of an outforest. Similarly, no vertex
of V can have an edge from V2 V2out. Finally, any vertex v V which has an edge
to (from) a subset of Vz;n, (V2o) must have an edge to every vertex in that set, or the
level ofthe outforest (inforest) would be partitioned into the neighbors and nonneighbors
ofvl.

Suppose that Primetest answers that no split is possible, but G has a split V, V2.
V2 must contain members of at least two different forests, since Vl >-- 2 in any split.
Lemma tells us that V2 was contained in a single inforest and a single outforest after
the call to Createforests. Lemma 2 tells us that V could not have been divided into
separate forests during a call to Outdivide, and Lemma 3 tells us that V2 could not have
been divided into separate forests during a call to Insubdivide. The proofs that V2 cannot
be divided into different forests during calls to Individe and Outsubdivide are very similar
to the proofs ofLemmas 2 and 3 and will be left to the reader. Since separation ofvertices
into subforests can only happen within these routines, Vz must be contained in a single
forest at the end of the call to Primetest.

Createforests is similar to breadth first search, and runs in O(n + m) time, where
m ]EI. Each vertex enters each other vertex’s inforest active list once, so the total
number of checks during Instabilize (Outstabilize) is O(n2). In Individe and Outdivide,
the adjacency between any pair of vertices is examined at most twice (when the level
that contains one vertex is partitioned into neighbors and nonneighbors of the other
vertex), so the total number of times the adjacency matrix is examined is O(n2).

Within the procedures Individe and Outdivide, we divide the level L of a forest
containing a vertex y depending on relationships to a vertex x. All vertices in L are then
removed from an "active list" for x and never return to the active list. We want to divide
L using time proportional to the number of vertices in L, which would give an O(n)
bound for the time used for dividing levels throughout the algorithm. It is easy to locate
the position ofy in constant time by maintaining pointers to the position of y in the set
of inforests and the set of outforests. However, since the forest is changing, it may not
be obvious how we can efficiently find other vertices in this level. After a forest is sub-
divided, we traverse each subforest and link vertices at the same level in a doubly linked
list. The traversal takes O(n) time, and the total number of times forests are subdivided
is O(n), so maintaining links between vertices at the same level takes O(n2) time. Using
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these lists, it is easy to see that the total time spent within the procedures Individe and
Outdivide is O(n2).

The final routines which need to be analyzed are Insubdivide and Outsubdivide.
These involve traversing a forest and placing each vertex in the appropriate subforest. If
we assume that we know the name of the outforest and inforest containing x, it is easy
to see that the routine takes O(n) time per call. Since these routines are called only when
a forest is divided, this gives a time bound of O(n2) spent within Insubdivide and Out-
subdivide. We store the name of the inforest and outforest that contains vertex x in
position x ofan array. Whenever a forest is subdivided, we give a number to each subforest.
We traverse each subforest and change the appropriate values in the array. Once again,
the time taken is O(n) each time a forest is subdivided, and thus the total time needed
to maintain the array of names is O(n2).

For the special case ofundirected graphs, the algorithm becomes somewhat simpler.
There is only one type of forest, so there is no need for the procedures Insubdivide and
Outsubdivide. On sparse undirected graphs, it is possible to modify the procedures Out-
divide and Outstabilize to create an O(rn log n) algorithm for prime testing; it is not
clear that this can be done for directed graphs. Since the details ofthe O(rn log n) algorithm
require quite a bit of modification to the existing data structures, we give only a short
sketch here.

In the new implementation, instead of calling a routine Divide (x, y) to deal with
a crossedge (x, y), we use a routine Splitall(x) to divide each forest which does not
contain x. Splitall(x) marks each vertex on x’s adjacency list, partitions any levels of
forests that contain a neighbor ofx, and makes the vertices that are neighbors ofx initial
levels of new forests. This splitting can be accomplished in O(IN(x)[) time in a careful
implementation.

Splitall is called by a routine corresponding to Instabilize. Every crossedge in an
undirected graph has at least one endpoint in an initial level, which makes it possible to
restrict our calls of Splitall (x) to vertices x which are in initial levels. A vertex x in an
initial level can be used for a call Splitall (x) if either Splitall (x) has never been called,
or the current size of x’s level is at most one half the size of x’s group during the last call
to Splitall(x). This guarantees that Splitall(x) is not called more than log n + times.
If no vertex is eligible for a call to Splitall (x), let F be the forest with the largest initial
level. Every vertex in an initial level of a forest other than F has attempted to split F, so
V- F, F is a split of G.

Computing the entire decomposition. The entire split decomposition can be found
by repeatedly testing whether the graph is prime; if it is not, the graph is decomposed
into V1 U v }, V2 [,.J { l) }, where v is a new vertex such that (v, w) is an edge if and only
if w Vi, or w Vzin, and (w, v) is an edge if and only if w Vzout or w Vo,t. We
then attempt to decompose each of the two pieces of G. Since there are at most n de-
compositions before each component becomes prime, this takes O(n 3) time in the
worst case.

In this section, we show that ifevery labeled graph on n vertices is considered equally
likely, then the expected running time for computing the split decomposition of a graph
in this manner is O(n2). The O( n 2) expected behavior follows from the fact that almost
every graph is prime as n becomes large. M6hring has previously shown this to be true
for the substitution, or modular, decomposition, which is a special case of the split de-
composition. M6hring and Radermacher [MR] have observed that the same techniques
can be used for the split decomposition; the proof is included here to make the paper
self-contained. We note that Bouchet’s algorithm [Bol ], which also takes O(n 3) time
in the worst case, has 2(n 3) expected behavior; on a prime graph, Bouchet’s algorithm
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will make n "local complement" steps, each of which takes (n2) time in the
average case.

The number of graphs on k vertices such that VI j is at most

,2J(J-1),2(k-j)(k-j-1), * , ,
i=0 i=0

The formula above calculates the number ofways to choose V, and multiplies this
by the number of subgraphs on V1 and V2, times the number of ways to choose Vin,
Vout, Vzin, and V2out. This formula can be simplified to (), 2 2j2+ k2-2jk+ k. If we let j
range from 2 to k 2, 2 2j2 + k2 2jk + k achieves its maximum atj 2 andj k 2, when
it has the value 2 k2+ 8- 3k. Since () is less than 2 k, the number of graphs on k vertices
that have a split is less than k,2k2+g--k, which is a vanishingly small per-
centage of the 2kk- 1) graphs on k vertices for large values of k. We note that for large
values of k, almost every graph on k vertices is strongly connected [Pa], so restricting
attention to strongly connected graphs does not alter this result.

Conclusions. This paper presents an O(n -) algorithm to determine whether a graph
is prime with respect to the split decomposition. In a forthcoming paper [MS], we will
show that this technique can be used to compute the entire undirected split decomposition
in O( n 2) time. We conjecture that an O( n 2) algorithm for computing the entire directed
split decomposition is also possible.
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